ATLAS Status Report
Operations, Physics & Upgrade Planning

P. Krieger, University of Toronto
(on behalf of the ATLAS Canada Collaboration)
ATLAS Canada Collaboration

Founded in 1992: M. Lefebvre, UVic
R. McPherson, IPP/UVic 2007-2015

Current Management

Spokesperson, PI (2015 –): P. Krieger, U of T
Deputy: A. Warburton, McGill
Physics Coord: A. Lister, UBC
Computing Coord: D. Gingrich, Alberta

39 University/Lab faculty (35.5 FTE) [details in backup slides]
28 Postdocs, 77 GS (Fall 2016), ≈ 25 UG students/year
Plus engineers and technicians (some MRS funded)
Group includes 5 IPP Research Scientists (4 FTE)
Canadian Leadership in ATLAS

- **Canadians present in all levels of ATLAS management and coordination:**
 - Some prominent examples below,
 - Also many roles in detector operations, data quality, upgrade and physics and performance sub-group coordination (not shown here):
 - Including both ATLAS and sub-system run coordinators

Major (recent and present) ATLAS management / coordination roles

<table>
<thead>
<tr>
<th>ATLAS Management</th>
<th>Publications Committee Chair</th>
</tr>
</thead>
<tbody>
<tr>
<td>McPherson (deputy spokesperson 2015-2017)</td>
<td>Vetterli</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Executive Board</th>
<th>Speakers Committee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vetterli (pubcom chair), McPherson (at-large)</td>
<td>Lefebvre (Chair), Warburton</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physics coordination</th>
<th>Authorship Committee Chair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lister (top), Savard (Higgs), Canepa (Upgrade physics), Gingrich (MC)</td>
<td>Trigger</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Speakers Committee Advisory Board</th>
<th>Publications Committee members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krieger, Vachon, Taylor</td>
<td>Krieger, Trigger</td>
</tr>
</tbody>
</table>

| Computing resources management Chair | Vetterli |
Canadian Leadership in ATLAS

• Canadians present in all levels of ATLAS management and coordination:
 – Some prominent examples below,
 – Also many roles in detector operations, data quality, upgrade and physics and performance sub-group coordination (not shown here):
 • Including both ATLAS and sub-system run coordinators

Updates from ATLAS Week Feb 2017

Pierre Savard elected as Deputy Physics Coordinator:
- Becomes Physics Coordinator for 2018-19

Pekka Sinervo appointed to Publication / Authorship Committees:
- Will chair Authorship Committee in Year 3

Manuella Vincter appointed to ATLAS Executive Board

ATLAS Management

- McPherson (deputy spokesperson 2015-2017)
- Exec Board: Veferli (pubcom chair), McPherson (at-large)
- Physics coordination: Lister (top), Savard (Higgs), Canepa (Upgrade physics), Gingrich (MC)

Speakers Committee Advisory Board

- Krieger, Vachon, Taylor

Publications Commitee members

- Chair: Veferli
- Trigger

Authorship Commitee Chair

- Lefebvre
- Warburton

Computing resources management Chair

- Vetterli

P.Krieger, U of T
Institute of Particle Physics, AGM, May 27, 2017 Kingston, ON
ATLAS Canada committed to excellence in HQP training:
- Current graduate student and postdoc numbers shown on previous slide
- 70 PhDs awarded (Fall 2016), 45 with collisions (distribution below)
- About 100 postdocs have been trained on ATLAS Canada
- Of completed degrees / training in last 5 years*:
 - ~70% of MSc students continued to a PhD (usually in the same field)
 - ~40% PhD remained in research, ~30% went to industry, 20% became teachers
 - ~70% of postdocs remained in research, ~20% to industry

ATLAS PhD Degrees Awarded at Canadian Institutions

Post PhD careers (2010-2015)
- Research 40%
- Industry 30%
- Education 20%
- Other 10%
- * Career numbers based on incomplete information

ATLAS Collaboration management starting a new effort to track career paths of ATLAS HQP
ATLAS Canada HQP Training

- ATLAS Canada committed to excellence in HQP training:
 - Current graduate student and postdoc numbers shown on previous slide
 - 70 PhDs awarded (Fall 2016), 45 with collisions (distribution below)
 - About 100 postdocs have been trained on ATLAS Canada
 - Of completed degrees/training in last 5 years:
 - ~70% of MSc students continued to a PhD (usually in the same field)
 - ~40% PhDs remained in research, ~30% went to industry, 20% became teachers
 - ~70% of postdocs remained in research, ~20% to industry

ATLAS RAs recognized with 3 of the 20 ATLAS Outstanding Achievement Awards awarded in 2016

ATLAS PhD Degrees Awarded at Canadian Institutions

ATLAS Collaboration management starting a new effort to track career paths of ATLAS HQP

P.Krieger, U of T
Institute of Particle Physics, AGM, May 27, 2017 Kingston, ON
The Large Hadron Collider at CERN

• The world’s highest-energy particle collider
 – Likely to remain at the energy-frontier for at least another two decades
• ATLAS: over 600 peer-reviewed publications
• Higgs Boson discovery in 2012 led to 2013 Nobel Prize to Higgs and Englert (with ATLAS and CMS mentioned in the citation)
 – Investigations of Higgs properties still important and on-going
 – This will remain true to the end of the LHC/HL-LHC experimental program
• Increased energy, decreased bunch spacing for Run-2 (2015-2018):
 – Bunch spacing of 25 ns (instead of 50 ns) for reduced pileup
 – 13 TeV up from 8 TeV in Run-1: new window for searches for BSM physics
 – LHC magnet training to 14 TeV investigated during 2016-17 EYETS
 – Energy will remain at 13 TeV for all of Run-2
• Maximum LHC energy is 14 TeV. After that, planned improvements associated with an increase of the collision rate (luminosity):
 – The is the goal of both the Phase-I and Phase-II LHC / ATLAS Upgrades
LHC/HL-LHC Schedule / ATLAS upgrade planning

LHC / HL-LHC Plan

- **New Pixel insertable b-layer (IBL): DBM**
- **Consolidation of LAr calorimeter LVPS**
- **LUCID upgrade**
- **Forward protons (AFP)**

Completed

Phase-1 Upgrades
- EYETS
- 13-14 TeV
- 2017-2018

Phase-2 Upgrades
- LS3
- HL-LHC installation
- 14 TeV
- 2024-2026

7 TeV
8 TeV

P.Krieger, U of T
Institute of Particle Physics, AGM, May 27, 2017 Kingston, ON
Canadian Hardware Contributions to ATLAS

Main contributions to the original detector

- Hadronic Endcap calorimeter
 - Two of four wheels
- Hadronic Forward calorimeter
 - All four modules
- Liquid argon front-end electronics
 - Switched capacitor array controller chips
- Liquid argon calorimeter endcap signal feedthroughs

Other contributions to the existing detector

- Diamond Beam Conditions Monitor (also used for luminosity)
- High-level trigger (HLT) processors
- MediPix / TimePix for cavern background monitoring, luminosity
- Inner Detector readout
- ATLAS Forward Protons (AFP) – installation completed in 2016/17 shutdown
First year of Run-2 (2015) dedicated to establishing machine performance at 13 TeV and 25 ns bunch spacing:

- Low integrated luminosity in 2015 but many important lessons learned
- These lessons laid the foundation for 2016 and the remainder of Run-2 (illustrated above by the 2016 luminosity ramp).
LHC/ATLAS 2016 Operations

LHC design luminosity exceeded in June

ATLAS Run-2 Detector Status (from Sept. 2016)

<table>
<thead>
<tr>
<th>Subdetector</th>
<th>Number of Channels</th>
<th>Approximate Operational Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixels</td>
<td>92 M</td>
<td>98.0%</td>
</tr>
<tr>
<td>SCT Silicon Strips</td>
<td>6.3 M</td>
<td>98.8%</td>
</tr>
<tr>
<td>TRT Transition Radiation Tracker</td>
<td>350 k</td>
<td>97.2%</td>
</tr>
<tr>
<td>LAr EM Calorimeter</td>
<td>170 k</td>
<td>100%</td>
</tr>
<tr>
<td>Tile calorimeter</td>
<td>5200</td>
<td>99.0%</td>
</tr>
<tr>
<td>Hadronic endcap LAr calorimeter</td>
<td>5600</td>
<td>99.5%</td>
</tr>
<tr>
<td>Forward LAr calorimeter</td>
<td>3500</td>
<td>99.7%</td>
</tr>
<tr>
<td>LVL1 Calo trigger</td>
<td>7160</td>
<td>99.9%</td>
</tr>
<tr>
<td>LVL1 Muon RPC trigger</td>
<td>383 k</td>
<td>99.8%</td>
</tr>
<tr>
<td>LVL1 Muon TGC trigger</td>
<td>320 k</td>
<td>99.9%</td>
</tr>
<tr>
<td>MDT Muon Drift Tubes</td>
<td>357 k</td>
<td>99.7%</td>
</tr>
<tr>
<td>CSC Cathode Strip Chambers</td>
<td>31 k</td>
<td>97.7%</td>
</tr>
<tr>
<td>RPC Barrel Muon Chambers</td>
<td>383 k</td>
<td>96.6%</td>
</tr>
<tr>
<td>TGC Endcap Muon Chambers</td>
<td>320 k</td>
<td>99.6%</td>
</tr>
<tr>
<td>ALFA</td>
<td>10 k</td>
<td>99.9 %</td>
</tr>
<tr>
<td>AFP</td>
<td>188 k</td>
<td>98.8%</td>
</tr>
</tbody>
</table>

Data Quality Efficiency (good for physics):
- Run-1 average was 94%.
- 2016: 93-95% with some improvements expected from reprocessing in 2017

Excellent performance in 2016 of both LHC machine and ATLAS detector
ATLAS Computing

- **Excellent LHC performance in 2016: availability for physics ≈ 50% !**
 - almost 50% larger data sample than anticipated
 - This performance expected to be maintain through Run-2
 - need additional computing resources, or *mitigation strategies*, or both
 - Increases to trigger thresholds
 - *Parking* of data (for later reconstruction / analysis)
 - Reduction of numbers of Monte Carlo simulated events
 - Mitigation strategies extensively investigated:
 - all deemed to have too negative an impact on the ATLAS physics program

- **Many software optimizations implemented prior to 2016 (LS1):**
 - Factor of 4 improvement in reconstruction speed
 - no more low-hanging fruit

- **Feb 2017 LHCC review:**

 The LHCC notes that the margins to reduce the resource usage in the short term without impact on physics have been exhausted.
ATLAS Computing

Significant use by ATLAS of both Beyond Pledge grid resources and opportunistic use of Cloud and HPC resources

Large effort put into data management: lifetime model for derived data files

HPC + Cloud ≈ 15%

Canadians leading the ATLAS cloud computing effort
ATLAS: 629
Run-1: 567
Run-2: 62

• Most papers based on analysis of Run-1 data (2011, 2012)
• A few Run-1 papers still in progress: SUSY and Exotics searches complete
• Well into the Run-2 (13 TeV) publications phase: 62 papers submitted:
 – Additionally, many preliminary results prepared for: ICHEP 2016 and 2017 winter, spring and summer conferences (e.g. LHCP) http://lhcp2017.physics.sjtu.edu.cn/
• Will include just a few brief examples here
Physics Highlights: W Boson Mass

- Based on 4.6 fb\(^{-1}\) of 7 TeV data from 2011
- Huge effort put into modeling: high quality results in \(e\nu\) and \(\mu\nu\) final state

\[
M_W = 80.370 \pm 0.019 \text{ GeV}
\]

\[
\pm 7 \text{ MeV (statistical)}
\]

\[
\pm 11 \text{ MeV (systematic)}
\]

\[
\pm 14 \text{ MeV (modeling)}
\]

Same precision as current best CDF measurement
Data from 2015 heavy-ion run: 5 TeV x 5 TeV Pb-Pb collisions (ultra-peripheral) [arXiv:1702.06125]

Two back-to-back γ in ATLAS with no additional activity

Measured cross-section consistent with expectations
High-mass Resonance Searches

Dijet search: first publication on complete 2015+2016 dataset: 37 fb⁻¹

Searched for excited quarks, W’, microscopic black holes, contact interactions. 95% CL limits placed: e.g.

\[M(q^*) > 6.0 \text{ TeV} \quad (5.8 \text{ TeV exp.}) \]

Dilepton resonance search also based on full 13 TeV dataset: 36.1 fb⁻¹

No significant deviations from SM expectations:

SSM Z’ mass limit increased to 4.5 TeV (95% CL)
SUSY Searches

New jets + missing transverse energy results for full Run-2 dataset: 36.1 fb\(^{-1}\)

Effective mass distribution well described by SM contributions

Gluino mass limits now extend past 2 TeV for low \(M_{\tilde{\chi}^0_1}\)

Supersymmetry remains elusive
Other SUSY mass limits also approaching 2 TeV using 13 TeV dataset
LHC / ATLAS Startup 2017

- Beam splashes late April / early May
- Pilot-bunch collisions May 9
- First collisions May 11 (no Stable Beams)
- First Stable Beam declared May 23
 - 3 x 3 bunches

- **ATLAS: ready for data-taking**
LHC/HL-LHC Schedule / ATLAS upgrade planning

LHC / HL-LHC Plan

- **Completed**
 - New Pixel insertable b-layer (IBL): DBM
 - Consolidation of LAr calorimeter LVPS
 - LUCID upgrade
 - Forward protons (AFP)

- **In progress**
 - sTGC for Muon New Small Wheel
 - Liquid Argon Calorimeter electronics

- **Proposed**
 - New ATLAS Inner Tracker (ITk)
 - Liquid Argon Calorimeter electronics

Main ATLAS Canada shutdown / upgrade activities
• NSW key component of ATLAS trigger strategy for Run-3 (fake rejection with pointing)
• sTGC construction / testing infrastructure in place at TRIUMF, Carleton and McGill.
• Module-0 sTGC completed by Canadian group in May 2016
• Production Readiness Review (PRR) passed in June 2016
• Production of sTGC quadruplets delayed by challenges with cathode board production:
 – Currently on the critical path
• Leading coordination roles in NSW project:
 – Overall project management, schedule, finances
 – Cathode board procurement (for all sTGCs)
 • Requires large PCBs that are beyond industry standard size
 • Recent improvements encouraging
 • Experience may be relevant to future large-area detector development projects
 – Wedge assembly at CERN
 – Software / simulation
 – Electronics / software for cosmic-ray test station
 – Production test pulser board for sTGCs

Phase-1 Upgrades: Muon New Small Wheel
Phase-1 Upgrades: LAr Calorimeter Electronics

- Another key component of ATLAS trigger strategy for Run-3
- Improve granularity of information supplied to the L1 trigger
 - Provide additional background suppression at trigger level

Amongst other things, implementation requires new Front-End Crate baseplanes
- For the HEC, these are being developed and produced by Victoria / TRIUMF
 - Design approved in 2015: pre-production board have been produced and tested
 - Environmental testing
 - Electrical testing: TDR test illustrated for one trace -- displays proper 50Ω impedance)
 - TRIUMF-designed multiplexors for production acceptance testing

PRR currently planned for Summer 2017
Phase-1 Upgrades: LAr Calorimeter Electronics

- Another key component of ATLAS trigger strategy for Run-3
- Improve granularity of information supplied to the L1 trigger
 - Provide additional background suppression at trigger level

Phase-1 trigger granularity

- Implementation requires new Front-End Crate baseplanes
- For the HEC, these are being developed and produced by Victoria / TRIUMF
 - Design approved in 2015: pre-production board have been produced and tested
 - Environmental testing
 - Electrical testing: TDR test illustrated for one trace -- displays proper 50Ω impedance)
 - TRIUMF-designed multiplexors for production acceptance testing

PRR currently planned for Summer 2017
ATLAS at the High Luminosity LHC

- **Proposed instantaneous luminosity of** $7.5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ ($\mu\approx200$)
 - Needed for the desired ($\times10$) increase in integrated luminosity
 - Rate and accumulated dose causes problems for some detector subsystems
 - Need for pileup suppression becomes crucial issue for detector upgrades

- **Proposed L0/L1 trigger scheme with rates of** 1MHz/400KHz is incompatible with both tracker and calorimeter readout electronics:
 - Calorimeters modules can operate but:
 - Forward calorimeter response will be somewhat degraded at high $|\eta|$.
 - **Calorimeter front- and back-end electronics must be entirely replaced**
 - FE electronics also need replacing due to increased expected dose

- **Radiation dose and occupancy also an issue for the tracker**
 - This will be entirely replaced by a new all-silicon tracker, the ITk
 - Pixels at low radius, strips at higher radius.
 - Coverage out to $|\eta|=4.0$ (from 2.5 for current inner tracker)
 - 160 m2 of silicon. Almost half the cost / effort of Phase-II upgrades

- **Anticipate some coverage improvements for Muon system**

- **ATLAS investigating dedicated (Si) timing detector in the forward region**
Phase-II Tracker Upgrade (ITk)

- **Excellent tracking needed for the HL-LHC physics program**
 - Need precision vertexing to identify the primary vertex to which hard-scatter products are associated (pileup suppression)

- **Canadian group proposing to contribute to construction of the Endcap Strips detector:**
 - about 18k Si strip modules needed (~7000 in endcap):
 - plan for 1500 in Canada (2 sites: Vancouver, Toronto)
 - Additional planned contributions:
 - Industrialize production of “hybrid boards”: Eastern site
 - Module placement on support structure for Endcap “petals”: Western site
 - Readout electronics ASIC wafer probing and dicing (Ottawa)
Canadian group well established in the ITk collaboration:

- Detector layout studies
- Management: electronics coordination
- Radiation testing of Strip ASICs
- Adhesive studies (modules to support structure)
- Module placement ("Module-on-core") work
- Module construction preparations:
 - Two sites: both have produced good quality prototypes
 - Moving into “site qualification” stage
 - Sensor just starting to arrive in at CERN and in Canada
- DAQ development (using prototype built in Canada):
 - Includes contributions to firmware development:
 - single / multiple module
 - Module test stands available at both sites
- Development of QA/QC procedures:
 - Si sensor testing
 - Hybrid board manufacture / testing
 - Modules: measurements of per channel noise, gain, signal-to-noise ratio

NSERC-funded R&D in progress
Construction funding requested from CFI
Phase-II LAr Calorimeter Upgrade Work

• **Proposed FCal replacement decided against in Sept. 2016**
 – Risk (damage to other endcap calorimeter subsystems) vs reward (improved performance) study concluded that the benefits are not work the risks

• **Canadian groups integrating into Phase-II electronics effort:**
 – Naturally follows our Phase-I work and historical contributions to ATLAS
 – Focus on front-end electronics for the HEC
 • HEC was built in part in Canada
 • Different from other LAr subsystems, due to cold preamplifiers in the cryostat
 – Exploit particular Canadian expertise in the HEC readout
 – Also contributing to development of back-end (BE) filtering algorithms for energy reconstruction (FPGA-based)

• **Canadians in LAr Phase-2 Upgrade management**

• **Canadians also involved with characterizing the response of the FCal at the HL-LHC (which will be degraded at high-|\eta| due to ion-buildup and other problems)**
ATLAS Canada Operations & Upgrade Funding

- **Operations:** currently in final year of three-year NSERC project grant
 - New proposal to be submitted in Fall 2017

- **Phase-1 Upgrades**
 - LAr, NSW projects currently under construction, funded by CFI, IF 2015 award
 - Significant initial R&D support from NSERC in 2013, 2014

- **Phase-2 Upgrades**
 - NSERC RTI awards in 2016 and 2017 for R&D phase
 - Construction funding requested from CFI in IF 2017 competition:
 - LAr Electronics, ITk, Upgrade Common Fund
 - Decision expected by June 20

- **Canadian contributions to LHC → HL-LHC upgrade still being pursued**
 - CERN has requested that we contribute to the HL-LHC accelerator upgrade
 - We made significant contributions to the original LHC construction
 - Will needs support of the community and involvement of TRIUMF
 - Discussions re-starting: this probably needs to converge in time for the 2018 Federal budget.
New or Developing Technologies: Upgrades

Detector and associated electronics upgrades pose challenges in terms of rate, radiation tolerance, and measurement precision: need development of improved pile-up suppression techniques. For example:

- **Phase-2 tracker upgrade (ITk)**
 - Rad hard silicon sensors, high-speed / reliability readout for huge # of channels
 - 3D silicon and CMOS possibilities for ITk Pixels
 - Challenges for radiation hardness of other components (e.g. glue)
 - CHESS: R&D for CMOS version of ITk Strips (may have useful future applications): Canadians working on readout as part of ITk Strips DAQ development

- **Phase-1 upgrades (NSW)**
 - Industrial production of large-area PCBs beyond industry standards
 - may have future applications

- **Phase-1/2 LAr Calorimeter upgrades**
 - Ultimately, faster, higher-granularity signals to L0-trigger
 - Digital pipeline instead of current analog pipeline
 - Use of modern FPGAs for back-end (BE) signal processing
 - Exploration of alternative BE digital filtering algorithms
New or Developing Technologies: Computing & Analysis

• **Computing**
 – Canada leading in ATLAS implementation of Cloud computing
 • Development of high-speed networks offers future computing model that differs from the current one
 – Development of data management tools to optimize use of resources
 • Data-lifetime model to optimize use of disk
 – Lots of work in ATLAS software framework (Athena) to make better use of modern multi-core cpus: AthenaMP (multi-process) exists; AthenaMT (multi-threaded) under development

• **Reconstruction & Analysis Tools (some examples)**
 – Tracking in Dense Environments (TIDE)
 • Will be important at HL-LHC with $<\mu> \approx 200$
 – Top-quark tagging:
 • ATLAS currently employs a “simple” top-tagger
 • Machine learning (ML) techniques provide superior performance
 – Use of ML tools in other areas (e.g. jet calibration)
Summary

- **LHC/ATLAS operations exceptional in 2016, just starting in 2017**

- **Canadian group successfully engaged in all aspects of ATLAS**
 - Important and visible roles in the Collaboration
 - Physics output (Analysis, Review, Physics Group / sub-group Convenors)
 - Detector construction
 - Detector operations (run coordinators for multiple subsystems)
 - Strong participation detector upgrade activities
 - Phase-1: LAr trigger electronics, sTGCs for NSW
 - Phase-2: LAr readout electronics, ITk
 - Canadian coordination roles in both Phase-1 and Phase-2 projects
 - Active preparations for Phase-II contributions
 - Decision on Phase-II construction funding expected June 20

- **Canadian group planning to extend our historical and present level of commitment to ATLAS into Run-3 and then the HL-LHC era**
7 ATLAS talks at 2017 CAP Congress

Invited

• Operation and performance of the ATLAS detector in LHC Run-II, E. Kuwertz
• Standard Model and Higgs boson studies with the ATLAS detector, A. Bellerive
• Searches for new physics with the ATLAS detector, O. Ducu
• Upgrades to the ATLAS detector at the LHC, I. Trigger

Contributed

• Search for a doubly charged Higgs boson through vector boson scattering in the Georgi-Machacek model with the ATLAS detector at the LHC, J. Claude.
• Search for Higgs production in association with a tt pair in the H->bb final state, D. Mori.
• Studies of cosmic ray events in ATLAS sTGC muon chamber prototypes, F. Leger
Backup
Phase-II Upgrade Project Schedule

• ITk Strips Technical Design Report (TDR) approved by LHCC:
 – Sent to CERN Research Board for approval at June meeting
 – This is the first Phase-II Upgrade TDR to be submitted

• LAr Phase-II Initial Design Report (IDR) submitted and reviewed in March 2017:
 – Approved as official ATLAS Phase-II Upgrade project
 – TDR to include section on proposed High-Granularity timing detector (sits in front of LAr endcap / forward calorimeters.

 Schedule exists for completion of TDR submission, LHCC review and approval process by April 2018
LHC Availability for Physics 2016

2016 Availability

[2015 - 25 ns Run]

Remarkable availability:
- **Increased** operational efficiency
- **Enhanced** system availability
- **New** pre-cycle strategy

Downtime of technical infrastructures

30% less downtime in 2016 than 2015

Non-availability of beams from the injector complex is the largest source of LHC downtime

TS1 - TS2: stable beams 58%
TS2 - TS3: stable beams 54%

P.Krieger, U of T
Institute of Particle Physics, AGM, May 27, 2017 Kingston, ON
LHC Schedule 2017

<table>
<thead>
<tr>
<th>Week</th>
<th>April</th>
<th>May</th>
<th>June</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>We</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fr</td>
<td>G. Friday</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Su</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

July

<table>
<thead>
<tr>
<th>Week</th>
<th>July</th>
<th>August</th>
<th>September</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mo</td>
<td>27</td>
<td>31</td>
<td>35</td>
</tr>
<tr>
<td>Tu</td>
<td>10</td>
<td>14</td>
<td>21</td>
</tr>
<tr>
<td>We</td>
<td>TS1</td>
<td>MD 2</td>
<td>Special physics run</td>
</tr>
<tr>
<td>Th</td>
<td></td>
<td></td>
<td>Jeune G</td>
</tr>
<tr>
<td>Fr</td>
<td></td>
<td></td>
<td>MD 3</td>
</tr>
<tr>
<td>Sa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Su</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

October

<table>
<thead>
<tr>
<th>Week</th>
<th>October</th>
<th>November</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mo</td>
<td>2</td>
<td>4</td>
<td>Xmas</td>
</tr>
<tr>
<td>Tu</td>
<td>9</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>We</td>
<td></td>
<td>MD 4</td>
<td>Technical stop (YETS)</td>
</tr>
<tr>
<td>Th</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Su</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Technical Stop
Recommissioning with beam
Machine development
Special physics runs (indicative - schedule to be established)
Scrubbing (indicative - dates to be established)

Note: No heavy-ion running in 2017
Phase-II Upgrades: Physics Motivations

- Primary goals: discovery of BSM and more detailed studies of the Higgs boson:
 - Higgs studies, in particular couplings:
 - Improvements over results with 300 fb\(^{-1}\)
 - Access to second-generation fermion couplings via \(H \rightarrow \mu\mu\)
 - Investigations of Higgs self coupling (via \(HH\) production)
 - Vector boson scattering: is this Higgs alone responsible for unitarizing \(\sigma(V_L V_L \rightarrow V_L V_L)\)
 - Sensitivity to VBF/VBS drives performance requirements in forward region
 - Searches: increased sensitivity to rare SM/BSM processes
 - Exploration of Run-3 hints observations or discoveries.
 - Or (better?) the unexpected

\[
\sigma_{bgg} = 30\%
\]

[ATLAS Simulation]

\[
\begin{align*}
\sigma(V_L V_L \rightarrow V_L V_L) & \\
VBF H & \rightarrow ZZ^{(*)} \rightarrow \ell\ell\ell\ell \\
VBF H & \rightarrow WW^{(*)} \rightarrow \ell\ell\ell\ell \\
SM VBS ssWW & \\
SUSY, \chi_1^0 \chi_2^0 & \rightarrow t\bar{b}b + X \\
BSM HH & \rightarrow b\bar{b}b
\end{align*}
\]

[SLHC-G-166: physics processes for Phase-II performance studies]
ATLAS Exotics Searches - 95% CL Exclusion

August 2016

<table>
<thead>
<tr>
<th>Model</th>
<th>(\ell, \gamma)</th>
<th>Jets</th>
<th>E_{miss}</th>
<th>(\mathcal{L}dt) [fb^{-1}]</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD GeV + g/a</td>
<td>(\geq 1)</td>
<td>Yes</td>
<td>3.2</td>
<td>6.56 TeV</td>
<td></td>
</tr>
<tr>
<td>ADD Higgs (g \to \gamma \gamma)</td>
<td>(2, e, \mu)</td>
<td>-</td>
<td>2.03</td>
<td>4.7 TeV</td>
<td></td>
</tr>
<tr>
<td>ADD Higgs H (g \to \gamma \gamma)</td>
<td>(1, e, \mu)</td>
<td>1</td>
<td>20.3</td>
<td>5.2 TeV</td>
<td></td>
</tr>
<tr>
<td>ADD Higgs H (g \to \gamma \gamma)</td>
<td>(\geq 2)</td>
<td>Yes</td>
<td>3.6</td>
<td>6.2 TeV</td>
<td></td>
</tr>
<tr>
<td>RSL GeV (\rightarrow \ell \ell)</td>
<td>(2, e, \mu)</td>
<td>-</td>
<td>20.3</td>
<td>2.04 TeV</td>
<td></td>
</tr>
<tr>
<td>RSL GeV (\rightarrow \gamma \gamma)</td>
<td>(2, e, \mu)</td>
<td>1</td>
<td>13.3</td>
<td>1.24 TeV</td>
<td></td>
</tr>
<tr>
<td>Bulk RS GeV (\rightarrow \gamma \gamma)</td>
<td>(2, e, \mu)</td>
<td>-</td>
<td>3.2</td>
<td>3.2 TeV</td>
<td></td>
</tr>
<tr>
<td>Bulk RS GeV (\rightarrow \ell \ell)</td>
<td>(2, e, \mu)</td>
<td>1</td>
<td>Yes</td>
<td>1.46 TeV</td>
<td></td>
</tr>
</tbody>
</table>

SM Z' \(\rightarrow \ell \ell \)	\(2, e, \mu \)	-	13.3	2.02 TeV
SM Z' \(\rightarrow \gamma \gamma \)	\(2, e, \mu \)	-	19.5	1.5 TeV
Left-handed SM Z' \(\rightarrow \ell \ell \)	\(2, e, \mu \)	2	3.2	4.74 TeV
SM W' \(\rightarrow \ell \ell \)	\(2, e, \mu \)	-	13.3	2.4 TeV
HVT W' \(\rightarrow \gamma \gamma \)	\(0, e, \mu \)	1	Yes	3.0 TeV
HVT W' \(\rightarrow \gamma \)	\(0, e, \mu \)	1	Yes	1.28 TeV
LUSM W' \(\rightarrow \gamma \)	\(0, e, \mu \)	1	Yes	1.76 TeV
CI \(\gamma \gamma \gamma \gamma \)	\(0, e, \mu \)	1	200	19.9 TeV

VLO \(\rightarrow H \)	\(1, e, \mu \)	\(2, b, \geq 3 \)	20.3	805 GeV
VLO \(\rightarrow W \)	\(1, e, \mu \)	\(2, b, \geq 3 \)	20.3	710 GeV
VLO \(\rightarrow Z \)	\(1, e, \mu \)	\(2, b, \geq 3 \)	20.3	550 GeV
VLO \(\rightarrow H \)	\(1, e, \mu \)	\(2, b, \geq 3 \)	20.3	640 GeV

Excited fermions \(\gamma \rightarrow \ell \gamma \)	\(1, e, \mu \)	\(1, 2, \geq 1 \)	3.2	4.4 TeV
Excited fermions \(\gamma \rightarrow \ell \gamma \)	\(1, e, \mu \)	\(1, 2, \geq 1 \)	3.2	5.6 TeV
Excited fermions \(\gamma \rightarrow \ell \gamma \)	\(1, e, \mu \)	\(1, 2, \geq 1 \)	3.2	2.3 TeV
Excited fermions \(\gamma \rightarrow \ell \gamma \)	\(1, e, \mu \)	\(1, 2, \geq 1 \)	3.2	1.5 TeV
Excited fermions \(\gamma \rightarrow \ell \gamma \)	\(1, e, \mu \)	\(1, 2, \geq 1 \)	3.2	1.0 TeV

LSTC \(\gamma \rightarrow W \)	\(1, e, \mu \)	\(1, 2, \geq 1 \)	3.2	660 GeV
LSTC \(\gamma \rightarrow W \)	\(1, e, \mu \)	\(1, 2, \geq 1 \)	3.2	2.0 TeV
Higgs triplet H_1 \(\rightarrow \ell \ell \)	\(3, e, \mu \)	\(1, 2, \geq 1 \)	3.2	570 GeV
Higgs triplet H_2 \(\rightarrow \ell \ell \)	\(3, e, \mu \)	\(1, 2, \geq 1 \)	3.2	600 GeV

| Other | \(1, e, \mu \) | \(1, 2, \geq 1 \) | 3.2 | 1.34 TeV |

| \(\sqrt{s} = 8 \) TeV | \(\sqrt{s} = 13 \) TeV |

\[\mathcal{L} dt = (3.2 \text{ to } 20.3) \text{ fb}^{-1} \]

\(\sqrt{s} = 8, 13 \text{ TeV} \)

*Only a selection of the available mass limits on new states or phenomena is shown. Lower bounds are specified only when explicitly not excluded.

†Small-radius (large-radius) jets are denoted by the letter \(\ell \) (\(J \)).

P. Krieger, U of T
Institute of Particle Physics, AGM, May 27, 2017 Kingston, ON