Si Sensor Alliance meeting 18 June @ CERN, Minutes

A. Oja:

Goals of the meeting:

- Clarify CERN needs for the SLHC
- Evaluate the prospect of European vendor network to bid for the detector upgrade
- The consortium is still open
- Initiate new R&D projects on radiation detectors
- Decision of further steps: next meeting and involvement of CERN and its collaborations

Planned activities:

- 1. Fabrication of Si sensors for CERN
- 2. R&D for future detectors (FP7)
- 3. Network for the detector ecosystem (COST): Networking partially funded by EU.

D.Gregorio:

CERN procurement policy and procedures

- At the moment just guidelines available for the detector specs
- CERN and its experiments have different procurement funding -> will be described in the cover letter of the call for tenders.
- CERN initiative: an announcement by CERN on a forthcoming market survey on march 2009.
- At least 3 tenders need to be collected for the purchases exceeding 200000 chf.
- 4 weeks time to reply to the market survey but the survey is valid 12 months (18 months for prototypes)
- Several market surveys are foreseen for ATLAS and CMS for different detector types -> different company profiles. Will be launched in 2010.
- Two phases:
 - 1. Preproduction and qualification
 - 2. Large-scale production
- Qualification criteria:
 - 1. technical: The design cannot change from the evaluation round to production -> document required
 - 2. Financial and commercial: Consortium leader has to be nominated. Consortium partners need to back-up other partners in it
- Only companies that survived the market survey will be accepted for the call for tenders.
- All the companies need to be in the CERN database.
- 4 weeks time to reply to the call for tenders, closing date holds.
- Contracts awarded on the basis of lowest compliant bid.
- CASE A: no CERN money involved.
- CASE B: no CERN money involved but institutes can decide how they select the companies or they can ask CERN to do the evaluation.

- CASE C: CERN money
- CASE D: CERN money involved partially and is responsible for the evaluation.
- Consortium needs to be ready at the time of market survey and the members cannot change after that.

S.Stapnes:

ATLAS detector upgrade:

- Phase1: TDR 2010, shutdown 2013/2014
- Phase2: Letter of intent 2010, TDR 2012/2013, shutdown 2018
- Current ATLAS inner barrel: 61 m2 of silicon pixel sensors.
- Pixel detectors produced by CiS and Tesla
- Strip detectors were produces 90% by Hamamatsu and 10% by CiS
- In consortium, all companies' product lines need to qualify.
- Barrel pixel ~6 m2
- n-on-p short strips (2,4 cm) ~55 m2 > 5000 150 mm wafers
- n-on-p long strips (9 cm) ~65 m2 -> 6500 150 mm wafers
- INFRA call: one WP for through wafer interconnections
- Consortium cannot stop the researchers to contact directly with the industrial partners.

M.Mannelli

- CMS Si Tracker
- Present inner pixel detectors (3 layers), ~1m2 of silicon, n-on-n
- Present strip tracker: ~200 m2 of silicon, p-on-n, AC-coupled with poly bias
- Two companies successfully contributed to the pixel sensor production
- One company made 98% of strip sensors
- Crucial importance of realistically matching well established production capability of candidate industrial partners
- Crucial importance of homogeneity and quality assurance through the production
- Phase1: TDR early 2010
- Phase2: TDR 2012

Pixels

Phase1 2013:

- inner barrel from 3 to 4 layers (1.6 x LHC) and end gaps from 2x2 to 2x3 larger discs (2.6 x LHC
- ~2 m2, moderate production capacity
- radiation hardness 2x10^15, DSD, n-on-n (or n-on-p), **200 um**, pixels 150x100 um2, DC coupled, flip-chip similar to present technology but thinner!

Phase2 2018:

- 5 layers inner barrel, ~4 m2 of silicon
- rad. hard 6x10^15, no sensor type determined (layer2: n-on-p, <200 um & layer1: 3D?), pixels 50x100 um2

Phase3 2023 possible

Strips

Phase2 2018:

- ~150-250 m2 of silicon, sensor type to be determined (SSD thin p-on-n or n-on-p)
- Tracking trigger layer pixels, 100 um x 1-2 mm, DC coupled large detectors
- Tracking layer strips: 100 um x 2-4 cm,
- Hybrid technology: bonding to front-end electronics
 - 1. Preparatory phase: targeted R&D 2008-2012: study of n-on-p MCZ and FZ & EPI
 - 2. Phase A: preproduction 2012-2014: finalize detailed specs and QA protocols for large scale production
 - 3. Phase B: Large scale production 2014-2016:
- Market survey to identify industrial partners for phases A and B:
 - o Producers qualify according to MS may take part to Phase A
 - o Qualification for Phase B is contingent on Phase A success

Industry speaks

VTT:

- 2600 m2 clean room, class 10-100
- capacity 3000-4000 wafers per year in 5 shifts
- Capacity 1500-2000 wafers per year in one shifts
- Risks in ion-implantation and needs back-up

Alter:

- Private ownership
- 4 labs
- Specialized to electronic components
- Electronic testing with various radiation sources
- Interest in testing

Acreo:

- capacity for small scale production
- Cleanroom with KTH 1300 m2 class 100-1000, wafer from 100-200 mm
- Silicon carbide R&D

4-labs:

- selling the laboratory competencies
- LETI 200-300 mm line
- packaging 100-300 mm at FhG
- Silicon wafers 150 mm at VTT and FhG
- Microsystem facilities from CSEM, Dresden, new 150 mm line

CiS:

• 70 m2 class 10 cleanroom for wafer processing

- 200 m2 class 100 and 200 m2 class 10000 cleanroom for packaging, assembly, and testing
- 100 mm wafers process line
- 3-shift working regime -> 3000 DSD wafers per year
- 150 mm line at XFAB with 3000-5000 wafers in a year
- limited implantation

Deetee:

- 16 years experience in rad. detectors
- 2100 m2 clean room and dedicated photodiode line

FBK:

- 500 m2 cleanroom class 10-100 on 100 mm wafers
- Capacity 3000 wafers per year in one shift performed

CNM:

- belongs to CSIC, 15 M€turn over
- 3.3 M€clean room budget
- 1500 m2 cleanroom class 100-1000
- 100 mm ok, 150 mm line no furnaces
- D+T microelectronics exploits cleanroom
- 1000 wafers per year
- interest in advanced detectors

Okmetic:

- 70 Me sales, profit 13%, person 364
- Crystal growth in Vantaa and SOI
- 150 mm MCZ p -1 kOhmcm (n 500 Ohmcm) wafers optimum,
- crystals: <100>, <111>, <110>

Sintef:

- 2000 personnel
- 45% income from industry
- 295 M€turnover
- MiNaLab: 7 M€turnover
- 800 (+600m2 univ.)
- capacity of 10000 wafers per year on 150 mm wafers in one shift
- Risks:
 - o combine research and production
 - o cost target
 - o limitation in production capacity

SiTek:

- spin-off from
- 800 m2 clean room class 100-1000
- capacity of 2000 wafers per year on 100 mm wafers
- 150 mm line upgrade -> capacity 3000 wafers per year
- Ion implantation at IBS
- Risks:
 - o not full 150 mm line
 - o back-up needed

Arquimea:

- custom components for customers: sensors, actuators, microsystems
- Investment to detector fabrication, packaging -> own clean room
- 200 m2 class 100 clean room

Discussion:

- Need for the 200 mm wafers from the CERN side no comment
- Is the MCZ the material for the LHC upgrade?
 - o p-type MCZ and FZ did not show difference
 - o n-type MCZ better in sense of radiation hardness
 - FZ have advantage of resistivity but higher price.
- Development to 150 mm wafers and 200 um thick reason that the new pixel detectors will be 2 x 2 cm2 in size and the radiation tolerance improves with the thickness

C.Fröjdh: Academic point of view:

- No research just for HEP
- 1. Material:
 - doping homogeneity
 - High-Z quality
- 2. Process
 - large area
 - thin detectors
 - guard rings
 - active edge
 - 3D sensors
 - Fan out
- 3. Design:
 - speed, fast counting
 - low noise and energy resolution
 - adjustment -> accurate energy determination
- 4. Hybridisation
 - Bonding: reliable and cheap method
 - 3D stacking: separate chips for analogue and digital pixel electronics, local memories for pre-processing
 - Academic institutes can do development and testing
 - Reliability and yield issues crucial for the industry

Comment: "Large area stacking and high density stacking for HEP" – M.Campbell

Wrap-up: A.Oja, supported by comments and suggestions by other participants

Joint venture:

- reliable vendor for CERN
- well organized and smooth consortium
- one strong supplier:

- supply chain management
- o quality control
- o partner's roles
- o liability
- o risk management
- Supply chain study starting at September
- Adaptive consortium to correspond to different kinds of market surveys
- consortium stands better for the CERN bit than a joint venture.
- In consortium, there is a contract between the entities to fulfil the promised role in the bit. Joint venture is much more complicated.
- Are the partners of the consortium willing to change process knowledge?
- At the R&D phase, before the TDR, there should be a collaboration that aims for the production. Funding need to be found for this phase. When the TDR is given specific consortium should be made to aim for the market survey.
- Risk in the consortium is that not all the product lines will qualify.
- All the experiments want to have dedicated product line for their detectors at the R&D phase.
- Consortium would be a higher level base for the dedicated clusters.
- Added value of consortium:
 - vertical integration vs. horizontal
 - could deliver highly integrated modules functionally tested
- Consortium could have an important role in preparing a joint roadmap for silicon radiation detectors
- Roles of the partners:
 - o wafer manufacturer
 - Si detector manufacture

Next steps:

- Consortium meeting in October 14 at CERN
- Preparatory meeting in September 15-16 at CERN. Main agenda points for the meeting: FP7 application, COST application, preparation for the October 14 meeting.
- Letter of intent to CERN on the consortium
 - o first draft in Sep 15

Funding for R&D phase is not yet confirmed and CERN funds are limited. Most likely just experiments make the market survey, CASE A.

Financing, FP7 capacities work program (future colliders)

- Date of publication 30 July 2009
- DL 3 Dec 2009-06-18
- The total budget 217 M€for the projects within the Call. An average EC grant for the integrating activities is about 161 M€/ 35 projects = 4,6 M€ It is important to have most key infrastructures involved.
- If the concortium decided to make a joint proposal, it would be very difficult to compete with it, because so many key players are involved in this tentative concortium
- Lobbying for future EC calls in the IST and NMP programs
- Evaluate what commission wants to fund.

 Steinar Stapnes told that CERN and universities will submit an infrastructure application within the capacities program on radiation testing facilities to develop detectors.

COST funding

- funding for an open network dedicated on enhancement of knowledge on advanced detector technologies
- DL for outline Sep 25 2009:
- 100 k€country in a year
- project 2011-2014.

Note: all the material presented at the meeting is available at <u>http://indico.cern.ch/conferenceDisplay.py?confld=59396</u>