IMB-CNM (CSIC)

Manuel Lozano CNM (CSIC) Barcelona, Spain

- Centro Nacional de Microelectrónica
- Is a Public Research Organism that belongs to the Spanish Council for Scientific Research (CSIC)
- Located in Bellaterra, close to Barcelona (Spain)
- Devoted to Nano and Microelectronics
- Micro Nano Fabrication Facility (Clean Room)

- **Departments:**
 - Micro and Nano Systems
 - Silicon sensors and actuators
 - Nanotechnologies
 - Systems Integration
 - Power devices
 - Circuits and systems design
 - Biomedical applications

Manuel Lozano

Some figures

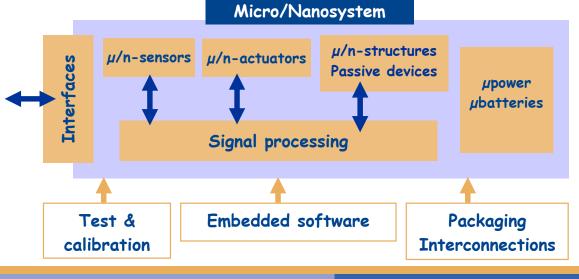
- □ 2008 Year budget: 14.7 M€
 - 3.3€ Clean Room budget
 - 8.0 M€ Extraordinary budget for the expansion
 - 3.4 M€ Non Clean Room budget
- **2008** external funding:
 - 3.8 M€ Research projects
 - 0.8 M€ Industrial contracts

- IMB-CNM staff
 - 175 people
 - 55 researchers
 - 50 Phd Students
 - 70 Admin & technical

From them

- **38 people Clean Room**
 - 12 Process Engineers
 - 1 Maintenance Eng.
 - 13 Process Tech.
 - 11 Maintenance Tech.
 - 1 Admin

IMB-CNM Research focus


A steering & driving line : MICRO & NANOSYSTEMS

The complexity and extension of Microelectronics

- Micro-Nanosystems Department
 - Radiation detectors
 - Gas sensors and fuel cells
 - Micro-nano tools
 - Electrochemical transducers
 - Silicon photonics
 - Nanofabrication and functional properties of nanostructures
 - Bio MEMS

Systems Integration Department

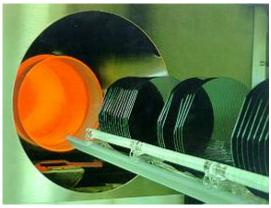
- Biomedical applications
- Integrated circuits and systems
- Integration of power devices and systems
- Reverse engineering in microelectronic devices

IMB-CNM facilities

- Clean Room
 - 1.500 m², class 100 to 10.000
 - Micro and nano fabrication technologies
 - Three areas:
 - Pure (CMOS)
 - Noble metals allowed
 - Nanoelectronics
- Processes
 - 4" complete
 - 6" partial (no thermal processes)
- Available technologies:
 - CMOS, BiCMOS, MCM-D, MEMS/NEMS, power devices
 - Bump bonding packaging
- Silicon micromachining
- Packaging
 - 200 m², class 100

- Laboratories
 - Characterization and test
 - DC and RF (up to 8 GHz)
 - Wafer testing
 - Thermography
 - Radiation testing
 - Reverse Engineering
 - Simulation
 - CAD
 - Mechanical Workshop
 - Chemical sensors
 - Bio-sensors
 - Radiation sensors
 - Optical sensors

Manuel Lozano



Clean Room Equipment (more than 150 units)

- Thermal processes and CVD
- Ion Implantation
- PVD and Metallisation
- Lithography (proximity and stepper)
- Nano-lithography (electron beam, AFM and nano-imprint)
- Direct laser writing
- Dry etching
- Wet and dry micromachining
- Wet etching and cleaning
- In line test
- Wafer grinding and CMP

See full list at:

http://www.imb-cnm.csic.es/

Manuel Lozano

Some Views of the ICTS' main Clean Room

Manuel Lozano

Clean room main processes

- Wet and dry oxidations.
- Ion implantation
 - B, P, As, N and Ar.
- Diffusion
- - Si3N4, polysilicon, SiO2, BPSG
- Metallization
 - AI/Si, AI/Cu, AI/Cu/Si, TaSi, Ti, Ni, Au, Pt, Cr, Ag, a-Si, and Ge.
- Wet and dry etching
- Surface and bulk silicon micromechanization
- Anodic bonding

- Packaging
 - die bonding, wire bonding, SMD
- In line test
 - Ellipsometry, interferometry, profilemetry, four-point probes
- Photolithography
 - contact/proximity, step and repeat, double side
- Nanotechnology
 - AFM
 - Electron beam
 - Nano-imprint
 - FIB (Focused Ion Beam)

IMB-CNM Expansion

- Civil work finished
- Installation will be finished by end 2009

Clean room expansion

500 m2

Offices and labs Bulding 1,400 m2

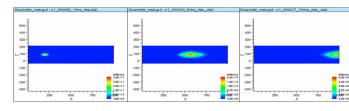
- New equipment and processes not yet ready:
 - Wafer bonding
 - CMP
 - Wafer grinder
 - Electron gun evaporation system
 - Atomic layer deposition

Manuel Lozano

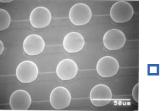
Radiation Detectors group

- People
 - 3 permanent doctors
 - 5 contracted doctors
 - 4 PhD students
 - 1 Engineer

- Activities started in 1996
- **Experiments**
 - Members of the RD50 CERN Collaboration
 - ATLAS, ATLAS upgrade (sLHC)
 - SILC
 - GRI (Gamma Radiation Imager)

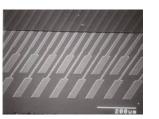


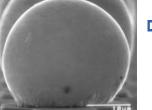
Manuel Lozano


Activities in Radiation Detectors

- Silicon radiation detectors
 - Layout design, simulation, fabrication, characterization
 - Pad, strip and pixel designs
 - P-in-N, N-in-P and N-in-N technologies developed
 - Silicon oxigenation

3D detectors


- Electrodes deep into silicon bulk
- Low full depletion voltage
- Pad pitch adaptors for detector modules
 - ATLAS-SCT Forward Modules



- Medical imaging
 - X-ray radiation pixel detectors
 - DEAR-MAMA European Project
 - Real time stereotactic biopsy
 - Complete pre-industrial system
 - Hardware, software, and chip design
- Radiation effects on devices and materials
 - Thin dielectrics for submicronic technologies
 - Silicon radiation detectors
 - MOS, BiCMOS and bipolar devices
 - High density bump bonding
 - Fine pitch by electrodeposition
 - For image devices

Manuel Lozano

D+T Microelectronics

- Association of Economic Interest (AIE) funded by CSIC
 - To commercially exploit IMB-CNM Clean Room
- CNM-IMB has an industrial side through D+T

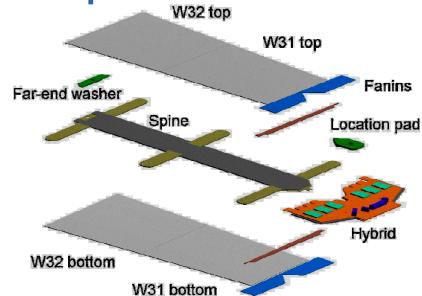
Partners

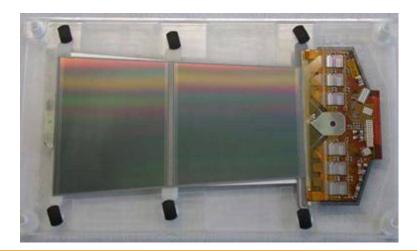
- **CSIC (**75% participation \Leftrightarrow Public Company)
- Alcatel Standard Eléctrica, S.A.
- Biosystems S.A.
- Componentes De Electrodomésticos Y Electrónicos S. Coop. Ltda (MCC Grupo - Mondragón Corporación Cooperativa)
- Tecdis Display Iberica S.A.

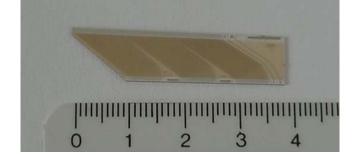
Limitations

- Clean room only fully equiped for 10cm (4'') wafers
- Only partially equiped for 15 cm (6'')
 - No thermal processing
- Clean Room used most of the time for scientific projects
- No focused in commercial activities
 - This philosophy can be changed
- IMB-CNM is not prepared for mass production
 - No adequate for thousands of large strip detectors
- No ISO9001

Advantages

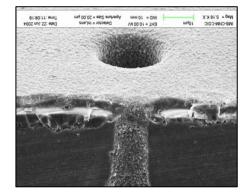

- Clean room operated by dedicated, very specialized team
 - 50 people staff (including maintenance)
 - Working in 2 daily shifts. Room for a third one
 - No direct access of researchers or students
- **Complete equipment for silicon micro and nano technology**
 - Not so common in other University Clean Room
 - Example: we have complete 3D processing (ion implant, deep etching, p- and n-type polysilicon, two side alignment, ...)
- Very well suited for low series of very specific technologies
 - Several hundred wafers per year (< 1,000)
 - 3D, double side, thin, slim edge, ...
- IMB-CNM Clean Room could place a role in devices that are not attractive to large companies
- Packaging solutions (bump bonding) available soon

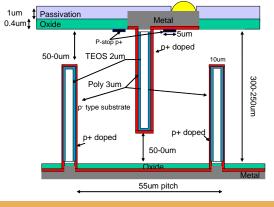




Past examples: ATLAS pitch adaptors

- Pitch adaptor production
 - 10,000 pieces for ATLAS Inner Detector Endcaps in three years
 - The biggest commercial contract of IMB-CNM/D+T
 - WE contracted new technicians working only for this production
 - Good experience


Manuel Lozano



Current example: 3D pixel detectors

- Double sided 3D technology developed at CNM-Barcelona
 - Holes are etched from both sides
 - Reduction of stress
 - Simplification of fabrication process
- Not compatible with thin wafers
 - Support wafer ca not be used
- Complete process at our Clean Room
 - Second demonstration of 3D feasibility after Stanford

- 3D pixel detectors for Insertable B-layer for ATLAS
- Current manufacturers:
 (Stanford+Sintef), FBK, CNM
- Good results proved with Medipix2 chips
- Atlas chips under study

Manuel Lozano