
Software development
in HEP: a critical look

Federico Carminati
CERN – Geneva
ACAT10, February 22, 2010

fca @ ACAT10 22/02/102

• Physicists have always used computers
– They invented them!

• The programs of the LHC era are of unprecedented complexity
– Measured in units of 106 lines of code (MLOC)

– Communities are very large (ATLAS > 2000 physicists and engineers)

• Failure to develop appropriate programs would jeopardise the
extraction of the physics from the data

• … i.e. it would ultimately waste multi-million dollars
investments in hardware and thousands of man years of highly
qualified efforts

fca @ ACAT10 22/02/102

Developing software for HEP

• Physicists have always used computers
– They invented them!

• The programs of the LHC era are of unprecedented complexity
– Measured in units of 106 lines of code (MLOC)

– Communities are very large (ATLAS > 2000 physicists and engineers)

• Failure to develop appropriate programs would jeopardise the
extraction of the physics from the data

• … i.e. it would ultimately waste multi-million dollars
investments in hardware and thousands of man years of highly
qualified efforts

fca @ ACAT10 22/02/103

• In the LEP era the code was 90% written in FORTRAN

– ~10 instructions!

– The standard is 50 pages

• In the LHC era the code is written in many cooperating languages,
the main one is C++

– O(100) instructions
– “Nobody understands C++ completely” (B.Stroustrup)

– The standard is 700 pages

• Several new languages have been emerging with an uncertain future

– C#, Java, Perl, Python, php…

• The Web world adds a new dimension to computing

• Not to talk about GRID…

fca @ ACAT10 22/02/103

The code

• In the LEP era the code was 90% written in FORTRAN

– ~10 instructions!

– The standard is 50 pages

• In the LHC era the code is written in many cooperating languages,
the main one is C++

– O(100) instructions
– “Nobody understands C++ completely” (B.Stroustrup)

– The standard is 700 pages

• Several new languages have been emerging with an uncertain future

– C#, Java, Perl, Python, php…

• The Web world adds a new dimension to computing

• Not to talk about GRID…

fca @ ACAT10 22/02/104

• Physicists are both developers and users

• The community is very heterogeneous

– From very expert analysts to occasional programmers

– From 5% to 100% of time devoted to computing

• The community is very sparse
– The communication problem is serious when developing large

integrated systems

• People come and go with a very high rate

– Programs have to be maintained by people who did not develop them

– Young physicists need to acquire knowledge that they can use in their
careers (also outside physics)

• The physicists have no strict hierarchical structure in an experiment

fca @ ACAT10 22/02/104

The people

• Physicists are both developers and users

• The community is very heterogeneous

– From very expert analysts to occasional programmers

– From 5% to 100% of time devoted to computing

• The community is very sparse
– The communication problem is serious when developing large

integrated systems

• People come and go with a very high rate

– Programs have to be maintained by people who did not develop them

– Young physicists need to acquire knowledge that they can use in their
careers (also outside physics)

• The physicists have no strict hierarchical structure in an experiment

fca @ ACAT10 22/02/105

• In this complex and high-risk environment it
seems natural to ask for help to those who
make a living solving similar problems

• This is where the physicist meets the computer
scientist

• But the interaction has been far from a
honeymoon…

• … and the neighbour’s grass just looked
greener

fca @ ACAT10 22/02/105

HEP & SE

• In this complex and high-risk environment it
seems natural to ask for help to those who
make a living solving similar problems

• This is where the physicist meets the computer
scientist

• But the interaction has been far from a
honeymoon…

• … and the neighbour’s grass just looked
greener

fca @ ACAT10 22/02/106

• Software Engineering is as old as software itself

• H.D. Benington, “Production of Large Computer Programs”,
Proceedings, ONR Symposium, June 1956

• F.L. Bauer, 1968, NATO conference
	

 “The whole trouble comes from the fact that there is so much

tinkering with software. It is not made in a clean fabrication process,
which it should be. What we need, is software engineering.”

• F.L. Bauer. Software Engineering. Information Processing 71,
1972
	

 “The establishment and use of sound engineering principles (methods)

in order to obtain economically software that is reliable and works on
real machines.”

fca @ ACAT10 22/02/106

Software, software crisis and SE

• Software Engineering is as old as software itself

• H.D. Benington, “Production of Large Computer Programs”,
Proceedings, ONR Symposium, June 1956

• F.L. Bauer, 1968, NATO conference
	

 “The whole trouble comes from the fact that there is so much

tinkering with software. It is not made in a clean fabrication process,
which it should be. What we need, is software engineering.”

• F.L. Bauer. Software Engineering. Information Processing 71,
1972
	

 “The establishment and use of sound engineering principles (methods)

in order to obtain economically software that is reliable and works on
real machines.”

fca @ ACAT10 22/02/107

• The software crisis comes from the failure of large software
projects to meet their goals within budged and schedule

• Major worry of managers is not

• Will the software work?

• But rather

• Will the development finish within time and budget?

• … or rather within which time and budget …

• SE has been proposed to solve the Software Crisis

• More a goal than a definition!

• A wild assumption on how engineers work

• Can’t build it like a bridge if it ain’t a bridge

fca @ ACAT10 22/02/107

Software, software crisis and SE

• The software crisis comes from the failure of large software
projects to meet their goals within budged and schedule

• Major worry of managers is not

• Will the software work?

• But rather

• Will the development finish within time and budget?

• … or rather within which time and budget …

• SE has been proposed to solve the Software Crisis

• More a goal than a definition!

• A wild assumption on how engineers work

• Can’t build it like a bridge if it ain’t a bridge

fca @ ACAT10 22/02/108

• Cost and Budget Overruns

• Classic example is the OS/360 operating system. 10 years and
1000 programmers. F.Brooks claims in Mythical Man Month
that he made a multi-million dollar mistake by not developing
a coherent architecture before starting

• Property Damage

• Identity stealing from hackers costs time, money, and
reputations

• Life and Death

• Some embedded systems used in radiotherapy machines failed
so catastrophically that they administered lethal doses of
radiation to patients

fca @ ACAT10 22/02/108

Software defects are dangerous

• Cost and Budget Overruns

• Classic example is the OS/360 operating system. 10 years and
1000 programmers. F.Brooks claims in Mythical Man Month
that he made a multi-million dollar mistake by not developing
a coherent architecture before starting

• Property Damage

• Identity stealing from hackers costs time, money, and
reputations

• Life and Death

• Some embedded systems used in radiotherapy machines failed
so catastrophically that they administered lethal doses of
radiation to patients

fca @ ACAT10 22/02/109

• Tools

• Structured programming, object-oriented programming, CASE tools,
Ada, Java, documentation, standards, and Unified Modeling Language were
touted as silver bullets

• Discipline

• The software crisis was due to the lack of discipline of programmers

• Formal methods

• Apply formal engineering methodologies to software development, to
make production of software as predictable as other branches of
engineering, proving all programs correct

• Process

• Processes and methodologies like the Capability Maturity Model

• Professionalism

• This led to work on a code of ethics, licenses, and professionalism

fca @ ACAT10 22/02/109

Looking for silver bullets

• Tools

• Structured programming, object-oriented programming, CASE tools,
Ada, Java, documentation, standards, and Unified Modeling Language were
touted as silver bullets

• Discipline

• The software crisis was due to the lack of discipline of programmers

• Formal methods

• Apply formal engineering methodologies to software development, to
make production of software as predictable as other branches of
engineering, proving all programs correct

• Process

• Processes and methodologies like the Capability Maturity Model

• Professionalism

• This led to work on a code of ethics, licenses, and professionalism

fca @ ACAT10 22/02/1010

• Many of the early
programmers were
women

• As SE settled in as a
discipline, programming
became a male-only
discipline

• Only very slowly women
are finding back their
place in programming

fca @ ACAT10 22/02/1010

SE men and women…
• Many of the early

programmers were
women

• As SE settled in as a
discipline, programming
became a male-only
discipline

• Only very slowly women
are finding back their
place in programming

fca @ ACAT10 22/02/1010

SE men and women…
• Many of the early

programmers were
women

• As SE settled in as a
discipline, programming
became a male-only
discipline

• Only very slowly women
are finding back their
place in programming

fca @ ACAT10 22/02/1010

SE men and women…
• Many of the early

programmers were
women

• As SE settled in as a
discipline, programming
became a male-only
discipline

• Only very slowly women
are finding back their
place in programming

1945: Grace
Hopper discovers

the first
computer bug

fca @ ACAT10 22/02/1010

SE men and women…
• Many of the early

programmers were
women

• As SE settled in as a
discipline, programming
became a male-only
discipline

• Only very slowly women
are finding back their
place in programming

1945: Grace
Hopper discovers

the first
computer bug

fca @ ACAT10 22/02/1010

SE men and women…
• Many of the early

programmers were
women

• As SE settled in as a
discipline, programming
became a male-only
discipline

• Only very slowly women
are finding back their
place in programming

1945: Grace
Hopper discovers

the first
computer bug

fca @ ACAT10 22/02/1011

fca @ ACAT10 22/02/1012

• Software is opposed to hardware because it should be
flexible

• Yet the reason of the failure of software process is often
identified in the changes intervening during the
development

• The heart of SE is the limitation of the impact of
changes
– Changes are avoided by a better design

– A better design is obtained by exhaustive requirements

– The more complete the design, the less the changes, the smaller
the cost of software

fca @ ACAT10 22/02/1012

SE crisis

• Software is opposed to hardware because it should be
flexible

• Yet the reason of the failure of software process is often
identified in the changes intervening during the
development

• The heart of SE is the limitation of the impact of
changes
– Changes are avoided by a better design

– A better design is obtained by exhaustive requirements

– The more complete the design, the less the changes, the smaller
the cost of software

fca @ ACAT10 22/02/1013

• SE splits the process in a sequence of controllable
phases
– Analysis, design, implementation, testing, maintenance…

– A hierarchy and a roadmap to navigate among them

• Still software projects continue to fail: the SE crisis

• Orthodox SE diagnosis is: not enough SE was applied
– More discipline and more strict observance of the rules
– Too process kill the process, projects keeps failing

• Modern SE tries to find a different answer

fca @ ACAT10 22/02/1013

SE crisis

• SE splits the process in a sequence of controllable
phases
– Analysis, design, implementation, testing, maintenance…

– A hierarchy and a roadmap to navigate among them

• Still software projects continue to fail: the SE crisis

• Orthodox SE diagnosis is: not enough SE was applied
– More discipline and more strict observance of the rules
– Too process kill the process, projects keeps failing

• Modern SE tries to find a different answer

fca @ ACAT10 22/02/1014

• Many formal paper documents

• Very detailed design models, difficult to read and understand

• Formal document ownership

• Distinct developer roles

• Communications through documents

• Formal process to follow

• HCP are suited for big projects, with stable requirements

• The time elapsed from requirement gathering to start coding may be as
long as 1-2 years

• In the e-business era (and in science!) projects are characterized
by

• High speed, change and uncertainty

fca @ ACAT10 22/02/1014

High Ceremony Process

• Many formal paper documents

• Very detailed design models, difficult to read and understand

• Formal document ownership

• Distinct developer roles

• Communications through documents

• Formal process to follow

• HCP are suited for big projects, with stable requirements

• The time elapsed from requirement gathering to start coding may be as
long as 1-2 years

• In the e-business era (and in science!) projects are characterized
by

• High speed, change and uncertainty

fca @ ACAT10 22/02/1014

High Ceremony Process

• Many formal paper documents

• Very detailed design models, difficult to read and understand

• Formal document ownership

• Distinct developer roles

• Communications through documents

• Formal process to follow

• HCP are suited for big projects, with stable requirements

• The time elapsed from requirement gathering to start coding may be as
long as 1-2 years

• In the e-business era (and in science!) projects are characterized
by

• High speed, change and uncertainty

Waterfall model

fca @ ACAT10 22/02/1014

High Ceremony Process

• Many formal paper documents

• Very detailed design models, difficult to read and understand

• Formal document ownership

• Distinct developer roles

• Communications through documents

• Formal process to follow

• HCP are suited for big projects, with stable requirements

• The time elapsed from requirement gathering to start coding may be as
long as 1-2 years

• In the e-business era (and in science!) projects are characterized
by

• High speed, change and uncertainty

Waterfall modelSpiral model

fca @ ACAT10 22/02/1014

High Ceremony Process

• Many formal paper documents

• Very detailed design models, difficult to read and understand

• Formal document ownership

• Distinct developer roles

• Communications through documents

• Formal process to follow

• HCP are suited for big projects, with stable requirements

• The time elapsed from requirement gathering to start coding may be as
long as 1-2 years

• In the e-business era (and in science!) projects are characterized
by

• High speed, change and uncertainty

Waterfall modelSpiral model

fca @ ACAT10 22/02/1015

• A crisis that lasts 40 years is not a crisis, but a
stationary state

• From mid 80’s to mid 90’s SE has been looking
for the silver bullet

• From mid 90’s onward came the realisation that
developing working software was just very hard

• SE has given us a much deeper understanding of
the process of software development

• But we still miss a “magic solution”

fca @ ACAT10 22/02/1015

Did SE fail?

• A crisis that lasts 40 years is not a crisis, but a
stationary state

• From mid 80’s to mid 90’s SE has been looking
for the silver bullet

• From mid 90’s onward came the realisation that
developing working software was just very hard

• SE has given us a much deeper understanding of
the process of software development

• But we still miss a “magic solution”

fca @ ACAT10 22/02/1016

fca @ ACAT10 22/02/1016

A Software Engineer’s nightmare

• A Soft Engineer’s view of HEP
HEP has a complicated problem to solve
SE is good for complicated problems
These physicists cannot even spell SE correctly
A bit of SE can do wonder
• Or, in its weaker form, it should work at least here!

Let’s introduce SE in HEP!

• A scheduled success!

• What can possibly go wrong?

fca @ ACAT10 22/02/1017

• HEP has tried all new SE technologies, tools and formalisms

• Yourdon’s SASD, ER, Booch’s OOADA, Rambaugh’s OMT, Shlaer-Mellor’s
OL, ESA’s PSS-05, UML, USDP

• ADAMO, I-Logix Statemate, OMW, OMTool, StP, Rational Rose, ObjecTime,
Together

• All have raised interest and then fallen into oblivion

• The OO projects started in ’94 have used extensively SE

• GEANT4 was late in entering production (8 years)

• Spider has been cancelled

• LHC++/ANAPHE/AIDA never could replace PAW / CERNLIB and have
finally been abandoned

• The winning product (root!) never claimed any use of SE

• Did traditional SE fail to deliver?

fca @ ACAT10 22/02/1017

HEP software & Software Engineering

• HEP has tried all new SE technologies, tools and formalisms

• Yourdon’s SASD, ER, Booch’s OOADA, Rambaugh’s OMT, Shlaer-Mellor’s
OL, ESA’s PSS-05, UML, USDP

• ADAMO, I-Logix Statemate, OMW, OMTool, StP, Rational Rose, ObjecTime,
Together

• All have raised interest and then fallen into oblivion

• The OO projects started in ’94 have used extensively SE

• GEANT4 was late in entering production (8 years)

• Spider has been cancelled

• LHC++/ANAPHE/AIDA never could replace PAW / CERNLIB and have
finally been abandoned

• The winning product (root!) never claimed any use of SE

• Did traditional SE fail to deliver?

fca @ ACAT10 22/02/1018

• The largest Grid in operation is the LCG Grid

• This is a success that cannot be denied

• However Grid MW projects are grossly over
budget, late and under expectations

• Yet they have put an enormous focus on the
usage of proper (classic!) SE methods

• What went so wrong?

fca @ ACAT10 22/02/1018

A case study – the Grid

• The largest Grid in operation is the LCG Grid

• This is a success that cannot be denied

• However Grid MW projects are grossly over
budget, late and under expectations

• Yet they have put an enormous focus on the
usage of proper (classic!) SE methods

• What went so wrong?

fca @ ACAT10 22/02/1019

• Insistence on complete requirements
• But users never saw a Grid before!

• Ask the same question till you get the answer you want
• “This is not a requirement…”

• Insist on one single line of development
• Bureaucracy before creativity

• Develop incompatible versions of the same product
• Ping-pong support

• Multiply “testbeds” without users
• “The users will continue creating bugs hindering us from

developing new code!”

fca @ ACAT10 22/02/1019

Grid anti-patterns

• Insistence on complete requirements
• But users never saw a Grid before!

• Ask the same question till you get the answer you want
• “This is not a requirement…”

• Insist on one single line of development
• Bureaucracy before creativity

• Develop incompatible versions of the same product
• Ping-pong support

• Multiply “testbeds” without users
• “The users will continue creating bugs hindering us from

developing new code!”

fca @ ACAT10 22/02/1020

• Underestimate the importance of stability,
portability and backward compatibility

• “Don’t repeat the root mistake”

• Beat the outsiders into submission immediately!

• Delay deadlines instead of descoping them

• Release late and release seldom

• Shortcut complicated processes instead of
simplifying them

fca @ ACAT10 22/02/1020

Grid anti-patterns

• Underestimate the importance of stability,
portability and backward compatibility

• “Don’t repeat the root mistake”

• Beat the outsiders into submission immediately!

• Delay deadlines instead of descoping them

• Release late and release seldom

• Shortcut complicated processes instead of
simplifying them

fca @ ACAT10 22/02/1021

• HEP software has been largely successful!

• Experiments have not been hindered by software in their scientific goals

• CERNLIB (GEANT3, PAW, MINUIT) has been an astounding
success

• From small teams in close contact with experiments

• In use for over 20 years

• Ported to all architectures and OS that appeared

• Reused by hundreds of experiments around the world

• The largest grid in operation is, after all, the LCG grid

• And yet we (as a community) have not used canonical SE

• Did we do something right?

fca @ ACAT10 22/02/1021

HEP software: the facts

• HEP software has been largely successful!

• Experiments have not been hindered by software in their scientific goals

• CERNLIB (GEANT3, PAW, MINUIT) has been an astounding
success

• From small teams in close contact with experiments

• In use for over 20 years

• Ported to all architectures and OS that appeared

• Reused by hundreds of experiments around the world

• The largest grid in operation is, after all, the LCG grid

• And yet we (as a community) have not used canonical SE

• Did we do something right?

fca @ ACAT10 22/02/1022

 i.e. getting rid of the mantra “let’s do it as they do it in
industry…”

• Fuzzy & evolving requirements

– If we knew what we are doing we would not call it research

• Bleeding edge technology

– The boundary of what we do moves with technology

• Non-hierarchical social system

– Roles of user, analyst, programmer etc are shared

– Very little control on most of the (wo)man power

• Different assessment criteria

– Performance evaluation is not based on revenues

– We do not produce wealth, we spend it!

– We produce knowledge, but this is not an engineering standard item

fca @ ACAT10 22/02/1022

HEP Software, what’s special?

 i.e. getting rid of the mantra “let’s do it as they do it in
industry…”

• Fuzzy & evolving requirements

– If we knew what we are doing we would not call it research

• Bleeding edge technology

– The boundary of what we do moves with technology

• Non-hierarchical social system

– Roles of user, analyst, programmer etc are shared

– Very little control on most of the (wo)man power

• Different assessment criteria

– Performance evaluation is not based on revenues

– We do not produce wealth, we spend it!

– We produce knowledge, but this is not an engineering standard item

fca @ ACAT10 22/02/1023

• Traditional SE does not fit our environment

• Only applicable when requirements are well understood

• Our non-hierarchical structure does not match it

• We do not have the extra (wo)man power for it

• It introduces a semantic gap between its layers and the
additional work of translating, mapping and navigating between
them

• It acts on the process and not on the problem

• It structures the activity constraining it to a limited region,
with precisely defined interfaces

• A Tayloristic organization of work, scarcely effective when the
product is innovation and knowledge

fca @ ACAT10 22/02/1023

Is SE any good for us?

• Traditional SE does not fit our environment

• Only applicable when requirements are well understood

• Our non-hierarchical structure does not match it

• We do not have the extra (wo)man power for it

• It introduces a semantic gap between its layers and the
additional work of translating, mapping and navigating between
them

• It acts on the process and not on the problem

• It structures the activity constraining it to a limited region,
with precisely defined interfaces

• A Tayloristic organization of work, scarcely effective when the
product is innovation and knowledge

fca @ ACAT10 22/02/1024

“In my experience I often found plans useless, while planning
was always invaluable.”

 D.Eisenhower

• Change is no accident, it is the element on which to plan

– As such it must be an integral part of the software process

• Need to reconsider the economy of change

– Initial design needs not to be complete or late changes bad

• Designing is still fundamental

– It brings understanding of the goals and code quality and robustness

• However sticking to an out-of-date design would

– Hinder evolution

– Limit the functionality of the code

– Waste effort on no-longer needed features

– Increase time-to-market

fca @ ACAT10 22/02/1024

Change, change, change
“In my experience I often found plans useless, while planning

was always invaluable.”
 D.Eisenhower

• Change is no accident, it is the element on which to plan

– As such it must be an integral part of the software process

• Need to reconsider the economy of change

– Initial design needs not to be complete or late changes bad

• Designing is still fundamental

– It brings understanding of the goals and code quality and robustness

• However sticking to an out-of-date design would

– Hinder evolution

– Limit the functionality of the code

– Waste effort on no-longer needed features

– Increase time-to-market

fca @ ACAT10 22/02/1025

• Start with an initial common story
– A shared goal felt as part of a community identity

 “We know what we want because we know what we need
and what did not work in the past”

– More precision would be an artefact and a waste of time

• Develop a (functional) prototype with the features that are
felt to be more relevant by the community

– The story becomes quickly a reality (short time-to-market)
– Interested and motivated users use it for day-by-day work

– Must master equilibrium between too few and too many users

fca @ ACAT10 22/02/1025

How do we work?
(an idealised after-the-fact account of events)

• Start with an initial common story
– A shared goal felt as part of a community identity

 “We know what we want because we know what we need
and what did not work in the past”

– More precision would be an artefact and a waste of time

• Develop a (functional) prototype with the features that are
felt to be more relevant by the community

– The story becomes quickly a reality (short time-to-market)
– Interested and motivated users use it for day-by-day work

– Must master equilibrium between too few and too many users

fca @ ACAT10 22/02/1026

• Developers (most of them users) work on
the most important (i.e. demanded)
features

• Continuous feed-back provided by (local and
remote) users

• Coherence by the common ownership of the
initial story

• More and more users get on board as the
system matures

fca @ ACAT10 22/02/1026

How do we work?
(an idealised after-the-fact account of events)

• Developers (most of them users) work on
the most important (i.e. demanded)
features

• Continuous feed-back provided by (local and
remote) users

• Coherence by the common ownership of the
initial story

• More and more users get on board as the
system matures

fca @ ACAT10 22/02/1027

• Users collectively own the system and contribute to it in
line with the spirit of the initial common story

• New versions come frequently and the development one is
available

• Redesigns happen, even massive, without blocking the
system

• Users tend to be vocal but loyal to the system

• It is their system and it has to work, their needs are satisfied

• Most of the communication happens via e-mail

• Relations are driven by respect and collaborative spirit

• CERNLIB from late 70’s to early 90’s and of ROOT since

fca @ ACAT10 22/02/1027

How do we work?
(an idealised after-the-fact account of events)

• Users collectively own the system and contribute to it in
line with the spirit of the initial common story

• New versions come frequently and the development one is
available

• Redesigns happen, even massive, without blocking the
system

• Users tend to be vocal but loyal to the system

• It is their system and it has to work, their needs are satisfied

• Most of the communication happens via e-mail

• Relations are driven by respect and collaborative spirit

• CERNLIB from late 70’s to early 90’s and of ROOT since

fca @ ACAT10 22/02/1028

• Modern SE tries to find short time-to-market solutions for rapidly
changing
– Requirements

– User community

– Hardware/OS base

– Developer teams

• This is the norm for HEP
– Once more we are today where IT will be tomorrow

• Modern SE seems to formalise and justify the conventions and
rituals of HEP software
– Minimise early planning, maximise feedback from users, manage change, not

avoid it

• Can we gain something out of it?

fca @ ACAT10 22/02/1028

Is there method to this madness?

• Modern SE tries to find short time-to-market solutions for rapidly
changing
– Requirements

– User community

– Hardware/OS base

– Developer teams

• This is the norm for HEP
– Once more we are today where IT will be tomorrow

• Modern SE seems to formalise and justify the conventions and
rituals of HEP software
– Minimise early planning, maximise feedback from users, manage change, not

avoid it

• Can we gain something out of it?

fca @ ACAT10 22/02/1029

• Famous article from E.Raymond on software
development (1997)

• Rapid prototyping

• User feedback

• Release early release often

• One of the first fundamental criticisms to the
traditional software engineering

“Linux is subversive…”

http://images.google.com/imgres?imgurl=www.cosc.canterbury.ac.nz/isaac01/cathedral.jpg&imgrefurl=http://www.cosc.canterbury.ac.nz/isaac01/&h=861&w=646&prev=/images%253Fq%253Dcathedral%2526svnum%253D10%2526hl%253Den%2526lr%253D%2526sa%253DN
http://images.google.com/imgres?imgurl=www.cosc.canterbury.ac.nz/isaac01/cathedral.jpg&imgrefurl=http://www.cosc.canterbury.ac.nz/isaac01/&h=861&w=646&prev=/images%253Fq%253Dcathedral%2526svnum%253D10%2526hl%253Den%2526lr%253D%2526sa%253DN
http://images.google.com/imgres?imgurl=home.wanadoo.nl/~schoelink/grand%20bazaar%201.jpg&imgrefurl=http://home.wanadoo.nl/~schoelink/phtur.htm&h=640&w=480&prev=/images%253Fq%253Dbazaar%2526start%253D200%2526svnum%253D10%2526hl%253Den%2526lr%253D%2526sa%253DN
http://images.google.com/imgres?imgurl=home.wanadoo.nl/~schoelink/grand%20bazaar%201.jpg&imgrefurl=http://home.wanadoo.nl/~schoelink/phtur.htm&h=640&w=480&prev=/images%253Fq%253Dbazaar%2526start%253D200%2526svnum%253D10%2526hl%253Den%2526lr%253D%2526sa%253DN

fca @ ACAT10 22/02/1029

The Cathedral and the Bazaar
http://www.tuxedo.org/~esr/writings/cathedral-bazaar/

• Famous article from E.Raymond on software
development (1997)

• Rapid prototyping

• User feedback

• Release early release often

• One of the first fundamental criticisms to the
traditional software engineering

“Linux is subversive…”

http://www.tuxedo.org/~esr/writings/cathedral-bazaar/
http://www.tuxedo.org/~esr/writings/cathedral-bazaar/
http://images.google.com/imgres?imgurl=www.cosc.canterbury.ac.nz/isaac01/cathedral.jpg&imgrefurl=http://www.cosc.canterbury.ac.nz/isaac01/&h=861&w=646&prev=/images%253Fq%253Dcathedral%2526svnum%253D10%2526hl%253Den%2526lr%253D%2526sa%253DN
http://images.google.com/imgres?imgurl=www.cosc.canterbury.ac.nz/isaac01/cathedral.jpg&imgrefurl=http://www.cosc.canterbury.ac.nz/isaac01/&h=861&w=646&prev=/images%253Fq%253Dcathedral%2526svnum%253D10%2526hl%253Den%2526lr%253D%2526sa%253DN
http://images.google.com/imgres?imgurl=home.wanadoo.nl/~schoelink/grand%20bazaar%201.jpg&imgrefurl=http://home.wanadoo.nl/~schoelink/phtur.htm&h=640&w=480&prev=/images%253Fq%253Dbazaar%2526start%253D200%2526svnum%253D10%2526hl%253Den%2526lr%253D%2526sa%253DN
http://images.google.com/imgres?imgurl=home.wanadoo.nl/~schoelink/grand%20bazaar%201.jpg&imgrefurl=http://home.wanadoo.nl/~schoelink/phtur.htm&h=640&w=480&prev=/images%253Fq%253Dbazaar%2526start%253D200%2526svnum%253D10%2526hl%253Den%2526lr%253D%2526sa%253DN

fca @ ACAT10 22/02/10

• Simplicity is the most complicated thing to
achieve in software development

• Simplicity should be the objective of
continual planning and refactoring

• Simplicity should be part of the initial
design

30

Perfection is achieved not when everything
that can be added is added, but when
everything that can be removed is removed

Michelangelo

fca @ ACAT10 22/02/10

Simplicity, emergence and the like

• Simplicity is the most complicated thing to
achieve in software development

• Simplicity should be the objective of
continual planning and refactoring

• Simplicity should be part of the initial
design

30

Perfection is achieved not when everything
that can be added is added, but when
everything that can be removed is removed

Michelangelo

fca @ ACAT10 22/02/1031

 Free Redistribution

– Do not throw away long-term gains in order for little short-term money. Avoid pressure for
cooperators to defect

 Availability of source Code
– You can't evolve programs without modifying them

 Permission of derived works
– For rapid evolution to happen, people need to be able to experiment with and redistribute

modifications

 Integrity of The Author's Source Code

– Users should know who is responsible for the software. Authors should know what they
support and protect their reputations

 No Discrimination Against Persons, Groups or Fields

– Insure the maximum diversity of persons and groups contributing to open sources, allow all
commercial users to join

 Distributable, non specific and non restrictive License
– Avoid all “license traps”, let distributors chose their media and format

fca @ ACAT10 22/02/1031

Open Source (more than just the code…)
“Live free or die”

 Free Redistribution

– Do not throw away long-term gains in order for little short-term money. Avoid pressure for
cooperators to defect

 Availability of source Code
– You can't evolve programs without modifying them

 Permission of derived works
– For rapid evolution to happen, people need to be able to experiment with and redistribute

modifications

 Integrity of The Author's Source Code

– Users should know who is responsible for the software. Authors should know what they
support and protect their reputations

 No Discrimination Against Persons, Groups or Fields

– Insure the maximum diversity of persons and groups contributing to open sources, allow all
commercial users to join

 Distributable, non specific and non restrictive License
– Avoid all “license traps”, let distributors chose their media and format

fca @ ACAT10 22/02/1032

MIT/X-Consortium License: truly “no strings attached”
“Revised” BSD License: MIT License + No Endorsement Clause

“Original” BSD License: Revised BSD License + Attribution Clause
Apache License: Original BSD License + No Use of “Apache” Name

fca @ ACAT10 22/02/1032

MIT/X-Consortium License: truly “no strings attached”
“Revised” BSD License: MIT License + No Endorsement Clause

“Original” BSD License: Revised BSD License + Attribution Clause
Apache License: Original BSD License + No Use of “Apache” Name

Different “Open Source” Licenses

fca @ ACAT10 22/02/1032

MIT/X-Consortium License: truly “no strings attached”
“Revised” BSD License: MIT License + No Endorsement Clause

“Original” BSD License: Revised BSD License + Attribution Clause
Apache License: Original BSD License + No Use of “Apache” Name

MIT/X Consortium

“Revised” BSD License

“Original” BSD License

Apache License

Increasing
Restrictions

Different “Open Source” Licenses

fca @ ACAT10 22/02/1032

MIT/X-Consortium License: truly “no strings attached”
“Revised” BSD License: MIT License + No Endorsement Clause

“Original” BSD License: Revised BSD License + Attribution Clause
Apache License: Original BSD License + No Use of “Apache” Name

MIT/X Consortium

“Revised” BSD License

“Original” BSD License

Apache License

Increasing
Restrictions

Different “Open Source” Licenses

CopyRight

fca @ ACAT10 22/02/1032

MIT/X-Consortium License: truly “no strings attached”
“Revised” BSD License: MIT License + No Endorsement Clause

“Original” BSD License: Revised BSD License + Attribution Clause
Apache License: Original BSD License + No Use of “Apache” Name

MIT/X Consortium

“Revised” BSD License

“Original” BSD License

Apache License

Increasing
Restrictions

Different “Open Source” Licenses

CopyRightCopyLeft

fca @ ACAT10 22/02/1033

fca @ ACAT10 22/02/1033

OS licenses
• The world of Open Software licenses is very complicated

GNU General Public License (GPL)
GNU Library or "Lesser" Public License (LGPL)

BSD license
MIT license

Artistic license
Mozilla Public License v. 1.0 (MPL)

Qt Public License (QPL)
IBM Public License

MITRE Collaborative Virtual Workspace License (CVW License)
Ricoh Source Code Public License

Python license (CNRI Python License)
Python Software Foundation License

zlib/libpng license
Apache Software License

Vovida Software License v. 1.0
Sun Industry Standards Source License (SISSL)

Intel Open Source License
Mozilla Public License 1.1 (MPL 1.1)

Jabber Open Source License
Nokia Open Source License

Sleepycat License
Nethack General Public License

Common Public License
Apple Public Source License

X.Net License
Sun Public License

Eiffel Forum License
W3C License

Motosoto License
Open Group Test Suite License

Zope Public License

http://www.opensource.org/licenses/gpl-license.html
http://www.opensource.org/licenses/gpl-license.html
http://www.opensource.org/licenses/lgpl-license.html
http://www.opensource.org/licenses/lgpl-license.html
http://www.opensource.org/licenses/bsd-license.html
http://www.opensource.org/licenses/bsd-license.html
http://www.opensource.org/licenses/mit-license.html
http://www.opensource.org/licenses/mit-license.html
http://www.opensource.org/licenses/artistic-license.html
http://www.opensource.org/licenses/artistic-license.html
http://www.opensource.org/licenses/mozilla1.0.html
http://www.opensource.org/licenses/mozilla1.0.html
http://www.opensource.org/licenses/qtpl.html
http://www.opensource.org/licenses/qtpl.html
http://www.opensource.org/licenses/ibmpl.html
http://www.opensource.org/licenses/ibmpl.html
http://www.opensource.org/licenses/mitrepl.html
http://www.opensource.org/licenses/mitrepl.html
http://www.opensource.org/licenses/ricohpl.html
http://www.opensource.org/licenses/ricohpl.html
http://www.opensource.org/licenses/pythonpl.html
http://www.opensource.org/licenses/pythonpl.html
http://www.opensource.org/licenses/PythonSoftFoundation.html
http://www.opensource.org/licenses/PythonSoftFoundation.html
http://www.opensource.org/licenses/zlib-license.html
http://www.opensource.org/licenses/zlib-license.html
http://www.opensource.org/licenses/apachepl.html
http://www.opensource.org/licenses/apachepl.html
http://www.opensource.org/licenses/vovidapl.html
http://www.opensource.org/licenses/vovidapl.html
http://www.opensource.org/licenses/sisslpl.html
http://www.opensource.org/licenses/sisslpl.html
http://www.opensource.org/licenses/intel-open-source-license.html
http://www.opensource.org/licenses/intel-open-source-license.html
http://www.opensource.org/licenses/mozilla1.1.html
http://www.opensource.org/licenses/mozilla1.1.html
http://www.opensource.org/licenses/jabberpl.html
http://www.opensource.org/licenses/jabberpl.html
http://www.opensource.org/licenses/nokia.html
http://www.opensource.org/licenses/nokia.html
http://www.opensource.org/licenses/sleepycat.html
http://www.opensource.org/licenses/sleepycat.html
http://www.opensource.org/licenses/nethack.html
http://www.opensource.org/licenses/nethack.html
http://www.opensource.org/licenses/cpl.html
http://www.opensource.org/licenses/cpl.html
http://www.opensource.org/licenses/apsl.html
http://www.opensource.org/licenses/apsl.html
http://www.opensource.org/licenses/xnet.html
http://www.opensource.org/licenses/xnet.html
http://www.opensource.org/licenses/sunpublic.html
http://www.opensource.org/licenses/sunpublic.html
http://www.opensource.org/licenses/eiffel.html
http://www.opensource.org/licenses/eiffel.html
http://www.opensource.org/licenses/W3C.html
http://www.opensource.org/licenses/W3C.html
http://www.opensource.org/licenses/motosoto.html
http://www.opensource.org/licenses/motosoto.html
http://www.opensource.org/licenses/opengroup.html
http://www.opensource.org/licenses/opengroup.html
http://www.opensource.org/licenses/zpl.html
http://www.opensource.org/licenses/zpl.html

fca @ ACAT10 22/02/1034

fca @ ACAT10 22/02/1034

Agile Technologies
(aka SE catching up)

• SE response to HCP are the “Agile Methodologies”

• Adaptive rather than predictive

• People-oriented rather than process-oriented

• As simple as possible to be able to react quickly

• Incremental and iterative, short iterations (weeks)

• Based on testing and coding rather than on analysis and design

• Uncovering better ways of developing software by valuing:

That is, while there is value in the items on
the right, we value the items on the left more.

Individuals and interactions
Working software

Customer collaboration
Responding to change

processes and tools
huge documentation
contract negotiation

following a plan

OVER

fca @ ACAT10 22/02/1035

• There are four factors to control a software project: time,
manpower, quality and scope

• Time
• The worst of them all… but the most widely used

• Manpower
• The most misused … add people to a project which is late and you will

make it later

• Quality
• A parameter very difficult to control … writing bad software may take

more time than writing good one

• Scope
• The least used. It needs clear communication and courage, but is probably

the most effective if well managed

fca @ ACAT10 22/02/1035

Managing expectations

• There are four factors to control a software project: time,
manpower, quality and scope

• Time
• The worst of them all… but the most widely used

• Manpower
• The most misused … add people to a project which is late and you will

make it later

• Quality
• A parameter very difficult to control … writing bad software may take

more time than writing good one

• Scope
• The least used. It needs clear communication and courage, but is probably

the most effective if well managed

fca @ ACAT10 22/02/1036

• XP in seven statements
 Based on small, very interacting teams of people working in

pairs

 Testing is practiced since the very beginning

 System integration is performed daily

 Use cases driven, with specific techniques to estimate time
and cost of the project

 Programs are continuously refactored

 Written documentation besides code is kept to minimum

 Write the simplest system that can work!

 Move stability from plans to planning

fca @ ACAT10 22/02/1036

eXtreme Programming

• XP in seven statements
 Based on small, very interacting teams of people working in

pairs

 Testing is practiced since the very beginning

 System integration is performed daily

 Use cases driven, with specific techniques to estimate time
and cost of the project

 Programs are continuously refactored

 Written documentation besides code is kept to minimum

 Write the simplest system that can work!

 Move stability from plans to planning

fca @ ACAT10 22/02/1037

• Communication
– A project needs continuous communication, with the customer and among developers

– Design and code must be understandable and up to date

• Simplicity
– Do the simplest thing that can possibly work

– Later, a simple design will be easily extended

• Feedback
– Continuous feedback from customers on a working system, incrementally developed

– Test-based programming

• Courage
– The result of the other three values is that we can be aggressive

– Refactor mercilessly every time you spot a possible improvement of the system

fca @ ACAT10 22/02/1037

eXtreme Programming
• Communication

– A project needs continuous communication, with the customer and among developers

– Design and code must be understandable and up to date

• Simplicity
– Do the simplest thing that can possibly work

– Later, a simple design will be easily extended

• Feedback
– Continuous feedback from customers on a working system, incrementally developed

– Test-based programming

• Courage
– The result of the other three values is that we can be aggressive

– Refactor mercilessly every time you spot a possible improvement of the system

fca @ ACAT10 22/02/1038

• Some of the “rites” of HEP software find now a rationale
explanation
– That we were not able to express

• But our environment adds complexity to the one foreseen by agile
methods
– Large and distributed teams, no hierarchy

• Introducing (and modifying) agile methods in our environment
effectively increase our efficiency
– Help planning for distributed teams

– Reduce the lead time for people to be effective

• A worthy goal for Software Engineers working in HEP!

• An occasion to collaborate with advanced Computer Science and
Industry?

fca @ ACAT10 22/02/1038

Agile technologies and HEP

• Some of the “rites” of HEP software find now a rationale
explanation
– That we were not able to express

• But our environment adds complexity to the one foreseen by agile
methods
– Large and distributed teams, no hierarchy

• Introducing (and modifying) agile methods in our environment
effectively increase our efficiency
– Help planning for distributed teams

– Reduce the lead time for people to be effective

• A worthy goal for Software Engineers working in HEP!

• An occasion to collaborate with advanced Computer Science and
Industry?

fca @ ACAT10 22/02/1039

• HEP has developed and successfully deployed its own SE method but
never realised it

• Market conditions now are more similar to the HEP environment

– And modern SE is making justice of some HEP traditions and rituals

• This movement may be important for HEP as we can finally

– Express our own SE culture

– Customise and improve it

– Teach and transmit it

• XP is not a silver bullet but rather the realisation that such a thing
does not exist and a formalisation of common sense

• The big challenge will be for HEP to move agile technologies in the
realm of distributed development

fca @ ACAT10 22/02/1039

(a preliminary) Conclusion

• HEP has developed and successfully deployed its own SE method but
never realised it

• Market conditions now are more similar to the HEP environment

– And modern SE is making justice of some HEP traditions and rituals

• This movement may be important for HEP as we can finally

– Express our own SE culture

– Customise and improve it

– Teach and transmit it

• XP is not a silver bullet but rather the realisation that such a thing
does not exist and a formalisation of common sense

• The big challenge will be for HEP to move agile technologies in the
realm of distributed development

fca @ ACAT10 22/02/1040

