

Electron/Jet Neural Discrimination based on Nonlinear Independent Components for ATLAS Second-Level Trigger

Eduardo Simas, José Seixas and Luiz Calôba Signal Processing Laboratory Federal University of Rio de Janeiro – Brazil

Presenter: Eric Leite

ACAT 2010 - Jaipur, India, 22-27 February, 2010

Topics

- Introduction
- Signals pre-processing
- Independent component analysis
 - Post-Nonlinear (PNL) Mixture Model
- Results
- Conclusions

Introduction

- ATLAS is a general purpose detector at LHC;
- Considering LHC interaction rates and ATLAS segmentation, an input data rate of ~60 TBytes/s is expected;
- ATLAS online trigger: three levels;
- Uses information from three subdetectors (calorimeters, muon system and tracking);
- L1 is implemented in hardware and selects Regions of Interest - Rol (regions where interesting events may have occurred);
- L2 and EF run software triggers;
- L2 operates over Rol information selected by L1.

Introduction

Electron / Jet channel at L2:

- Important signatures for the experiment (Higgs, SUSY, etc) may produce electrons in their decays;
- Electron identification uses the energy deposition profile measured by ATLAS calorimeter system;
- Some QCD jets may present energy deposition profiles similar to electrons;
- Electron/jet channel: ~35% of the L2 input rate (27 kHz of 75kHz);
- L2 latency time: 40 ms.

ATLAS calorimeters:

• Seven layers with different characteristics and granularity.

ACAT 2010

Signal Pre-processing

• Here the calorimeter signals are pre-processed using a ring-like structure:

Example:

a: select a calorimeter layer; b: find the hottest cell \rightarrow Ring 1; c: select the cells around the first ring \rightarrow Ring 2; d: repeat this procedure over the RoI.

Electron/Jet Neural Discrimination based on Nonlinear Independent Components for ATLAS L2 Trigger; Simas et al.

ACAT 2010

Ring Signals

Table 1: Number of rings built up from each calorimeter layer.

- Datasets initially pre-filtered by L1, considering energy, EM and HAD isolation.;
- ~140k electron and ~13k fake electron (jets) RoI reached L2.

E3

Hadronic

Lay

ē

PS^I

0.3

0.25

0.2

0.15

0.1

Normalized Energy

E1

Typical Electron

Signal Processing Chain proposed for ATLAS L2 Trigger

7

ACAT 2010

Independent Component Analysis

- Independent component analysis (ICA) is a statistical signal processing technique which aims at finding underlying independent features in a dataset.
- The ICA model considers that a N-dimensional observed vector **x**=[x₁, x₂, ..., x_N]^T was generated as independent source signals **s**=[s₁, s₂, ..., s_N]^T propagated through a "mixing system":

$$\mathbf{x} = \mathbf{As}$$

- Nonlinear ICA model: $\mathbf{x} = F(\mathbf{s}) \qquad \qquad F(.) \text{ is a } \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$ nonlinear mapping
- Statistical independence measures such as negentropy, mutual information or the Kullback-Leibler divergence may be applied to search for an inverse transformation:

$$\hat{\mathbf{s}} = \mathbf{G}(\mathbf{x}) \boldsymbol{\leftarrow}$$

G(.) is a R^N→R^N (inverse) nonlinear mapping

• In which the components of $\hat{\mathbf{S}}$ are as independent as possible.

Post-Nonlinear ICA

• The post-nonlinear (PNL) ICA model is described through:

- For *i*=1, ..., *N*, the measured signals are defined as: $x_i = f_i \left(\sum_{j=1}^N a_{ij} s_j \right)$
- An estimation of the independent signals:

$$\hat{s}_i = \sum_{j=1}^N b_{ij} g_j(x_j)$$

• Each nonlinear function g_k is modeled by a two-layer MLP neural network:

$$g_k(x_k) = \sum_{h=1}^{N_H} \sigma_h \tanh(\omega_h x_k + \eta_h)$$
 Where N_H is the number of hidden neurons.

Post-Nonlinear ICA

• PNL – ICA algorithm short description:

– Estimate the mutual information I(s) between the outputs \hat{s} ;

$$I(\hat{s}) = I(\hat{s}_1, \hat{s}_2, ..., \hat{s}_n) = \sum_{i=1}^n H(\hat{s}_i) - H(\hat{s}) \qquad \frac{\text{Entropy:}}{H(s) = \sum_i P(s = a_i) \log(P(s = a_i))$$

- The parameters b_i (matrix **B**) and σ_h , ω_h , η_h (neural net estimation of g_i) are adjusted to minimize the mutual information I(**s**);
- By minimizing I(s), the model outputs \hat{s} converge to the independent components.

Results

• Performance comparison:

- SP index:
$$SP = \sqrt{\frac{Ef_e + Ef_j}{2}} \times \sqrt{Ef_e \times Ef_j}$$
 $Ef_e = P_D = \begin{bmatrix} P_D = Electron Efficiency \\ F_f = 1 - P_F \end{bmatrix} \begin{bmatrix} P_D = Electron Efficiency \\ P_F = Jet Acceptance \end{bmatrix}$

- Receiver Operating Characteristics (ROC) curve: illustrates how both detection and false alarm probabilities (respectively P_D and P_F) vary as the decision threshold changes.
- The proposed method is compared to the Neural Ringer discriminator, which consists on a supervised neural discriminator operating directly over the ring signals

Results

- Number of neurons used to estimated each nonlinear function in the PNL model:
 - The nonlinearities are expected to be smooth (the calorimeter is approximately linear);
 - The same number of hidden neurons was used to estimate each nonlinearity;
 - By increasing the number of neurons the discrimination efficiency decreases.

Results - (PNL model / 2 neurons)

- The neural classifier (Multi-layer perceptron architecture) :
 - one hidden layer ;
 - one output neuron ;
 - tanh activation function;
 - training: error back-propagation.
- Topology: 31 x 7 x 1
- Neural classifier output:

Applied cut:

The threshold which produced maximum SP was used to operate the discriminator.

14

Results – Electron Efficiency (PNL model / 2 neurons)

Electron/Jet Neural Discrimination based on Nonlinear Independent Components for ATLAS L2 Trigger; Simas et al.

ACAT 2010

Results – Electron Efficiency (PNL model / 2 neurons)

Results – Jet False Alarm (PNL model / 2 neurons)

Results – Jet False Alarm (PNL model / 2 neurons)

Conclusions

- A segmented feature extraction procedure based on NLICA was proposed for the ATLAS L2 trigger (e⁻/j channel);
- The nonlinearities estimated by the model were limited to a slight deviation from full linearity, as the calorimeter response is almost linear. Results confirmed such assumption.
- Compared to Neural Ringer discriminator, the false alarm was reduced from (8.67 ± 0.20) % to (7.69 ± 0.35) %, at a detection probability of 97%;
- A proper evaluation of the processing time is underway, but a preliminary comparative analysis indicates that the L2 requirements are satisfied.

Acknowledgments : ATLAS Trigger/DAQ Collaboration for fruitful discussions concerning this work.