Application of Many-core
Accelerators for Problems in
Astronomy and Physics

N.Nakasato (University of Aizu, Japan)

In collaboration with
F.Yuasa, T.Ishikawa, J.Makino, H.Daisaka

No.2

Agenda

Our Problems

Recent Development of Many-core
Accelerator Systems

Our Approach to the problems
Performance evaluation
Summary

No.3

Particle Simulations

« Simulate evolution of the universe
— As a collection of particles

— Depending on scale, each particle represents
« Galaxy
o Star
 Asteroid
» Gas blob etc.

— Particles are interacting

* Mainly by gravity
— Long-range force

No.4

Numerical Modeling

» Solve ODE for many particles

D for me
S > F -7
dt S

where f is gravity, hydro force etc...

* Two main problems
— How to integrate the ODE?

No.5

Grand Challenge Problems

Hickson Compact Group 40 CISCO (J & K')

R
T he AP M G a"l a"Xy S u rvey Subaru Telescope, National Astronomical Observatory of Japan January 28, 1999

Maddox Sutherland Efstathiou & Loveday -

No.6

Grand Challenge Problems

« Simulations with very huge N

— How Is mass distributed in the Universe?
« One big run with N ~ 10°-12

— Scalable on a simple big MPP system
 Limited by memory size

* Modest N but complex physics

— Precise modeling of formation of astronomical
objects like galaxy, star, solar system.

— Need many runs with N ~ 105/

Speed of a node

Cluster Configuration

No.7

Number of nodes

No.8

Accelerator?

* A device that assist a main computer

— for speeding a specific calculation
 Cell, ClearSpeed, GPU etc.

* Many-core accelerator Is

— Parallel computer on a chip
« Difficulties raised in parallel computing applies
— Very high performance on specific tasks

— Developing so fast
e changes in mice year?

No.9

Many-core Accelerators

* Cell, ClearSpeed, GPU etc.
— have FP units as many as 32 — 1000 or more

— Number of FP units is continuously rising...
 Driven by demand for high performance gaming!
« 2 X growth with every generation (~1.5 yr or so)

Latest Cypress GPU (ATi)
1600 FP units (single precision)
Running at 850 MHz

1GB

16x PCI-E gen2

Consume ~ 200W

No.10

TOP500 List

Two systems use accelerators out of top 5 systems

224162 1759.00 2331.00

DOEMMNSALAML ; e 2 Vimltaica Imfimikand 499400 4049 00

PowerXCeiI 8I

Mational Institute for Computationa XT5H - Cray XT5-HE Opteron Six
SC Iniversity of Tennessee . GHz /2009
LInited States Cray Inc.

Forschungszentrum Juelich (FZJ JUGEME - Blue Gene/P Solution / 2009 P
Germany 1002.70

bl e e a -1 - MUDT TH-1 Cluster, Xeon

Mational SuperComputer Centerin e - o o

Tianjin/NUDT : 20, ATl Radeon HD 4870 2, 1206.19
Zhina

9

Green500 List

All top systems use accelerators

Forschungszentrum Juelich
(FZJ)

Lniversitaet Regensburg

Universitaet Wuppertal

DOEMMSALAML

IBM Poughkeepsie
Benchmarking Center

DOEMMSALAML
Mational Astronomical
Cbservatory of Japan

Mational SuperComputer
Centerin Tianjin/MUDT

King Abdullah University of
Science and Technology

ACE SFB TR Cluster, PowerkCe
GWlz, 3D-Torus

ACE SFB TR Cluster, Powerx
Gz, 30-Torus

ACE SFB TR Cluster, PowerkCe
Gz, 3D-Torus

‘B PowerXCell 8i

Gz, i nwaniu

S221L321 Cluster,

: i 3.2 Ghz/ Opteron DC 1.8
iniband

deCenter Q322/L521 Cluster,

werkCell 8i 3.2 Ghz ! Opteron DC 1.8

Gz, Voltaire Infiniband

"GRAPE-DR
"Radeon HD4870

No0.12

Using GPU is easy if...

» Use the existing library

— LINPACK relies on DGEMM
« DGEMM performance of GPU > 100 Gflops
— FFT on GPU ~ 50 Gflops (SP)

— N-body on GPU ~ 100 Gflops (DP)

* For more general problems

— Rewriting the existing code base
* Rewriting itself is not so difficult

« Optimizing it is the problem depending on a given
architecture

No.13

Architecture of Accelerators (1)

e CPU controls GPU

— Application running on CPU
running on GPU

v
n
@
E)
o
>
Ll
v
Q.

Figure 1.2 CAL System Architecture

No.14

Architecture of Accelerators (2)

GPU consists of many FP units

3 ‘mcg—
- r . E
. - g i
~ - 3 -
C - e B4
- - - - - - -»
M B -4 - - 5o - -
- . -y - - -
- - - ~‘. - - ' > 4
= s < 2 ~ - .
g - 2

——
——
u
-y~
=
|
="
i
-
]

No.15

Challenges

— Like a vector-processor but not exactly same

— Many programming models/APIs for rapidly
changing architectures

— at the local memory
« 2.7 Tflops vs. 153 GB s1

— at I/O the accelerators
* Only 16 GB s*
« External I/O In cluster configuration is more severe

Programming Many-core ™

Accelerators
* To use accelerators, need two programs
— A program running on host

— A program running on accelerators

 Example

— C for CUDA / Brook+

e Host program in C++

« Compute kernel in extended C
— Function with appropriate keyword

No.17

Programming efforts require

on how we |I/O to/from accelerators

— Mainly programming for CPU
* relatively easy

on

on

— Programming for GPU
« strongly dependent on a given architecture
« where we need to optimize

on
— no definitive answer

No0.18

GRAPE-DR (1)

B ARARALRL AR

One Chip:

512 PEs

Running at 400 MHz
8X PCI-E genl

288 MB

Consume ~ 50 W

Ranked at 445th on TOP500
Ranked at 7t on Green500

No.19

GRAPE-DR (2)

GRAPE-DR Chip <= I/O Contraller

Memory (DDR2) -t {2

X8 PCle

x4 GLink Ring

x16 PCle ‘

PC

http://kfcr.jp/

No0.20

Many-core Accelerators

 Both GRAPE-DR and R700 GPU
— DP performance > 200 GFLOPS

— Have many local registers : 72/256 words

— Resource sharing in SP and DP units

Host Computer

BB unit | Broadcast Memory

FP) [FP) [P [FP) FP) FP) FP) [FP/ALU

GRAPE-DR chip

But different In

* R700 has more complex VLIW
stream cores

 R700 has no BM

* R700 has faster memory 1/O
DR has reduction network for
efficient summation

No.21

Numerical Modeling

» Solve ODE for many particles

D for me
S > F -7
dt S

where f is gravity, hydro force etc...

* Two main problems
— How to integrate the ODE?

No0.22

A simple way to compute RHS

« Compute force summation as

for 1 = 0 to N-1
s[i] =
for j to N-1

s [1i] f(x[i], x[3])

Fig. 1. A simple nested loop to computer a general force calculation.

— Each s[i] can be computed independently

* Given i & |, each f(x[i],x[j]) can be computed
iIndependently if f() Is complex

No.23

Unrolling (vectrization)

 Parallel nature enable us to unroll the
outer-loop In n-ways

for 1 = 0 to N-1 each 4
s[1] = s[i+1l] = s[1+2] = s[1+3
for] 0 to N-1
+= f(x
+= £ fz
+= f(x
+= £ fz

1,
i+1],

i+2],
i+3],

[1
[
[
[

— Two types of variables
« X[i] and sJi] are unchanged during j-loop
* X[J] Is shared at each iteration

Optimization on GPU

for 1 = 0 to N-1
accl[1i] = 0
for j = 0 to N-1 ~ 300 GﬂOpS

acc([i] += £(x[1], xI[j])

for 1 = 0 to N-1 each 4
accl[i] = accl[i+l] = acc[1+2] = accl[i1+3] = 0

1+2]
1+4+3]

accC
accCc

E ﬁ ﬁ ~ 500 Gflops
[| .
I

N-1 each 4
accl[i] = accli+l] = acc[i1+2] = accl[i1+3] = 0
for j = 0 to N-1 each 4

~ 700 Gflops

No.25

Performance of O(N?) algorithm

On a recent GPU

4870 ——
4850
5870
4770
5870 opt

GFLOPS

1 1
100000 150000
M

No.26

Our Compller

— R700/R800 architecture GPU

— GRAPE-DR
* Developed by J.Makino etal.

— Single, Double, & Quadruple precision
* QP through DD emulation techniques
— Partially support mixed precision

No.27

Our programming model

 User write a source in DSL such as

LMEM x1i,
BMEM x7j,
EMEM ax,

2
¥

e

= X]J
dy = V7]
= z]

Bk
™~

I = rsqrt (dx**2 + dy**2 + dzx*x2 + e2);
= mj*rli**3;

ax += afxdx;
ay += afxdy;
+= atf*dz;

— Our compiler generates optimized machine
code for GPU / GRAPE-DR

No0.28

Comparison

« Our approach is in between two
conventional approaches

— Automatic parallel compiler
« A user just feed an existing source code
 But not effective in general

— Let-users-do-everything-type compiler
« C for CUDA, OpenCL, Brook+ etc.

« A user have to specify every details of
— Memory layout and its movement
— SIMD operations
— Threads management on GPU

No.29

Detalls of our compiler

o Written in C++
— Prototype was developed in Ruby

* We use following software/library
— Boost sprit for the parser
— Low Level Virtual Machine for the optimizer

— Google template library for the code
generators

No0.30

Compiler work flow

Source code =) -) source.llvm
[DR code gen.] — opt lvm ¢ -

!

source.vsm [GPU code gen

! !

1 l(device driver)

micro code for DR VLIW instructions for RV770
http://galaxy.u-aizu.ac.jp/trac/note/

No.31

Example 1 : N-body

« Simple softened gravity

LMEM xi, vi,

BMEM x7j, Y],
RMEM ax, ay,

Xj - xi;
yi - vyi;
zj - zi;

rli = rsgrt(dx**2 + dy**2 + dz**x2 + e2);
af = mj*xrlix«3;

¢ += afxdx;
+= af*dy;
+= afxdz;

No0.32

Example 2: Feynman-loop integral

1 l—x l—r—vy
/ d.r / dy / dzF(x,y.z).
0 J0 J0
D(x.y.)2

—arys —tz(l —ox —y—2z) + (v + L’)Xz

+(l—ax—y—2z)(1—x— UJ”?E
+2(1 —x — y)mr?o. (2)

LMEM xx, yy, cnt4;

BMEM x30_1, gw30;

RMEM res;

CONST tt, ramda, fme, fmf, s, one;

zz = x30_1*cnt4;

d = -xx*yy*s-tt*zz*(one-xx-yy-zz)+(xx+yy)*ramda**2 +
(one-xx-yy-zz)*(one-xx-yy)*fme**2+zz*(one-xx-yy)*fmf**2;

res += gw30/d**2;

No.33

QD operations on GPU

* We have implemented so-called DD
emulation scheme on GPU&GRAPE-DR

— QD variable Is expressed as summation of
two double precision variables

— QD operations are emulated with DP
operations

 Practical performance is more than 30 times
slower on Core i7 CPU

No0.34

Performance of QP operations

« Computation of Feynman-loop integral
— elapsed time in QP operations

GRAPE-DR

BRVTTO

- CPU ~ 80 Mflops
— R700 GPU ~
— GRAPE-DR ~ 2.67 — 5.46 Gflops

* Tow reasons why QP is so fast

— High compute density
— DR & R700 are register rich

No.35

Development of QP arithmetic units

QP emulation is not efficient
— A factor of 20 performance penalty
— Power consumption

* |f we have a dedicated QP unit
— should be faster and energy efficient
— but no commercial demand (yet)

We investigated a prototype of accelerator with
QP arithmetic units

No0.36

Status of Project

* We have implemented QP arithmetic units
— Designed for Feynman integrals
— 116 bit for mantissa, 11 bit for exponent
— Add & Mul & inverse sqgrt units
— Implemented by VHDL

inst(63) adr(8) wr(64)

No.37

Summary

* |s a many-core accelerator is effective for

— Massively parallel problems :
« Monte-calro on million phase space points

— O(N?) problems :
« Gravity, Feynman integrals

— O(N°) problems :
« Matrix multiply (DGEMM)

— O(N log N) & O(N) problems
« Generally it is not easy to optimize...
— High precision operations : Yes

e Kav ic data reajice =

No0.38

Conclusion

* Many-core accelerators are effective In
problems in astronomy and physics

— But how to program it effectively?
* We have constructed a compiler for many-
core accelerators
— That accelerate force-calculation-loop
— Features simplicity and controllable precision
* Planed Extension
— Support O(N log N) method on GPU

