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Particle Simulations

• Simulate evolution of the universe

– As a collection of particles

– Depending on scale, each particle represents 

• Galaxy 

• Star

• Asteroid

• Gas blob etc.

– Particles are interacting

• Mainly by gravity

– Long-range force
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Numerical Modeling

• Solve ODE for many particles

where f is gravity, hydro force etc…

• Two main problems

– How to integrate the ODE?

– How to compute RHS of ODE?

• We will use accelerators for this part
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Grand Challenge Problems
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Grand Challenge Problems

• Simulations with very huge N

– How is mass distributed in the Universe?

• One big run with N ~ 109-12

– Scalable on a simple big MPP system

• Limited by memory size

• Modest N but complex physics

– Precise modeling of formation of astronomical 

objects like galaxy, star, solar system.

– Need many runs with N ~ 106-7
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Cluster Configuration

Number of  nodes
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Big MPP cluster

for Large N problems

Cluster with accelerators

for Modest N problems
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Accelerator?

• A device that assist a main computer

– for speeding a specific calculation

• Cell, ClearSpeed, GPU etc.

• Many-core accelerator is

– Parallel computer on a chip

• Difficulties raised in parallel computing applies

– Very high performance on specific tasks

– Developing so fast

• changes in mice year?
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Many-core Accelerators

• Cell, ClearSpeed, GPU etc.

– have FP units as many as 32 – 1000 or more

– Number of FP units is continuously rising…

• Driven by demand for high performance gaming!

• 2 x growth with every generation (~1.5 yr or so)

Latest Cypress GPU (ATi)

1600 FP units (single precision)

Running at 850 MHz

1 GB

16x PCI-E gen2

Consume ~ 200W
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TOP500 List
Two systems use accelerators out of top 5 systems

PowerXCell 8i

Radeon HD4870
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Green500 List
All top systems use accelerators

PowerXCell 8i

GRAPE-DR

Radeon HD4870
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Using GPU is easy if…

• Use the existing library 

– LINPACK relies on DGEMM 

• DGEMM performance of GPU > 100 Gflops

– FFT on GPU ~ 50 Gflops (SP)

– N-body on GPU ~ 100 Gflops (DP)

• For more general problems

– Rewriting the existing code base

• Rewriting itself is not so difficult 

• Optimizing it is the problem depending on a given 

architecture
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Architecture of Accelerators (1)

• CPU controls GPU

– Application running on CPU

– kernel running on GPU
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Architecture of Accelerators (2)

GPU consists of many FP units
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Challenges

• How to program many-core systems?

– Like a vector-processor but not exactly same

– Many programming models/APIs for rapidly 

changing architectures

• Memory wall

– at the local memory

• 2.7 Tflops vs. 153 GB s-1

– at I/O the accelerators

• Only 16 GB s-1

• External I/O in cluster configuration is more severe
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Accelerators
• To use accelerators, need two programs

– A program running on host

– A program running on accelerators

• Compute kernel

• Example

– C for CUDA / Brook+

• Host program in C++

• Compute kernel in extended C

– Function with appropriate keyword

– Separate source code
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Programming efforts require

• on how we I/O to/from accelerators

– Mainly programming for CPU 

• relatively easy

• on how we use FP units

• on how we use internal memories

– Programming for GPU

• strongly dependent on a given architecture

• where we need to optimize

• on how we program a cluster of GPU

– no definitive answer



No.18

GRAPE-DR (1)

Ranked at 445th on TOP500

Ranked at 7th on Green500

One Chip:

512 PEs

Running at 400 MHz

8x PCI-E gen1

288 MB

Consume ~ 50 W
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GRAPE-DR (2)

http://kfcr.jp/

http://kfcr.jp/
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Many-core Accelerators

• Both GRAPE-DR and R700 GPU

– DP performance > 200 GFLOPS

– Have many local registers : 72/256 words

– Resource sharing in SP and DP units 

But different in 

• R700 has more complex VLIW 

stream cores

• R700 has no BM

• R700 has faster memory I/O

•DR has reduction network for 

efficient summation
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Numerical Modeling

• Solve ODE for many particles

where f is gravity, hydro force etc…

• Two main problems

– How to integrate the ODE?

– How to compute RHS of ODE?

• We will use accelerators for this part
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A simple way to compute RHS

• Compute force summation as

– Each s[i] can be computed independently

• Massively parallel if N is large

• Given i & j, each f(x[i],x[j]) can be computed 

independently if f() is complex   
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Unrolling (vectrization)

• Parallel nature enable us to unroll the 

outer-loop in n-ways 

– Two types of variables

• x[i] and s[i] are unchanged during j-loop

• x[j] is shared at each iteration

– Map computation for each x[i] to PE on 

accelerators
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Optimization on GPU

~ 300 Gflops

~ 500 Gflops

~ 700 Gflops
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Performance of O(N2) algorithm

On a recent GPU ~ 1.3 Tflops
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Our Compiler 

• Accelerates force summation loop

• Support two accelerators

– R700/R800 architecture GPU

– GRAPE-DR

• Developed by J.Makino etal. 

• Precision controllable

– Single, Double, & Quadruple precision

• QP through DD emulation techniques

– Partially support mixed precision
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Our programming model

• User write a source in DSL such as

– Our compiler generates optimized machine 

code for GPU / GRAPE-DR 
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Comparison

• Our approach is in between two 

conventional approaches

– Automatic parallel compiler

• A user just feed an existing source code

• But not effective in general

– Let-users-do-everything-type compiler

• C for CUDA, OpenCL, Brook+ etc.

• A user have to specify every details of

– Memory layout and its movement

– SIMD operations

– Threads management on GPU
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Details of our compiler

• Written in C++

– Prototype was developed in Ruby

• We use following software/library

– Boost sprit for the parser

– Low Level Virtual Machine for the optimizer

– Google template library for the code 

generators



No.30

Source code source.llvm

LLVM code 

optimizer

frontend 

opt.llvmDR code gen.

source.vsm GPU code gen.

DR assembler

micro code for DR

source.il RV770 code gen.

VLIW instructions for RV770

Compiler work flow

(device driver)

http://galaxy.u-aizu.ac.jp/trac/note/
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Example 1 : N-body

• Simple softened gravity
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Example 2: Feynman-loop integral

LMEM  xx, yy, cnt4;
BMEM  x30_1, gw30;
RMEM  res;
CONST tt, ramda, fme, fmf, s, one;

zz = x30_1*cnt4;
d = -xx*yy*s-tt*zz*(one-xx-yy-zz)+(xx+yy)*ramda**2 + 

(one-xx-yy-zz)*(one-xx-yy)*fme**2+zz*(one-xx-yy)*fmf**2;
res += gw30/d**2;
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QD operations on GPU

• We have implemented so-called DD 

emulation scheme on GPU&GRAPE-DR

– QD variable is expressed as summation of 

two double precision variables

– QD operations are emulated with DP 

operations

• At least 20 times slower performance 

• Practical performance is more than 30 times 

slower on Core i7 CPU
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Performance of QP operations

• Computation of Feynman-loop integral

– elapsed time in QP operations

– CPU            ~ 80 Mflops

– R700 GPU  ~ 6.43 – 7.57 Gflops

– GRAPE-DR ~ 2.67 – 5.46 Gflops

• Tow reasons why QP is so fast 

– High compute density

– DR & R700 are register rich



No.35

Development of QP arithmetic units

• QP emulation is not efficient

– A factor of 20 performance penalty

– Power consumption

• If we have a dedicated QP unit

– should be faster and energy efficient

– but no commercial demand (yet)

We investigated a prototype of accelerator with 

QP arithmetic units
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Status of Project

• We have implemented QP arithmetic units

– Designed for Feynman integrals

– 116 bit for mantissa, 11 bit for exponent

– Add & Mul & inverse sqrt units

– Implemented by VHDL
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Summary

• Is a many-core accelerator is effective for

– Massively parallel problems : YES

• Monte-calro on million phase space points

– O(N2) problems : YES

• Gravity, Feynman integrals

– O(N1.5) problems : Yes

• Matrix multiply (DGEMM)

– O(N log N) & O(N) problems

• Generally it is not easy to optimize…

– High precision operations : Yes

• Key is data reuse = high compute density
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Conclusion

• Many-core accelerators are effective in 

problems in astronomy and physics 

– But how to program it effectively?

• We have constructed a compiler for many-

core accelerators

– That accelerate force-calculation-loop

– Features simplicity and controllable precision

• Planed Extension

– Support O(N log N) method on GPU


