
Application of Many-core

Accelerators for Problems in

Astronomy and Physics

N.Nakasato (University of Aizu, Japan)
in collaboration with

F.Yuasa, T.Ishikawa, J.Makino, H.Daisaka

No.2

Agenda

• Our Problems

• Recent Development of Many-core

Accelerator Systems

• Our Approach to the problems

• Performance evaluation

• Summary

No.3

Particle Simulations

• Simulate evolution of the universe

– As a collection of particles

– Depending on scale, each particle represents

• Galaxy

• Star

• Asteroid

• Gas blob etc.

– Particles are interacting

• Mainly by gravity

– Long-range force

No.4

Numerical Modeling

• Solve ODE for many particles

where f is gravity, hydro force etc…

• Two main problems

– How to integrate the ODE?

– How to compute RHS of ODE?

• We will use accelerators for this part





N

j

ji
i rrf

dt

vd

1

)(


No.5

Grand Challenge Problems

No.6

Grand Challenge Problems

• Simulations with very huge N

– How is mass distributed in the Universe?

• One big run with N ~ 109-12

– Scalable on a simple big MPP system

• Limited by memory size

• Modest N but complex physics

– Precise modeling of formation of astronomical

objects like galaxy, star, solar system.

– Need many runs with N ~ 106-7

No.7

Cluster Configuration

Number of nodes

S
p

ee
d

 o
f

a
 n

o
d

e

Big MPP cluster

for Large N problems

Cluster with accelerators

for Modest N problems

No.8

Accelerator?

• A device that assist a main computer

– for speeding a specific calculation

• Cell, ClearSpeed, GPU etc.

• Many-core accelerator is

– Parallel computer on a chip

• Difficulties raised in parallel computing applies

– Very high performance on specific tasks

– Developing so fast

• changes in mice year?

No.9

Many-core Accelerators

• Cell, ClearSpeed, GPU etc.

– have FP units as many as 32 – 1000 or more

– Number of FP units is continuously rising…

• Driven by demand for high performance gaming!

• 2 x growth with every generation (~1.5 yr or so)

Latest Cypress GPU (ATi)

1600 FP units (single precision)

Running at 850 MHz

1 GB

16x PCI-E gen2

Consume ~ 200W

No.10

TOP500 List
Two systems use accelerators out of top 5 systems

PowerXCell 8i

Radeon HD4870

No.11

Green500 List
All top systems use accelerators

PowerXCell 8i

GRAPE-DR

Radeon HD4870

No.12

Using GPU is easy if…

• Use the existing library

– LINPACK relies on DGEMM

• DGEMM performance of GPU > 100 Gflops

– FFT on GPU ~ 50 Gflops (SP)

– N-body on GPU ~ 100 Gflops (DP)

• For more general problems

– Rewriting the existing code base

• Rewriting itself is not so difficult

• Optimizing it is the problem depending on a given

architecture

No.13

Architecture of Accelerators (1)

• CPU controls GPU

– Application running on CPU

– kernel running on GPU

No.14

Architecture of Accelerators (2)

GPU consists of many FP units

No.15

Challenges

• How to program many-core systems?

– Like a vector-processor but not exactly same

– Many programming models/APIs for rapidly

changing architectures

• Memory wall

– at the local memory

• 2.7 Tflops vs. 153 GB s-1

– at I/O the accelerators

• Only 16 GB s-1

• External I/O in cluster configuration is more severe

No.16Programming Many-core

Accelerators
• To use accelerators, need two programs

– A program running on host

– A program running on accelerators

• Compute kernel

• Example

– C for CUDA / Brook+

• Host program in C++

• Compute kernel in extended C

– Function with appropriate keyword

– Separate source code

No.17

Programming efforts require

• on how we I/O to/from accelerators

– Mainly programming for CPU

• relatively easy

• on how we use FP units

• on how we use internal memories

– Programming for GPU

• strongly dependent on a given architecture

• where we need to optimize

• on how we program a cluster of GPU

– no definitive answer

No.18

GRAPE-DR (1)

Ranked at 445th on TOP500

Ranked at 7th on Green500

One Chip:

512 PEs

Running at 400 MHz

8x PCI-E gen1

288 MB

Consume ~ 50 W

No.19

GRAPE-DR (2)

http://kfcr.jp/

http://kfcr.jp/

No.20

Many-core Accelerators

• Both GRAPE-DR and R700 GPU

– DP performance > 200 GFLOPS

– Have many local registers : 72/256 words

– Resource sharing in SP and DP units

But different in

• R700 has more complex VLIW

stream cores

• R700 has no BM

• R700 has faster memory I/O

•DR has reduction network for

efficient summation

No.21

Numerical Modeling

• Solve ODE for many particles

where f is gravity, hydro force etc…

• Two main problems

– How to integrate the ODE?

– How to compute RHS of ODE?

• We will use accelerators for this part





N

j

ji
i rrf

dt

vd

1

)(


No.22

A simple way to compute RHS

• Compute force summation as

– Each s[i] can be computed independently

• Massively parallel if N is large

• Given i & j, each f(x[i],x[j]) can be computed

independently if f() is complex

No.23

Unrolling (vectrization)

• Parallel nature enable us to unroll the

outer-loop in n-ways

– Two types of variables

• x[i] and s[i] are unchanged during j-loop

• x[j] is shared at each iteration

– Map computation for each x[i] to PE on

accelerators

No.24

Optimization on GPU

~ 300 Gflops

~ 500 Gflops

~ 700 Gflops

No.25

Performance of O(N2) algorithm

On a recent GPU ~ 1.3 Tflops

No.26

Our Compiler

• Accelerates force summation loop

• Support two accelerators

– R700/R800 architecture GPU

– GRAPE-DR

• Developed by J.Makino etal.

• Precision controllable

– Single, Double, & Quadruple precision

• QP through DD emulation techniques

– Partially support mixed precision

No.27

Our programming model

• User write a source in DSL such as

– Our compiler generates optimized machine

code for GPU / GRAPE-DR

No.28

Comparison

• Our approach is in between two

conventional approaches

– Automatic parallel compiler

• A user just feed an existing source code

• But not effective in general

– Let-users-do-everything-type compiler

• C for CUDA, OpenCL, Brook+ etc.

• A user have to specify every details of

– Memory layout and its movement

– SIMD operations

– Threads management on GPU

No.29

Details of our compiler

• Written in C++

– Prototype was developed in Ruby

• We use following software/library

– Boost sprit for the parser

– Low Level Virtual Machine for the optimizer

– Google template library for the code

generators

No.30

Source code source.llvm

LLVM code

optimizer

frontend

opt.llvmDR code gen.

source.vsm GPU code gen.

DR assembler

micro code for DR

source.il RV770 code gen.

VLIW instructions for RV770

Compiler work flow

(device driver)

http://galaxy.u-aizu.ac.jp/trac/note/

No.31

Example 1 : N-body

• Simple softened gravity

No.32

Example 2: Feynman-loop integral

LMEM xx, yy, cnt4;
BMEM x30_1, gw30;
RMEM res;
CONST tt, ramda, fme, fmf, s, one;

zz = x30_1*cnt4;
d = -xx*yy*s-tt*zz*(one-xx-yy-zz)+(xx+yy)*ramda**2 +

(one-xx-yy-zz)*(one-xx-yy)*fme**2+zz*(one-xx-yy)*fmf**2;
res += gw30/d**2;

No.33

QD operations on GPU

• We have implemented so-called DD

emulation scheme on GPU&GRAPE-DR

– QD variable is expressed as summation of

two double precision variables

– QD operations are emulated with DP

operations

• At least 20 times slower performance

• Practical performance is more than 30 times

slower on Core i7 CPU

No.34

Performance of QP operations

• Computation of Feynman-loop integral

– elapsed time in QP operations

– CPU ~ 80 Mflops

– R700 GPU ~ 6.43 – 7.57 Gflops

– GRAPE-DR ~ 2.67 – 5.46 Gflops

• Tow reasons why QP is so fast

– High compute density

– DR & R700 are register rich

No.35

Development of QP arithmetic units

• QP emulation is not efficient

– A factor of 20 performance penalty

– Power consumption

• If we have a dedicated QP unit

– should be faster and energy efficient

– but no commercial demand (yet)

We investigated a prototype of accelerator with

QP arithmetic units

No.36

Status of Project

• We have implemented QP arithmetic units

– Designed for Feynman integrals

– 116 bit for mantissa, 11 bit for exponent

– Add & Mul & inverse sqrt units

– Implemented by VHDL

No.37

Summary

• Is a many-core accelerator is effective for

– Massively parallel problems : YES

• Monte-calro on million phase space points

– O(N2) problems : YES

• Gravity, Feynman integrals

– O(N1.5) problems : Yes

• Matrix multiply (DGEMM)

– O(N log N) & O(N) problems

• Generally it is not easy to optimize…

– High precision operations : Yes

• Key is data reuse = high compute density

No.38

Conclusion

• Many-core accelerators are effective in

problems in astronomy and physics

– But how to program it effectively?

• We have constructed a compiler for many-

core accelerators

– That accelerate force-calculation-loop

– Features simplicity and controllable precision

• Planed Extension

– Support O(N log N) method on GPU

