ACAT 2010

Contribution ID: 128 Type: Plenary

Application of Many-core Accelerators for Problems
in Astronomy and Physics

Friday 26 February 2010 10:40 (40 minutes)

Recently, many-core accelerators are developing so fast that the computing devices attract researchers who
are always demanding faster computers. Since many-core accelerators such as graphic processing unit (GPU)
are nothing but parallel computers, we need to modify an existing application program with specific optimiza-
tions (mostly parallelization) for a given accelerator.

In this paper, we describe our problem-specific compiler system for many-core accelerators, specifically, GPU
and GRAPE-DR. GRAPE-DR is another many-core accelerators device that is specially targeted scientific ap-
plications.

In our compiler, we focus a compute intensive problem expressed as two-nested loop.Recently, many-core
accelerators are developing so fast that the computing devices attract researchers who are always demanding
faster computers.

Since many-core accelerators such as graphic processing unit (GPU) are nothing but parallel computers, we
need to modify an existing application program with specific optimizations (mostly parallelization) for a given
accelerator.

In this paper, we describe our problem-specific compiler system for many-core accelerators, specifically, GPU
and GRAPE-DR. GRAPE-DR is another many-core accelerators device that is specially targeted scientific ap-
plications.

In our compiler, we focus a compute intensive problem expressed as two-nested loop. Our compiler ask a
user to write computations in the inner-most loop. All details related to parallelization and optimization tech-
niques for a given accelerator are hidden from the user point of view. Our compiler successfully generates
the fastest code ever for astronomical N-body simulations with the performance of 2600 GFLOPS (single pre-
cision) on a recent GPU.

However, this code that simply uses a brute-force O(N2) algorithm is not practically useful for a system with
N > 100, 000. For more lager system, we need a sophisticated O(NNlogN) force evaluation algorithm, e.g.,
the oct-tree method. We also report our implementation of the oct-tree method on GPU. We successfully
run a simulation of structure formation in the universe very efficiently using the oct-tree method. Another
successful application on both GPU and GRAPE-DR is the evaluation of a multi-dimensional integral with
quadruple precision. The program generated by our compiler runs at a speed of 5 - 7 GFLOPS on GPU and 3
- 5 on GRAPE-DR.

This computation speed is more than 50 times faster than a general purpose CPU.Recently, many-core acceler-
ators are developing so fast that the computing devices attract researchers who are always demanding faster
computers. Since many-core accelerators such as graphic processing unit (GPU) are nothing but parallel com-
puters, we need to modify an existing application program with specific optimizations (mostly parallelization)
for a given accelerator.

In this paper, we describe our problem-specific compiler system for many-core accelerators, specifically, GPU
and GRAPE-DR. GRAPE-DR is another many-core accelerators device that is specially targeted scientific ap-
plications.

In our compiler, we focus a compute intensive problem expressed as two-nested loop. Our compiler ask a
user to write computations in the inner-most loop.

All details related to parallelization and optimization techniques for a given accelerator are hidden from the
user point of view. Our compiler successfully generates the fastest code ever for astronomical N-body simu-
lations with the performance of 2600 GFLOPS (single precision) on a recent GPU.

However, this code that simply uses a brute-force O(N2) algorithm is not practically useful for a system with
N > 100, 000. For more lager system, we need a sophisticated O(NlogN) force evaluation algorithm, e.g.,
the oct-tree method.

We also report our implementation of the oct-tree method on GPU. We successfully run a simulation of struc-
ture formation in the universe very efficiently using the oct-tree method. Another successful application on
both GPU and GRAPE-DR is the evaluation of a multi-dimensional integral with quadruple precision. The
program generated by our compiler runs at a speed of 5 - 7 GFLOPS on GPU and 3 - 5 on GRAPE-DR. This
computation speed is more than 50 times faster than a general purpose CPU.



Our compiler ask a user to write computations in the inner-most loop.

All details related to parallelization and optimization techniques for a given accelerator are hidden from the
user point of view.

Our compiler successfully generates the fastest code ever for astronomical N-body simulations with the per-
formance of 2600 GFLOPS (single precision) on a recent GPU.

However, this code that simply uses a brute-force O(N2) algorithm is not practically useful for a system with
N > 100, 000. For more lager system, we need a sophisticated O(NlogN) force evaluation algorithm, e.g.,
the oct-tree method. We also report our implementation of the oct-tree method on GPU. We successfully
run a simulation of structure formation in the universe very efficiently using the oct-tree method. Another
successful application on both GPU and GRAPE-DR is the evaluation of a multi-dimensional integral with
quadruple precision.

The program generated by our compiler runs at a speed of 5 - 7 GFLOPS on GPU and 3 - 5 on GRAPE-DR.
This computation speed is more than 50 times faster than a general purpose CPU.

Author: NAKASATO, Naohito (University of Aizu)
Presenter: NAKASATO, Naohito (University of Aizu)

Session Classification: Friday, 26 February - Plenary Session

Track Classification: Methodology of Computations in Theoretical Physics



