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Iterated integration

Integration over a product region D = D1 × . . . ×D`,

Integral

If =

∫

D1

d~x (1) . . .

∫

D`

d~x (`) f (~x (1), . . . , ~x (`)),

implemented recursively using lower-dimensional code across
successive groups of dimensions, j = 1, . . . , `.

E.g., standard 1D integration code (such as DQAGE from
Quadpack[5]) can be used for 1D levels; or a combination of 1D
and multivariate methods (such as DCUHRE [1]) across levels.
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Adaptive recursion levels

Algorithm at each recursion level

Evaluate initial region & update results
Initialize priority queue to empty
while (evaluation limit not reached

and estimated error too large)
Retrieve region from priority queue
Split region
Evaluate subregions & update results
Insert subregions into priority queue

Example

Figure:
∫ 1

0 dx
∫ 1

0 dy 2αy
(x+y−1)2+α

2 =
∫ 1

0 dx
[

∫ 1
0 dy 2αy

(x+y−1)2+α
2

]
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Recursive vs. standard multivariate integration
∫ 1

0 dx
∫ 1

0 dy 2αy
(x+y−1)2+α2 , α = 10−p

DQAGE × DQAGE DCUHRE

p ABS. ERR. # EVAL. ABS. ERR. # EVAL.
1 0.00e+00 21255 2.06e-12 144165
2 2.40e-13 93135 5.96e-12 1998675
3 3.49e-13 208035 1.37e-12 21040551
4 1.58e-13 388125 8.04e-12 99999963
5 4.49e-13 561585 4.40e-07 99999963
6 1.69e-09 527205 3.38e-02 99999963
7 1.42e-10 686745 1.99e+00 99999963
8 3.94e-10 902145 3.04e+00 99999963
9 3.20e-08 106965 3.13e+00 99999963
10 4.32e-09 1964385 3.14e+00 99999963
11 1.87e-01 58651365 3.14e+00 99999963

Recursive box and vertex integrations for one-loop hexagon reductions
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Remarks

The 2D integrand function has a ridge of height 2(1 − x)/α
along y = 1 − x , which causes an increasingly difficult
anomaly as the ridge becomes higher and steeper (with
increasing p).

The performance of DCUHRE deteriorates rapidly for p > 4,
with respect to accuracy and the number of subdivisions
needed.

With respect to memory use, for the maximum allowed
number of function evaluations of maxpts = 100 million, the
maximum number of regions that can be generated by
successive bisections is 2,380,952 (using the integration
rule of degree 7 with 21 points per region), and the work
space for storing and managing the region collection
needs to be for at least 19,047,634 doubles.
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Remarks

In comparison, the corresponding number of intervals for
each direction of the 1D×1D recursive integration with
DQAGE×DQAGE, allowing 104 evaluations in each
coordinate direction (for 108 in 2D), is about 333 intervals
(using the 15-point Gauss-Kronrod rules). This requires
the space of about 1,500 doubles in 1D (for 2D, at most
3,000 doubles need to be in memory at any one time).
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The integrals need to be obtained in the limit as a
parameter → 0.

Methods for extrapolation to the limit S of a sequence S(ε),
as ε → 0, rely on the existence of an asymptotic expansion

S(ε) ∼ S + a1ϕ1(ε) + a2ϕ2(ε) + . . .

Given a sequence {S(ε`)}, an extrapolation is performed
to create sequences that convergence faster than the
original sequence.
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Linear extrapolation

A linear extrapolation method solves (implicitly or
explicitly [3]) linear systems of the form

S(ε`) = c0 + c1ϕ1(ε`) + . . . cνϕν(ε`), ` = 0, . . . , ν;

i.e., systems of order (ν + 1) × (ν + 1) in unknowns
c0, . . . , cν are solved for increasing values of ν.

The coefficients ϕk (ε`) need to be known explicitly in order
to apply this method.

The computation for ϕk (ε) = εk can be carried out
recursively using Richardson extrapolation [4].

Recursive box and vertex integrations for one-loop hexagon reductions
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Non-linear extrapolation

As an example of a non-linear extrapolation method, the
ε-algorithm [6, 7] implements a sequence-to-sequence
transformation recursively;

can be applied if the ϕ functions are of the form

ϕk (ε) = εβk logνk (ε),

and if a geometric sequence is used for ε;

but the actual form of the underlying ε-dependency does
not need to be specified.
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Non-linear extrapolation

ε-algorithm table

τ00

0 τ01

τ10 τ02

0 τ11 . . .
. . . . . .
. . . . . .

0 τκ−1,1 . . .
τκ0 τκ−1,2

0 τκ1

τκ+1,0

With original sequence
Sκ, for κ = 0, 1, . . . :

τκ,−1 = 0

τκ0 = Sκ

τκ,λ+1 = τκ+1,λ+1 +
1

τκ+1,λ − τκλ

Recursive box and vertex integrations for one-loop hexagon reductions
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Example extrapolation

I(α)f =
∫ 1

0 dx1
∫ 1

0 dx2
2αx2

(x1+x2−1)2+α2 = 2 arctan 1
α −α log(1+ 1

α2 )

Extrapolation table

p Q(10−p)f
0 0.877649149
1 2.480743286 3.315088757
2 3.029488916 3.146268404 3.141547464
3 3.125777143 3.141849664 3.141592605 3.141592651
4 3.139550588 3.141610354 3.141592651 3.141592657
5 3.141342396 3.141594001 3.141592656
6 3.141563021 3.141592765
7 3.141589231

Recursive box and vertex integrations for one-loop hexagon reductions
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Brief overview from Binoth et al. [2]

Representation:

In
N =

∫

dnk
iπn/2

1
∏N

`=1((k − r`)2 − m2
` )

with external momenta pj and r` =
∑`

j=1 pj .

The n-dimensional hexagon, pentagon and box functions
(N = 6, 5, 4) are expressed in terms of n-dimensional
triangle and n + 2-dimensional box functions.

In non-exceptional kinematic conditions, N-point functions
with N ≥ 6 can be expressed in terms of pentagon
functions.

Recursive box and vertex integrations for one-loop hexagon reductions
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Reduction overview

Reduction

In
N =

∑N
κ=1 BκIN−1,κ + (N − n − 1) det(G)

det(S) In+2
N , det(S) 6= 0,

G is the Gram matrix, rank(G) = min{4, N − 1} and
Bκ = −∑N

λ=1 S−1
κλ ,

Sκλ = −(rλ − rκ)2 + m2
λ + m2

κ, 1 ≤ κ, λ ≤ N

hexagon In
6 = lin. combination of six pentagon In

5 functions,
pentagon In

5 = lin. combination of five box In
4 fncs. + O(ε),

box In
4 = lin. combination of four triangle In

3 and a box In+2
4

Infrared singularities show up in the box and triangle
functions through poles in 1

ε = 2
4−n and can be handled

through sector decomposition.

Recursive box and vertex integrations for one-loop hexagon reductions
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Triangle functions

Through sector decomposition, In
3 is split into three sector

functions Sn
Tri and

S4
Tri(s1, s2, s3, m2

1, m2
2, m2

3) =
∫ 1

0 dt1dt2 1
1+t1+t2

1
At2

2 +Bt2+C+iδ

where A, B and C are constant, linear and quadratic
functions in t1, respectively, and R = B2 − 4AC − iδ.

Binoth et al. evaluate the inner integral analytically and use
DQAGS from Quadpack for the outer integration. The
integrand has

√
R and logarithmic singularities.

We find that we can efficiently compute the 1D×1D inner
and outer integrals numerically; we used DQAGE

recursively. See plots of inner 1D integrand evaluations for
Sn=4

Tri (6, 4, 1, 1, 1, 1) and Sn=4
Tri (10, 4, 5

2 , 1, 1, 1) (matching
the analytic calculation).

Recursive box and vertex integrations for one-loop hexagon reductions
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Plots of inner 1D integrand evaluations

Figure: Inner integrand evaluation by DQAGE for Sn=4
Tri (6, 4, 1, 1, 1, 1)
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Plots of inner 1D integrand evaluations

Figure: Inner integrand evaluation by DQAGE for Sn=4
Tri (10, 4, 5

2 , 1, 1, 1)
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Sample program of 1D×1D outer integrand function
double precision function fx(x)
implicit real*8(a-h,o-z)
parameter(nw = 1000)
dimension alist(nw),blist(nw),elist(nw),rlist(nw),iord(nw)
common/wrk/epsa,epsr,lim,keyy
common/limits/ay,by
common/args/xx
common/flags/iflagy
external fy
epsabs = epsa
epsrel = epsr
limit = lim
xx = x

C Integration in y direction
call dqagey(fy,ay,by,epsabs,epsrel,keyy,limit,result,abserr,neval,

* ier,alist,blist,rlist,elist,iord,last)
if(ier.ne.0) iflagy = iflagy+1
fx = result
return
endRecursive box and vertex integrations for one-loop hexagon reductions
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Sample program of 1D×1D inner integrand function

double precision function fy(y)
implicit real*8(a-h,o-z)
common/pars/eps,sqeps,dm1,dm2,dm3,s1,s2,s3
common/args/xx
common/icnt/dkount
dkount = dkount+1.d0
aa = dm2
bb = (dm1+dm2-s2)*xx+dm2+dm3-s3
cc = dm1*xx*xx+(dm1+dm3-s1)*xx+dm3
d = aa*y*y+bb*y+cc
denom = d*d+sqeps

C Real part
C fy = d/denom/(1+xx+y)
C Imaginary part

fy = -eps/denom/(1+xx+y)
return
end
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Box functions

Recall,
box In

4 = lin. combination of four triangle In
3 and box In+2

4 .

In+2
4 is split into four sector integrals of the form Sn+2

Box ;

Sn=6
Box (s12, s23, s1, s2, s3, s4, m2

1, m2
2, m2

3, m2
4)

=
∫ 1

0 dt1dt2dt3 1
(1+t1+t2+t3)2

1
At2

2 +Bt2+C−iδ

where A, B and C are constant, linear and quadratic
functions in t1, t2 and R = B2 − 4AC + iδ.

Binoth et al. evaluate the inner integral analytically and use
DCUHRE [1] for the outer 2D integration.
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Box functions

The analytic integrand evaluation has a complicated
singularity structure and the 2D integration is probematic.
Binoth et al. combine the numeric integration by DCUHRE

with a Monte-Carlo integration in the vicinity of singular
behavior.

It is mentioned that DCUHRE was used with a workspace
limit of 350MB to allow a maximum of 1.5 109 2D function
evaluations.

We find that we can efficiently compute the 3D integral
recursively with DQAGE from Quadpack [5] as a
1D×1D×1D integral.
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Conclusions

It was shown that recursive numerical integration and
extrapolation can be used (as efficient computational
building blocks) to perform the reduction numerically, down
from the level of box and triangle integrals.
An n − d pentagon function is split into five n − d box
functions;
each of those into four n − d triangle functions and an
(n + 2) − d box function.
Thus the n − d pentagon is split into 20 n − d triangle
functions (10 different ones through symmetry) and five
(n + 2) − d box functions.
The n − d hexagon is split into 20 n − d triangle functions
and 15 (n + 2) − d box functions. We evaluated these
pieces numerically even in the presence of singularities in
the interior of the integration domain.

Recursive box and vertex integrations for one-loop hexagon reductions
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Conclusions

The current strategy needs improvements, e.g., with
respect to accuracy control (e.g., automatic adjusting of
the number of extrapolations for required accuracy).

Separating infinite and finite parts in case of IR
divergences can be incorporated in a transparent way; is
also being done by other authors.

The integration method is suited to handling non-scalar
cases numerically in a flexible manner.
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