Automated Computation of One-Loop Amplitudes with the OPP Method

Giovanni Ossola

New York City College of Technology City University of New York (CUNY)

ACAT 2010

13th International Workshop on Advanced Computing and Analysis Techniques in Physics Research Jaipur, India – February 22-27, 2010

Giovanni Ossola (City Tech)

OPP Reduction

LHC started its operation

The experimental collaborations will collect data at 7 GeV for 2 years The theorist are in full "production mode"

- Year 2007-08 Refining Methods
- Year 2009 Calculations for the LHC
- Year 2010 ???

ACAT 2010 – Workshop on Advanced Computing and Analysis Techniques in Physics Research

- My talk will be about Algorithms and Techniques -

- **1** MOTIVATION & INTRODUCTION
- 2 The OPP Algorithm
- **3** Implementation of the Method
- **4** NUMERICAL TESTS

LHC NEEDS NLO

- The problem of an efficient and automated computation of scattering amplitudes for one-loop multi-leg processes is crucial for the analysis of the LHC data.
- The OPP method is an important building block towards a fully automated implementation of this type of calculations.
- I will discuss the ongoing efforts to target important issues such as stability, versatility and efficiency of the method.

Many thanks to:

Roberto Pittau, Costas Papadopoulos, Andreas van Hameren, Pierpaolo Mastrolia, Thomas Binoth, Michal Czakon, Stefano Actis, Francesco Tramontano, Thomas Reiter Problems arising in NLO calculations:

- Large Number of Feynman diagrams
- Reduction to Scalar Integrals (or sets of known integrals)
- Numerical Instabilities (inverse Gram determinants, spurious phase-space singularities)
- We need regularization the integrals are divergent in 4 dimensions
- Extraction of soft and collinear singularities (we need to combine virtual and real corrections)

Numerical

fully numerical integration over "q"

Improved Tensorial Reduction (improved PV) algebraic reduction to a set of known integrals

Denner, Dittmaier at al. GOLEM collaboration Zeppenfeld et al. several talks at ACAT 2010

Unitarity-based Approach

direct extraction of the coefficients of a set of known integrals

see plenary talk of Maitre

State-of-the-art on $2 \rightarrow 4$

 $pp \rightarrow W+$ 3 jets

Berger et al

Blackhat + Sherpa

Ellis, Melnikov, Zanderighi

Rocket

 $pp
ightarrow t \overline{t} b \overline{b}$

Bredenstein, Denner, Dittmaier, Pozzorini

 "traditional" approach, tensorial reduction

 Bevilacqua, Czakon, Papadopoulos, Pittau, Worek

 CutTools + Helac1loop + Dipoles

Several methods/codes "available on the market"

Giovanni Ossola (City Tech)

OPP Reduction

State-of-the-art on $2\to 4$

Several methods/codes "available on the market"

Giovanni Ossola (City Tech)

OPP Reduction

Three years ago (Sept.2006), we proposed a new method for the numerical evaluation of scattering amplitudes, based on a decomposition at the **integrand level**.

Some of the advantages:

- Universal applicable to any process
- Simple based on basic algebraic properties
- Automatizable easy to implement in a computer code

Three years ago (Sept.2006), we proposed a new method for the numerical evaluation of scattering amplitudes, based on a decomposition at the **integrand level**.

Some of the advantages:

- Universal applicable to any process
- Simple based on basic algebraic properties
- Automatizable easy to implement in a computer code

Three years ago (Sept.2006), we proposed a new method for the numerical evaluation of scattering amplitudes, based on a decomposition at the **integrand level**.

Some of the advantages:

- Universal applicable to any process
- Simple based on basic algebraic properties
- Automatizable easy to implement in a computer code

FINAL TASK

Produce a MULTI-PROCESS fully automatized NLO generator

"Standing on the shoulders of giants"

1 Passarino-Veltman Reduction to Scalar Integrals

$$\mathcal{M} = \sum_{i} d_{i} \operatorname{Box}_{i} + \sum_{i} c_{i} \operatorname{Triangle}_{i}$$

$$+ \sum_{i} b_{i} \operatorname{Bubble}_{i} + \sum_{i} a_{i} \operatorname{Tadpole}_{i} + \operatorname{R},$$

- Set the basis for our NLO calculations
- Exploits the Lorentz structure

2 Pittau/del Aguila Recursive Tensorial Reduction

- Express $q^{\mu} = \sum_{i} G_{i} \ell_{i}^{\mu}$, $\ell_{i}^{2} = 0$
- The generated terms might reconstruct denominators D_i or vanish upon integration
- Cut-based" Techniques (Bern, Dixon, Dunbar, Kosower in '94) direct extraction of the coefficients of the scalar integral

Pigmaei gigantum humeris impositi plusquam ipsi gigantes vident

One-loop – **Definitions**

Any *m*-point one-loop amplitude can be written, before integration, as

$$A(ar{q}) = rac{N(ar{q})}{ar{D}_0ar{D}_1\cdotsar{D}_{m-1}}$$

where

$$ar{D}_i = (ar{q} + p_i)^2 - m_i^2$$
 , $ar{q}^2 = q^2 + ar{q}^2$, $ar{D}_i = D_i + ar{q}^2$

Our task is to calculate, for each phase space point:

$$\mathcal{M} = \int d^n \bar{q} \ \mathcal{A}(\bar{q}) = \int d^n \bar{q} \frac{\mathcal{N}(\bar{q})}{\bar{D}_0 \bar{D}_1 \dots \bar{D}_{m-1}}$$

THE TRADITIONAL "MASTER" FORMULA

$$\int A = \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} d(i_0 i_1 i_2 i_3) \int \frac{1}{\bar{D}_{i_0} \bar{D}_{i_1} \bar{D}_{i_2} \bar{D}_{i_3}} \\ + \sum_{i_0 < i_1 < i_2}^{m-1} c(i_0 i_1 i_2) \int \frac{1}{\bar{D}_{i_0} \bar{D}_{i_1} \bar{D}_{i_2}} \\ + \sum_{i_0 < i_1}^{m-1} b(i_0 i_1) \int \frac{1}{\bar{D}_{i_0} \bar{D}_{i_1}} \\ + \sum_{i_0}^{m-1} a(i_0) \int \frac{1}{\bar{D}_{i_0}} \\ + \text{ rational terms}$$

Problem: we want to calculate

 $\int dx \frac{N(x)}{x^4}$

Problem: we want to calculate

$$\int dx \frac{N(x)}{x^4}$$

We know that N(x) has a polynomial structure

 $N(x) = a + b x + c x^2$

Problem: we want to calculate

$$\int dx \frac{N(x)}{x^4}$$

We know that N(x) has a polynomial structure

 $N(x) = a + b x + c x^2$

From the numerical values of N(x) in 3 points, we can determine a, b and c!

Problem: we want to calculate

$$\int dx \frac{N(x)}{x^4}$$

We know that N(x) has a polynomial structure

$$N(x) = a + b x + c x^2$$

From the numerical values of N(x) in 3 points, we can determine a, b and c! Example: if N(0) = 3, N(1) = 10, N(-1) = 4 then a = 3, b = 3, c = 4 Problem: we want to calculate

$$\int dx \frac{N(x)}{x^4}$$

We know that N(x) has a polynomial structure

$$N(x) = a + b x + c x^2$$

From the numerical values of N(x) in 3 points, we can determine a, b and c! Example: if N(0) = 3, N(1) = 10, N(-1) = 4 then a = 3, b = 3, c = 4So we can calculate

$$\int dx \frac{N(x)}{x^4} = a \int dx \frac{1}{x^4} + b \int dx \frac{1}{x^3} + c \int dx \frac{1}{x^2}$$

where our "master integrals" are

$$\int dx \frac{1}{x^n}$$

Problem: we want to calculate

$$\int dx \frac{N(x)}{x^4}$$

We know that N(x) has a polynomial structure

$$N(x) = a + b x + c x^2$$

From the numerical values of N(x) in 3 points, we can determine a, b and c! Example: if N(0) = 3, N(1) = 10, N(-1) = 4 then a = 3, b = 3, c = 4So we can calculate

$$\int dx \frac{N(x)}{x^4} = a \int dx \frac{1}{x^4} + b \int dx \frac{1}{x^3} + c \int dx \frac{1}{x^2}$$

where our "master integrals" are

$$\int dx \ \frac{1}{x^n}$$

What is the "polynomial" structure of N(q) for one-loop amplitudes??

OPP "MASTER" FORMULA - I

General expression for the 4-dim N(q) at the integrand level in terms of D_i

$$\begin{split} \mathcal{N}(q) &= \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] \prod_{i \neq i_0, i_1, i_2, i_3}^{m-1} D_i \\ &+ \sum_{i_0 < i_1 < i_2}^{m-1} \left[c(i_0 i_1 i_2) + \tilde{c}(q; i_0 i_1 i_2) \right] \prod_{i \neq i_0, i_1, i_2}^{m-1} D_i \\ &+ \sum_{i_0 < i_1}^{m-1} \left[b(i_0 i_1) + \tilde{b}(q; i_0 i_1) \right] \prod_{i \neq i_0, i_1}^{m-1} D_i \\ &+ \sum_{i_0}^{m-1} \left[a(i_0) + \tilde{a}(q; i_0) \right] \prod_{i \neq i_0}^{m-1} D_i \end{split}$$

This is 4-dimensional Identity

Giovanni Ossola (City Tech)

OPP Reduction

- the recepy is not unique -

Following F. del Aguila and R. Pittau, arXiv:hep-ph/0404120Express any q in N(q) as

$$q^{\mu} = -p_0^{\mu} + \sum_{i=1}^4 G_i \, \ell_i^{\mu} \, , \, \, \ell_i^2 = 0$$

$$k_{1} = \ell_{1} + \alpha_{1}\ell_{2}, \quad k_{2} = \ell_{2} + \alpha_{2}\ell_{1}, \quad k_{i} = p_{i} - p_{0}$$
$$\ell_{3}^{\mu} = <\ell_{1}|\gamma^{\mu}|\ell_{2}], \quad \ell_{4}^{\mu} = <\ell_{2}|\gamma^{\mu}|\ell_{1}]$$

The resulting terms G_i either reconstruct denominators D_i or vanish upon integration

 \rightarrow They give rise to *d*, *c*, *b*, *a* coefficients \rightarrow They form the spurious \tilde{d} , \tilde{c} , \tilde{b} , \tilde{a} coefficients • $\tilde{d}(q)$ term (only 1)

$$\tilde{d}(q) = \tilde{d} T(q),$$

where \tilde{d} is a constant (does not depend on q)

$$T(q) \equiv Tr[(\not q + \not p_0) \not l_1 \not l_2 \not k_3 \gamma_5]$$

• $\tilde{c}(q)$ terms (they are 6)

$$ilde{c}(q) = \sum_{j=1}^{j_{max}} \left\{ ilde{c}_{1j} [(q+p_0) \cdot \ell_3]^j + ilde{c}_{2j} [(q+p_0) \cdot \ell_4]^j
ight\}$$

In the renormalizable gauge, $j_{max} = 3$ **\tilde{b}(q)** and $\tilde{a}(q)$ give rise to 8 and 4 terms, respectively

OPP "MASTER" FORMULA - II

$$\begin{split} \mathcal{N}(q) &= \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[d(i_0i_1i_2i_3) + \tilde{d}(q;i_0i_1i_2i_3) \right] \prod_{i \neq i_0, i_1, i_2, i_3}^{m-1} D_i + \sum_{i_0 < i_1 < i_2}^{m-1} \left[c(i_0i_1i_2) + \tilde{c}(q;i_0i_1i_2) \right] \prod_{i \neq i_0, i_1, i_2}^{m-1} D_i \\ &+ \sum_{i_0 < i_1}^{m-1} \left[b(i_0i_1) + \tilde{b}(q;i_0i_1) \right] \prod_{i \neq i_0, i_1}^{m-1} D_i + \sum_{i_0}^{m-1} \left[a(i_0) + \tilde{a}(q;i_0) \right] \prod_{i \neq i_0}^{m-1} D_i \end{split}$$

The quantities d, c, b, a are the coefficients of all possible scalar functions The quantities \tilde{d} , \tilde{c} , \tilde{b} , \tilde{a} are the "spurious" terms \rightarrow vanish upon integration

IT IS NOW AN ALGEBRAIC PROBLEM:

Any N(q) just depends on a set of coefficients, to be determined!

OPP "MASTER" FORMULA - II

$$\begin{split} \mathcal{N}(q) &= \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[d(i_0i_1i_2i_3) + \tilde{d}(q;i_0i_1i_2i_3) \right] \prod_{i \neq i_0, i_1, i_2, i_3}^{m-1} D_i + \sum_{i_0 < i_1 < i_2}^{m-1} \left[c(i_0i_1i_2) + \tilde{c}(q;i_0i_1i_2) \right] \prod_{i \neq i_0, i_1, i_2}^{m-1} D_i \\ &+ \sum_{i_0 < i_1}^{m-1} \left[b(i_0i_1) + \tilde{b}(q;i_0i_1) \right] \prod_{i \neq i_0, i_1}^{m-1} D_i + \sum_{i_0}^{m-1} \left[a(i_0) + \tilde{a}(q;i_0) \right] \prod_{i \neq i_0}^{m-1} D_i \end{split}$$

The quantities d, c, b, a are the coefficients of all possible scalar functions The quantities \tilde{d} , \tilde{c} , \tilde{b} , \tilde{a} are the "spurious" terms \rightarrow vanish upon integration

IT IS NOW AN ALGEBRAIC PROBLEM:

Any N(q) just depends on a set of coefficients, to be determined!

CHOOSE $\{q_i\}$ WISELY

by evaluating N(q) for a set of values of the integration momentum $\{q_i\}$ such that some denominators D_i vanish ("cuts")

$$\begin{split} \mathcal{N}(q) &= d + \tilde{d}(q) + \sum_{i=0}^{3} \left[c(i) + \tilde{c}(q;i) \right] D_{i} + \sum_{i_{0} < i_{1}}^{3} \left[b(i_{0}i_{1}) + \tilde{b}(q;i_{0}i_{1}) \right] D_{i_{0}} D_{i_{1}} \\ &+ \sum_{i_{0}=0}^{3} \left[a(i_{0}) + \tilde{a}(q;i_{0}) \right] D_{i \neq i_{0}} D_{j \neq i_{0}} D_{k \neq i_{0}} \end{split}$$

We look for a q such that

$$D_0 = D_1 = D_2 = D_3 = 0$$

 \rightarrow there are two solutions q_0^{\pm}

$$N(q) = d + \tilde{d}(q)$$

Our "master formula" for $q = q_0^{\pm}$ is:

 $N(q_0^{\pm}) = [d + \tilde{d} T(q_0^{\pm})]$

ightarrow solve to extract the coefficients d and $ilde{d}$

$$\begin{split} \mathcal{N}(q) - d - \tilde{d}(q) &= \sum_{i=0}^{3} \left[c(i) + \tilde{c}(q;i) \right] D_{i} + \sum_{i_{0} < i_{1}}^{3} \left[b(i_{0}i_{1}) + \tilde{b}(q;i_{0}i_{1}) \right] D_{i_{0}} D_{i_{1}} \\ &+ \sum_{i_{0}=0}^{3} \left[a(i_{0}) + \tilde{a}(q;i_{0}) \right] D_{i \neq i_{0}} D_{j \neq i_{0}} D_{k \neq i_{0}} \end{split}$$

Then we can move to the extraction of *c* coefficients using

$$N'(q) = N(q) - d - \tilde{d}T(q)$$

and setting to zero three denominators (ex: $D_1 = 0$, $D_2 = 0$, $D_3 = 0$)

$N(q) - d - \tilde{d}(q) = [c(0) + \tilde{c}(q; 0)] D_0$

We have infinite values of q for which

$$D_1 = D_2 = D_3 = 0$$
 and $D_0 \neq 0$

 \rightarrow Here we need 7 of them to determine c(0) and $\tilde{c}(q; 0)$

• We find the decomposition for N(q)

$$N(q) = \ldots + \frac{c_2}{D_2} + \ldots$$

• We find the decomposition for N(q), divide by the denominators

$$\frac{N(q)}{\bar{D}_0\bar{D}_1\bar{D}_2\bar{D}_3}=\ldots+\frac{c_2D_2}{\bar{D}_0\bar{D}_1\bar{D}_2\bar{D}_3}+\ldots$$

• We find the decomposition for N(q), divide by the denominators and finally integrate over q

$$\int \frac{N(q)}{\overline{D}_0 \overline{D}_1 \overline{D}_2 \overline{D}_3} = \ldots + \int \frac{c_2 D_2}{\overline{D}_0 \overline{D}_1 \overline{D}_2 \overline{D}_3} + \ldots$$

We find the decomposition for N(q), divide by the denominators and finally integrate over q

$$\int \frac{N(q)}{\bar{D}_0 \bar{D}_1 \bar{D}_2 \bar{D}_3} = \ldots + \int \frac{c_2 \bar{D}_2}{\bar{D}_0 \bar{D}_1 \bar{D}_2 \bar{D}_3} + \ldots$$

• We have a mismatch \rightarrow this is the origin of R_1

We find the decomposition for N(q), divide by the denominators and finally integrate over q

$$\int \frac{N(q)}{\bar{D}_0 \bar{D}_1 \bar{D}_2 \bar{D}_3} = \ldots + \int \frac{c_2 \bar{D}_2}{\bar{D}_0 \bar{D}_1 \bar{D}_2 \bar{D}_3} + \ldots$$

• We have a mismatch \rightarrow this is the origin of R_1

$$\frac{D_2}{\bar{D}_2} = \left(1 - \frac{\tilde{q}^2}{\bar{D}_2}\right) \equiv \bar{Z}_2$$

We find the decomposition for N(q), divide by the denominators and finally integrate over q

$$\int \frac{N(q)}{\bar{D}_0 \bar{D}_1 \bar{D}_2 \bar{D}_3} = \ldots + \int \frac{c_2 \bar{D}_2}{\bar{D}_0 \bar{D}_1 \bar{D}_2 \bar{D}_3} + \ldots$$

• We have a mismatch \rightarrow this is the origin of R_1

$$\frac{D_2}{\bar{D}_2} = \left(1 - \frac{\tilde{q}^2}{\bar{D}_2}\right) \equiv \bar{Z}_2$$

• Using the expression for \bar{Z}_2

$$\int \frac{N(q)}{\bar{D}_0 \bar{D}_1 \bar{D}_2 \bar{D}_3} = \dots + \int \frac{c_2}{\bar{D}_0 \bar{D}_1 \bar{D}_3} + \int \frac{c_2 \tilde{q}^2}{\bar{D}_0 \bar{D}_1 \bar{D}_2 \bar{D}_3} + \dots$$

"Extra Integrals" for R_1

The "Extra Integrals" are of the form

$$I_{s;\mu_1\cdots\mu_r}^{(n;2\ell)} \equiv \int d^n q \, \tilde{q}^{2\ell} \frac{q_{\mu_1}\cdots q_{\mu_r}}{\bar{D}(k_0)\cdots \bar{D}(k_s)},$$

where

$$ar{D}(k_i) \equiv (ar{q} + k_i)^2 - m_i^2, k_i = p_i - p_0$$

These integrals:

- have dimensionality $\mathcal{D} = 2(1 + \ell s) + r$
- contribute only when $\mathcal{D} \geq 0$, otherwise are of $\mathcal{O}(\epsilon)$

Pittau – arXiv:hep-ph/0406105 G.O., Papadopoulos, Pittau – arXiv:0802.1876

FROM 4 TO N (PART II - NUMERATORS)

What if N(q) develops an ϵ -dimensional part?

Algebra of Dirac matrices

(
$$ar{q}.p$$
) is 4-dim but ($ar{q}.ar{q}$) = $q^2 + ilde{q}^2$

 $\overline{N}(\overline{q})$ can be split into a 4-dim plus a ϵ -dimensional part

 $ar{N}(ar{q}) = N(q) + ar{N}(ar{q}^2, q, \epsilon)$

 $ilde{\mathsf{N}}(ilde{\mathsf{q}}^2, {m{q}}, \epsilon)$ is responsible for the rational term R_2

A practical solution: tree-level like Feynman Rules

General idea and QED: G. O., Papadopoulos, Pittau - arXiv:0802.1876 Rules for QCD: Draggiotis, Garzelli, Papadopoulos, Pittau - arXiv:0903.0356 Full Standard Model: Garzelli, Malamos, Pittau - arXiv:0910.3130

$$R = R_1 + R_2$$

 R_1 – The OPP expansion is written in terms of 4-dim D_i , while *n*-dim \overline{D}_i appear in scalar integrals.

$$A(ar{q}) = rac{N(q)}{ar{D}_0 ar{D}_1 \cdots ar{D}_{m-1}}$$

 R_1 can be calculated in two different ways, both fully automatized.

 R_2 – The numerator $\overline{N}(\overline{q})$ can be also split into a 4-dim plus a ϵ -dim part

$$ar{N}(ar{q}) = N(q) + ar{N}(ar{q}^2, q, \epsilon)$$
.

Compute R₂ using tree-level like Feynman Rules.

- 1) Compute the numerator N(q) numerically at given q
- 2) Extract coefficients/rats with **OPP reduction**
- 3) Combine with scalar integrals

$$\mathcal{M} = \sum_{i} d_{i} \operatorname{Box}_{i} + \sum_{i} c_{i} \operatorname{Triangle}_{i} \\ + \sum_{i} b_{i} \operatorname{Bubble}_{i} + \sum_{i} a_{i} \operatorname{Tadpole}_{i} + \mathbb{R},$$

ONE-LOOP AS A 3 STEP PROCESS

- 1) Compute the numerator N(q) numerically at given q
- 2) Extract coefficients/rats with **OPP reduction**
- 3) Combine with scalar integrals [OneLOop/QCDloop]

$$\mathcal{M} = \sum_{i} d_{i} \operatorname{Box}_{i} + \sum_{i} c_{i} \operatorname{Triangle}_{i} \\ + \sum_{i} b_{i} \operatorname{Bubble}_{i} + \sum_{i} a_{i} \operatorname{Tadpole}_{i} + \operatorname{R},$$

- 1) Compute the numerator N(q) numerically at given q
- 2) Extract coefficients/rats with **OPP reduction** [CutTools]
- 3) Combine with scalar integrals [OneLOop/QCDloop]

$$\mathcal{M} = \sum_{i} d_{i} \operatorname{Box}_{i} + \sum_{i} c_{i} \operatorname{Triangle}_{i} \\ + \sum_{i} b_{i} \operatorname{Bubble}_{i} + \sum_{i} a_{i} \operatorname{Tadpole}_{i} + \operatorname{R},$$

To extract all coefficients d, c, b, and a we ONLY need to evaluate numerator N(q) numerically at fixed given values of q.

INTERMEZZO: CutTools

```
http://www.ugr.es/~pittau/CutTools/
```

Initialization

- Choose or generate a phase-space point
- Define denominators D_i: momenta and masses

Calculation of the Amplitude

- Write a routine that numerically evaluates N(q) at any given q
- Use **CutTools** to extract all coefficients + R_1
- The calculation of the scalar integrals (via OneLOop or QCDloop) is incorporated
- Add R₂ as tree-level construction

Repeat for a new PS point

CutTools is available (and public!)

- Tree-Level Construction of N(q) at fixed q

After fixing the integration momentum q, any n-point one-loop amplitude is an (n + 2)-point tree level amplitude

- HELAC-1L reconstructs the one-loop amplitude as a tree-order calculation
- One-Loop Algebraic Construction of N(q)
 - Produce analytic expressions for the one-loop numerators (Qgraf, FORM, ...)
 - Group numerators with similar structure (optimize their expressions)
 - Automatically feed the output to the reduction code

The aim is to detect numerically unstable points before using them

- **1** Tests on the reconstruction \rightarrow "N = N" **test**
- 2 **Double** precision vs **Multiple** precision
- **3** Complete cancellation of UV and IR poles
- **4 Stability test** on "special" configurations

Tests 1, 2, and 3 are universal (process-independent)

The $N \equiv N$ test

Our "master" formula again!

$$\begin{split} \mathcal{N}(q) &= \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] \prod_{i \neq i_0, i_1, i_2, i_3}^{m-1} D_i \\ &+ \sum_{i_0 < i_1 < i_2}^{m-1} \left[c(i_0 i_1 i_2) + \tilde{c}(q; i_0 i_1 i_2) \right] \prod_{i \neq i_0, i_1, i_2}^{m-1} D_i \\ &+ \sum_{i_0 < i_1}^{m-1} \left[b(i_0 i_1) + \tilde{b}(q; i_0 i_1) \right] \prod_{i \neq i_0, i_1}^{m-1} D_i \\ &+ \sum_{i_0}^{m-1} \left[a(i_0) + \tilde{a}(q; i_0) \right] \prod_{i \neq i_0}^{m-1} D_i \end{split}$$

After determining all coefficients \rightarrow this should hold for any q

Giovanni Ossola (City Tech)

OPP Reduction

february 2010 26 / 29

CHECK UV AND IR POLES

Example for $e^-e^+
ightarrow e^-e^+\gamma$

S. Actis, P. Mastrolia, and G. O. - arXiv:0909.1750

Output of our FORTRAN code at a given phase space point

$$\mathcal{I}_{\rm NLO}^{\rm V}(\mathcal{CC}_4 + \mathcal{R}) = +\frac{1}{\epsilon} 4.74506427003505 \cdot 10^{-2} + \dots \\
\mathcal{I}_{\rm NLO}^{\rm V}(\mathcal{UV}_{ct}) = -\frac{1}{\epsilon} 5.28634805094576 \cdot 10^{-3} + \dots \\
\mathcal{I}_{\rm NLO}^{\rm V} = +\frac{1}{\epsilon} 4.21642946494047 \cdot 10^{-2} + \dots$$

- Results are expressed in GeV⁻²
- All numbers have been obtained working in double precision

CHECK UV AND IR POLES

Example for $e^-e^+
ightarrow e^-e^+\gamma$

S. Actis, P. Mastrolia, and G. O. - arXiv:0909.1750

Output of our FORTRAN code at a given phase space point Test on the UV and IR poles!

$$\begin{aligned} \mathcal{I}_{\rm NLO}^{\rm V}(\mathcal{CC}_4 + \mathcal{R}) &= +\frac{1}{\epsilon} 4.74506427003505 \cdot 10^{-2} + \dots \\ \mathcal{I}_{\rm NLO}^{\rm V}(\mathcal{UV}_{ct}) &= -\frac{1}{\epsilon} 5.28634805094576 \cdot 10^{-3} + \dots \\ \mathcal{I}_{\rm NLO}^{\rm V} &= +\frac{1}{\epsilon} 4.21642946494047 \cdot 10^{-2} + \dots \\ \mathcal{I}_{\rm NLO}^{\rm R} &= -\frac{1}{\epsilon} 4.21642946495863 \cdot 10^{-2} + \dots \end{aligned}$$

Results are expressed in GeV⁻²

All numbers have been obtained working in double precision

Giovanni Ossola (City Tech)

STABILITY TEST ON quasi-collinear CONFIGURATION

Example for $e^-e^+ \rightarrow \mu^-\mu^+\gamma$ Virtual part $\mathcal{I}_{\text{NLO}}^{\text{V}}$ as a function of the energy E_- of the outgoing muon: the muon is (almost) parallel or antiparallel to the photon momentum

There are no istabilities (work done in double precision)

OPP Reduction

CONCLUSIONS

LHC requires NLO calculations!

- One-loop calculations are in fast evolution
- OPP is a now a solid method (and widely used!)
- Full automatization is under way (fast!!)

CONCLUSIONS

LHC requires NLO calculations!

- One-loop calculations are in fast evolution
- OPP is a now a solid method (and widely used!)
- Full automatization is under way (fast!!)

(what is still left to do??)

- New Codes
- Efficiency, Precision, and Stability
- Phenomenology New processes for the LHC

- work in progress -

