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February 2010

LHC started its operation
The experimental collaborations will collect data at 7 GeV for 2 years

The theorist are in full “production mode”

Year 2007-08 Refining Methods

Year 2009 Calculations for the LHC

Year 2010 ???

ACAT 2010 – Workshop on Advanced Computing and Analysis
Techniques in Physics Research

– My talk will be about Algorithms and Techniques –
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LHC needs NLO

The problem of an efficient and automated computation of scattering
amplitudes for one-loop multi-leg processes is crucial for the analysis
of the LHC data.

The OPP method is an important building block towards a fully
automated implementation of this type of calculations.

I will discuss the ongoing efforts to target important issues such as
stability, versatility and efficiency of the method.

Many thanks to:

Roberto Pittau, Costas Papadopoulos, Andreas van Hameren,

Pierpaolo Mastrolia, Thomas Binoth, Michal Czakon,

Stefano Actis, Francesco Tramontano, Thomas Reiter
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NLO troubles

Problems arising in NLO calculations:

Large Number of Feynman diagrams

Reduction to Scalar Integrals (or sets of known integrals)

Numerical Instabilities (inverse Gram determinants, spurious
phase-space singularities)

We need regularization – the integrals are divergent in 4 dimensions

Extraction of soft and collinear singularities (we need to combine
virtual and real corrections)
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Different Approaches

Numerical
fully numerical integration over “q”

Improved Tensorial Reduction (improved PV)
algebraic reduction to a set of known integrals

Denner, Dittmaier at al.
GOLEM collaboration

Zeppenfeld et al.
several talks at ACAT 2010

Unitarity-based Approach
direct extraction of the coefficients of a set of known integrals

see plenary talk of Maitre
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State-of-the-art on 2 → 4

pp → W + 3 jets

Berger et al

Blackhat + Sherpa

Ellis, Melnikov, Zanderighi

Rocket

pp → tt̄bb̄

Bredenstein, Denner, Dittmaier, Pozzorini

“traditional” approach, tensorial reduction

Bevilacqua, Czakon, Papadopoulos, Pittau, Worek

CutTools + Helac1loop + Dipoles

Several methods/codes “available on the market”
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State-of-the-art on 2 → 4

pp → W + 3 jets

Berger et al

Blackhat + Sherpa

Ellis, Melnikov, Zanderighi

Rocket

pp → tt̄bb̄

Bredenstein, Denner, Dittmaier, Pozzorini

“traditional” approach, tensorial reduction

Bevilacqua, Czakon, Papadopoulos, Pittau, Worek

CutTools + Helac1loop + Dipoles

Several methods/codes “available on the market”

NEW – arXiv:1002.4009

pp → tt̄ + 2 jets
Bevilacqua, Czakon, Papadopoulos, Worek
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OPP Method

Three years ago (Sept.2006), we proposed a new method for the numerical
evaluation of scattering amplitudes, based on a decomposition at the
integrand level.

Some of the advantages:

Universal - applicable to any process

Simple - based on basic algebraic properties

Automatizable - easy to implement in a computer code
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OPP Method

Three years ago (Sept.2006), we proposed a new method for the numerical
evaluation of scattering amplitudes, based on a decomposition at the
integrand level.

Some of the advantages:

Universal - applicable to any process

Simple - based on basic algebraic properties

Automatizable - easy to implement in a computer code

Final Task

Produce a MULTI-PROCESS fully automatized NLO generator
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“Standing on the shoulders of giants”

1 Passarino-Veltman Reduction to Scalar Integrals

M =
∑

i

di Boxi +
∑

i

ci Trianglei

+
∑

i

bi Bubblei +
∑

i

ai Tadpolei + R ,

Set the basis for our NLO calculations
Exploits the Lorentz structure

2 Pittau/del Aguila Recursive Tensorial Reduction
Express qµ =

∑

i Gi ℓi
µ , ℓi

2 = 0
The generated terms might reconstruct denominators Di

or vanish upon integration

3 “Cut-based” Techniques (Bern, Dixon, Dunbar, Kosower in ’94)
direct extraction of the coefficients of the scalar integral

Pigmaei gigantum humeris impositi plusquam ipsi gigantes vident
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One-loop – Definitions

Any m-point one-loop amplitude can be written, before integration, as

A(q̄) =
N(q̄)

D̄0D̄1 · · · D̄m−1

where

D̄i = (q̄ + pi )
2 − m2

i , q̄2 = q2 + q̃2 , D̄i = Di + q̃2

Our task is to calculate, for each phase space point:

M =

∫

dnq̄ A(q̄) =

∫

dnq̄
N(q̄)

D̄0D̄1 . . . D̄m−1
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The traditional “master” formula

∫

A =

m−1
∑

i0<i1<i2<i3

d(i0i1i2i3)

∫

1

D̄i0D̄i1D̄i2D̄i3

+

m−1
∑

i0<i1<i2

c(i0i1i2)

∫

1

D̄i0D̄i1D̄i2

+
m−1
∑

i0<i1

b(i0i1)

∫

1

D̄i0D̄i1

+
m−1
∑

i0

a(i0)

∫

1

D̄i0

+ rational terms
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The algebraic cartoon of “OPP integration”

Problem: we want to calculate
∫

dx
N(x)

x4
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The algebraic cartoon of “OPP integration”

Problem: we want to calculate
∫
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The algebraic cartoon of “OPP integration”

Problem: we want to calculate
∫

dx
N(x)

x4

We know that N(x) has a polynomial structure

N(x) = a + b x + c x2

From the numerical values of N(x) in 3 points, we can determine a, b and c!

Example: if N(0) = 3, N(1) = 10, N(−1) = 4 then a = 3, b = 3, c = 4
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The algebraic cartoon of “OPP integration”

Problem: we want to calculate
∫

dx
N(x)

x4

We know that N(x) has a polynomial structure

N(x) = a + b x + c x2

From the numerical values of N(x) in 3 points, we can determine a, b and c!

Example: if N(0) = 3, N(1) = 10, N(−1) = 4 then a = 3, b = 3, c = 4

So we can calculate
∫

dx
N(x)

x4
= a

∫

dx
1

x4
+ b

∫

dx
1

x3
+ c

∫

dx
1

x2

where our “master integrals” are
∫

dx
1

xn
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The algebraic cartoon of “OPP integration”

Problem: we want to calculate
∫

dx
N(x)

x4

We know that N(x) has a polynomial structure

N(x) = a + b x + c x2

From the numerical values of N(x) in 3 points, we can determine a, b and c!

Example: if N(0) = 3, N(1) = 10, N(−1) = 4 then a = 3, b = 3, c = 4

So we can calculate
∫

dx
N(x)

x4
= a

∫

dx
1

x4
+ b

∫

dx
1

x3
+ c

∫

dx
1

x2

where our “master integrals” are
∫

dx
1

xn

What is the “polynomial” structure of N(q) for one-loop amplitudes??
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OPP “master” formula - I

General expression for the 4-dim N(q) at the integrand level in terms of Di

N(q) =

m−1
∑

i0<i1<i2<i3

[

d(i0i1i2i3) + d̃(q; i0i1i2i3)
]

m−1
∏

i 6=i0,i1,i2,i3

Di

+

m−1
∑

i0<i1<i2

[c(i0i1i2) + c̃(q; i0i1i2)]

m−1
∏

i 6=i0,i1,i2

Di

+

m−1
∑

i0<i1

[

b(i0i1) + b̃(q; i0i1)
]

m−1
∏

i 6=i0,i1

Di

+

m−1
∑

i0

[a(i0) + ã(q; i0)]

m−1
∏

i 6=i0

Di

This is 4-dimensional Identity
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Spurious Terms - I

– the recepy is not unique –

Following F. del Aguila and R. Pittau, arXiv:hep-ph/0404120

Express any q in N(q) as

qµ = −p
µ
0 +

∑4
i=1 Gi ℓ

µ
i , ℓi

2 = 0

k1 = ℓ1 + α1ℓ2 , k2 = ℓ2 + α2ℓ1 , ki = pi − p0

ℓ3
µ =< ℓ1|γ

µ|ℓ2] , ℓ4
µ =< ℓ2|γ

µ|ℓ1]

The resulting terms Gi either reconstruct denominators Di

or vanish upon integration

→ They give rise to d , c , b, a coefficients
→ They form the spurious d̃ , c̃ , b̃, ã coefficients
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Spurious Terms - II

d̃(q) term (only 1)
d̃(q) = d̃ T (q) ,

where d̃ is a constant (does not depend on q)

T (q) ≡ Tr [(/q + /p0)/ℓ1/ℓ2/k3γ5]

c̃(q) terms (they are 6)

c̃(q) =

jmax
∑

j=1

{

c̃1j [(q + p0) · ℓ3]
j + c̃2j [(q + p0) · ℓ4]

j
}

In the renormalizable gauge, jmax = 3

b̃(q) and ã(q) give rise to 8 and 4 terms, respectively
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OPP “master” formula - II

N(q) =

m−1
X

i0<i1<i2<i3

h

d(i0i1 i2 i3) + d̃(q; i0 i1 i2 i3)
i

m−1
Y

i 6=i0,i1,i2,i3

Di +

m−1
X

i0<i1<i2

[c(i0i1 i2) + c̃(q; i0 i1 i2)]

m−1
Y

i 6=i0,i1,i2

Di

+

m−1
X

i0<i1

h

b(i0i1) + b̃(q; i0 i1)
i

m−1
Y

i 6=i0,i1

Di +

m−1
X

i0

[a(i0) + ã(q; i0)]

m−1
Y

i 6=i0

Di

The quantities d , c , b, a are the coefficients of all possible scalar functions

The quantities d̃ , c̃ , b̃, ã are the “spurious” terms → vanish upon integration

It is now an algebraic problem:

Any N(q) just depends on a set of coefficients, to be determined!
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OPP “master” formula - II

N(q) =

m−1
X

i0<i1<i2<i3

h

d(i0i1 i2 i3) + d̃(q; i0 i1 i2 i3)
i

m−1
Y

i 6=i0,i1,i2,i3

Di +

m−1
X

i0<i1<i2

[c(i0i1 i2) + c̃(q; i0 i1 i2)]

m−1
Y

i 6=i0,i1,i2

Di

+

m−1
X

i0<i1

h

b(i0i1) + b̃(q; i0 i1)
i

m−1
Y

i 6=i0,i1

Di +

m−1
X

i0

[a(i0) + ã(q; i0)]

m−1
Y

i 6=i0

Di

The quantities d , c , b, a are the coefficients of all possible scalar functions

The quantities d̃ , c̃ , b̃, ã are the “spurious” terms → vanish upon integration

It is now an algebraic problem:

Any N(q) just depends on a set of coefficients, to be determined!

Choose {qi} wisely

by evaluating N(q) for a set of values of the integration momentum {qi}
such that some denominators Di vanish (“cuts”)
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Example: 4-particles process

N(q) = d + d̃(q) +

3
∑

i=0

[c(i) + c̃(q; i)]Di +

3
∑

i0<i1

[

b(i0i1) + b̃(q; i0i1)
]

Di0Di1

+

3
∑

i0=0

[a(i0) + ã(q; i0)] Di 6=i0Dj 6=i0Dk 6=i0

We look for a q such that

D0 = D1 = D2 = D3 = 0

→ there are two solutions q±
0
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Example: 4-particles process

N(q) = d + d̃(q)

Our “master formula” for q = q±
0 is:

N(q±
0 ) = [d + d̃ T (q±

0 )]

→ solve to extract the coefficients d and d̃
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Example: 4-particles process

N(q) − d − d̃(q) =

3
∑

i=0

[c(i) + c̃(q; i)]Di +

3
∑

i0<i1

[

b(i0i1) + b̃(q; i0i1)
]

Di0Di1

+

3
∑

i0=0

[a(i0) + ã(q; i0)] Di 6=i0Dj 6=i0Dk 6=i0

Then we can move to the extraction of c coefficients using

N ′(q) = N(q) − d − d̃T (q)

and setting to zero three denominators (ex: D1 = 0, D2 = 0, D3 = 0)
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Example: 4-particles process

N(q) − d − d̃(q) = [c(0) + c̃(q; 0)]D0

We have infinite values of q for which

D1 = D2 = D3 = 0 and D0 6= 0

→ Here we need 7 of them to determine c(0) and c̃(q; 0)
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From 4 to N (part I - Denominators)

We find the decomposition for N(q)

N(q) = . . . + c2D2 + . . .
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From 4 to N (part I - Denominators)

We find the decomposition for N(q), divide by the denominators

N(q)

D̄0D̄1D̄2D̄3
= . . . +

c2D2

D̄0D̄1D̄2D̄3
+ . . .
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From 4 to N (part I - Denominators)

We find the decomposition for N(q), divide by the denominators and
finally integrate over q

∫

N(q)

D̄0D̄1D̄2D̄3
= . . . +

∫

c2D2

D̄0D̄1D̄2D̄3
+ . . .
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From 4 to N (part I - Denominators)

We find the decomposition for N(q), divide by the denominators and
finally integrate over q

∫

N(q)

D̄0D̄1D̄2D̄3
= . . . +

∫

c2D2

D̄0D̄1D̄2D̄3
+ . . .

We have a mismatch → this is the origin of R1
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From 4 to N (part I - Denominators)

We find the decomposition for N(q), divide by the denominators and
finally integrate over q

∫

N(q)

D̄0D̄1D̄2D̄3
= . . . +

∫

c2D2

D̄0D̄1D̄2D̄3
+ . . .

We have a mismatch → this is the origin of R1

D2

D̄2
=

(

1 −
q̃2

D̄2

)

≡ Z̄2
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From 4 to N (part I - Denominators)

We find the decomposition for N(q), divide by the denominators and
finally integrate over q

∫

N(q)

D̄0D̄1D̄2D̄3
= . . . +

∫

c2D2

D̄0D̄1D̄2D̄3
+ . . .

We have a mismatch → this is the origin of R1

D2

D̄2
=

(

1 −
q̃2

D̄2

)

≡ Z̄2

Using the expression for Z̄2

∫

N(q)

D̄0D̄1D̄2D̄3
= . . . +

∫

c2

D̄0D̄1D̄3
+

∫

c2 q̃2

D̄0D̄1D̄2D̄3
+ . . .
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“Extra Integrals” for R1

The “Extra Integrals” are of the form

I
(n;2ℓ)
s;µ1···µr ≡

∫

dnq q̃2ℓ qµ1 · · · qµr

D̄(k0) · · · D̄(ks)
,

where
D̄(ki ) ≡ (q̄ + ki )

2 − m2
i , ki = pi − p0

These integrals:

- have dimensionality D = 2(1 + ℓ − s) + r

- contribute only when D ≥ 0, otherwise are of O(ǫ)

Pittau – arXiv:hep-ph/0406105

G.O., Papadopoulos, Pittau – arXiv:0802.1876
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From 4 to N (part II - Numerators)

What if N(q) develops an ǫ-dimensional part?

Algebra of Dirac matrices

(q̄.p) is 4-dim but (q̄.q̄) = q2 + q̃2

N̄(q̄) can be split into a 4-dim plus a ǫ-dimensional part

N̄(q̄) = N(q) + Ñ(q̃2, q, ǫ)

Ñ(q̃2, q, ǫ) is responsible for the rational term R2

A practical solution: tree-level like Feynman Rules

General idea and QED: G. O., Papadopoulos, Pittau - arXiv:0802.1876
Rules for QCD: Draggiotis, Garzelli, Papadopoulos, Pittau - arXiv:0903.0356

Full Standard Model: Garzelli, Malamos, Pittau - arXiv:0910.3130
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Overview Rational Terms

R = R1 + R2

R1 – The OPP expansion is written in terms of 4-dim Di , while n-dim D̄i

appear in scalar integrals.

A(q̄) =
N(q)

D̄0D̄1 · · · D̄m−1

R1 can be calculated in two different ways, both fully automatized.

R2 – The numerator N̄(q̄) can be also split into a 4-dim plus a ǫ-dim part

N̄(q̄) = N(q) + Ñ(q̃2, q, ǫ) .

Compute R2 using tree-level like Feynman Rules.
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One-Loop as a 3 step process

1) Compute the numerator N(q) numerically at given q

2) Extract coefficients/rats with OPP reduction

3) Combine with scalar integrals

M =
∑

i

di Boxi +
∑

i

ci Trianglei

+
∑

i

bi Bubblei +
∑

i

ai Tadpolei + R ,
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One-Loop as a 3 step process

1) Compute the numerator N(q) numerically at given q

2) Extract coefficients/rats with OPP reduction

3) Combine with scalar integrals [OneLOop/QCDloop]

M =
∑

i

di Boxi +
∑

i

ci Trianglei

+
∑

i

bi Bubblei +
∑

i

ai Tadpolei + R ,
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One-Loop as a 3 step process

1) Compute the numerator N(q) numerically at given q

2) Extract coefficients/rats with OPP reduction [CutTools]

3) Combine with scalar integrals [OneLOop/QCDloop]

M =
∑

i

di Boxi +
∑

i

ci Trianglei

+
∑

i

bi Bubblei +
∑

i

ai Tadpolei + R ,

To extract all coefficients d , c , b, and a we ONLY need to evaluate
numerator N(q) numerically at fixed given values of q.
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Intermezzo: CutTools

http://www.ugr.es/∼pittau/CutTools/

Initialization

- Choose or generate a phase-space point
- Define denominators Di : momenta and masses

Calculation of the Amplitude

- Write a routine that numerically evaluates N(q) at any given q

- Use CutTools to extract all coefficients + R1

- The calculation of the scalar integrals (via OneLOop or QCDloop) is
incorporated

- Add R2 as tree-level construction

Repeat for a new PS point

CutTools is available (and public!)
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Numerators N(q)

- Tree-Level Construction of N(q) at fixed q

After fixing the integration momentum q, any n-point one-loop
amplitude is an (n + 2)-point tree level amplitude

=

1

2

16

1

2

4 8

16

32
1

2

16

1

2

4 8

16

32f

128
f f

_

64

HELAC-1L reconstructs the one-loop amplitude as a tree-order
calculation

- One-Loop Algebraic Construction of N(q)
Produce analytic expressions for the one-loop numerators (Qgraf,
FORM, . . . )
Group numerators with similar structure (optimize their expressions)
Automatically feed the output to the reduction code
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Tests on the Calculation

The aim is to detect numerically unstable points before using them

1 Tests on the reconstruction → “N = N” test

2 Double precision vs Multiple precision

3 Complete cancellation of UV and IR poles

4 Stability test on “special” configurations

Tests 1, 2, and 3 are universal (process-independent)
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The N ≡ N test

Our “master” formula again!

N(q) =

m−1
∑

i0<i1<i2<i3

[

d(i0i1i2i3) + d̃(q; i0i1i2i3)
]

m−1
∏

i 6=i0,i1,i2,i3

Di

+

m−1
∑

i0<i1<i2

[c(i0i1i2) + c̃(q; i0i1i2)]

m−1
∏

i 6=i0,i1,i2

Di

+

m−1
∑

i0<i1

[

b(i0i1) + b̃(q; i0i1)
]

m−1
∏

i 6=i0,i1

Di

+
m−1
∑

i0

[a(i0) + ã(q; i0)]
m−1
∏

i 6=i0

Di

After determining all coefficients → this should hold for any q
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Check UV and IR Poles

Example for e−e+ → e−e+γ

S. Actis, P. Mastrolia, and G. O. – arXiv:0909.1750

Output of our FORTRAN code at a given phase space point

IV

NLO(CC4 + R) = +
1

ǫ
4.74506427003505 · 10−2 + . . .

IV

NLO(UVct) = −
1

ǫ
5.28634805094576 · 10−3 + . . .

IV

NLO = +
1

ǫ
4.21642946494047 · 10−2 + . . .

Results are expressed in GeV−2

All numbers have been obtained working in double precision
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Check UV and IR Poles

Example for e−e+ → e−e+γ

S. Actis, P. Mastrolia, and G. O. – arXiv:0909.1750

Output of our FORTRAN code at a given phase space point
Test on the UV and IR poles!

IV

NLO(CC4 + R) = +
1

ǫ
4.74506427003505 · 10−2 + . . .

IV

NLO(UVct) = −
1

ǫ
5.28634805094576 · 10−3 + . . .

IV

NLO = +
1

ǫ
4.21642946494047 · 10−2 + . . .

IR

NLO = −
1

ǫ
4.21642946495863 · 10−2 + . . .

Results are expressed in GeV−2

All numbers have been obtained working in double precision

Giovanni Ossola (City Tech) OPP Reduction february 2010 27 / 29



Stability test on quasi-collinear configuration

Example for e−e+ → µ−µ+γ

Virtual part IV
NLO

as a function of the energy E−of the outgoing muon:
the muon is (almost) parallel or antiparallel to the photon momentum
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0.014
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0.022
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V N
L
O
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−
2
]
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There are no istabilities
(work done in double precision)
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Conclusions

LHC requires NLO calculations!

One-loop calculations are in fast evolution

OPP is a now a solid method (and widely used!)

Full automatization is under way (fast!!)

Giovanni Ossola (City Tech) OPP Reduction february 2010 29 / 29



Conclusions

LHC requires NLO calculations!

One-loop calculations are in fast evolution

OPP is a now a solid method (and widely used!)

Full automatization is under way (fast!!)

(what is still left to do??)

New Codes

Efficiency, Precision, and Stability

Phenomenology - New processes for the LHC

– work in progress –
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