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Methods for imbalance

in HEP often imbalanced problems
e.g. much more background than signal events
we have a method tested on Λ selection
(background to signal ratio < 100)
here try it on a D0-selection w/o usage of particle
identification (background to signal ratio ∼ 3000)
it turns out that this extreme imbalance needs special
care
I will briefly recap our basic methods in the following
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Our MVA-method

using RIPPER classifier, rule based

introduce cost to change outcome
(instead of cutting on a discriminant)
the cost is introduced by weights in training
→ new classifier model for each cost
use bagging to stabilize algorithm:
like boosting, but without weights
make one or two preselections for large training sets
to prevent memory overflow and to save timeorig. sample 1 2 3 4 5

1st iteration 2 5 1 1 4
2nd iteration 5 3 2 2 4

...
rth iteration 1 1 5 1 4
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(v1 >= 1.039316) and (v2 <= 0.307358)
and (v3 <= 0.270767) and (v4 >= 0.800645)
=> class=Lambda
(v1 >= 0.637403) and (v2 <= 0.159043)
and (v3 <= 0.12081) and (v5 >= 149.2332)
and (v3 >= 0.003371)
=> class=Lambda
=> class=BG
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pred. BG pred. signal
tr. BG 0 C(BG, s)

tr. signal C(s,BG) 0
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Application of MVA method

classification step using WEKA1 package:
1 bagging
2 set cost (instance weighting)
3 apply RIPPER

for preselection: extra classification step:

1 preclassification incl. bagging – high cost for loosing D0

→ keep almost all D0s, reduce background (BG)
2 classify including bagging with high cost for wrongly

accepted BG
3 to produce ROC curve: scan cost x

(one classifier model per point in ROC curve)

pr. BG pr. D0

tr. BG 0 1
tr. D0 200 0

pr. BG pr. D0

tr. BG 0 x
tr. D0 1 0

preselection cost matrix main cost matrix

1http://www.cs.waikato.ac.nz/ml/weka/
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The LHCb experiment

one of the four large experiments at pp-collider LHC
made for precision measurements of
CP violation & rare decays
forward spectrometer
Only tracking information used for these studies, no
RICH
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Decay and used data

D0 → π+ + K−

LHCb minimum bias Monte Carlo, 3.6 · 107 events from
2006,

√
s = 14 TeV

candidates: pairs of differently charged tracks passing
through full spectrometer
distance of closest approach < 10 mm
use 14 geometric and kinematic variables

training data sets: same number of signal
increasing number of background

data set # BG # sig. # presel.
test 6.5 · 106 1827 –

training small ca 10’000 1851 0
training mid ca 60’000 1851 1

training larger ca 240’000 1851 1
training largest ca 1’000’000 1851 2
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ROC curve, different # BG in training
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ROC curve: true positive rate (TPR = signal efficiency)
versus false positive rate (FPR = background efficiency)
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ROC curve (zoom), different # BG in training
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Significance – FPR, different # BG in training
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after selection
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Mass plot comparison to cuts based analysis
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cuts based,
same variables

multivariate analysis
(for same signal yield)

No RICH PID information used

Britsch, XVII International Workshop on Deep-Inelastic Scattering and Related

Subjects, 2009, Madrid
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The forest cover type data set

we want to see if this behavior is special to our data set
use some known data mining data set repository:
http://archive.ics.uci.edu/ml/

we choose the one called forest cover type:
predicting forest cover type from cartographic variables
observation (30 × 30 meter cell) determined from US
Forest Service (USFS) in the Roosevelt National Forest
of northern Colorado
use the 10 integer variables (leaving out 44 binary
ones)
use class 4 (of 0 to 7) as “signal”, rest “background” to
get unbalanced data set
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Cover type training samples

Again: use different training sets with same number of
signal but increasing number of background:

data set # BG # sig. # presel.
test ca 290’000 1365 –

training small ca 10’000 1382 0
training mid ca 60’000 1382 1

training large ca 240’000 1382 1
training artificial 5 × ca 240’000 1382 2

additional artificial BG data by 4 × randomization of existing
BG instances using SMOTE algorithm1

1Chawla, Bowyer, Hall, Kegelmeyer, Journal of Artificial
Intelligence Research 16 (2002) 341
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Cover type ROC curves
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We see the same effect here as in the D0 data.
And the artificial data improves the result!
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How do we make the error bars?

we have a different classifier model for each point in
ROC space
these classifier models depend on

1 random choices in bagging and RIPPER
2 training sample choice

(1)⇒ pure ROC curves look noisy

So we need:
1 a way to smooth the curve (average many)
2 a measure for the scatter (error bars)
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ROC curves w/ and w/o bootstrapping
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without bagging
one bagging iteration (one bootstrap sample for each point)

10 bagging iteration

red curve uses the same sample for training for all points,
for the green training set re-sampled for each point.
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What does that mean?
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without bagging
one bagging iteration (one bootstrap sample for each point)

10 bagging iteration

the less noisy curve (red) hides its scatter (i.e., its
dependence on the training set)
the same is true for ordinary ROC curves
(cutting on a discriminant)
the more noisy curve (green) tells us something about
this scatter
similar to using different (cross-validation) samples
bagging reduces this scatter by using many bagging
iterations (blue)
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The way we do the errors

There are different methods discussed in literature, but
none (that we could find) takes the scatter due to the
training set into account.

This is our (ad hoc) method:
do each main selection 10 times with different random
seeds
take the mean FPR and TPF as the point in ROC space
similar to using 10 cross-validation samples
take the standard deviations (SD) as errors in x and y
the result is what you have seen in the plots

What is the distribution like? → next slide for 300 samples
for one cost
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Distributions for 300 samples, one cost
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histogram using 300 samples, one cost
different random seeds, no
averaging
distributions are asymmetric
and have tails
→ SD has no interpretation as
confidence level
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Conclusions

For extremely imbalanced data sets:
more BG in training is better for the LHCb-D0 as well as
the cover type data set – in an important region of FPR
one or two preselections w/ less BG helps reducing
data to handle large training sets
even using extra artificial BG instances helps

For ROC curve errors:
smooth ROC curves by doing 10 points w/ different
random seed per point in ROC space
get mean and standard deviation as position and error
this seem reasonable and practical
but it can not be interpreted as a confidence level
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Additional, ongoing and future work

more sophisticated ways to reduce data size w/o
loosing classification quality
better ways to average ROC curves and to produce
error bars
try different classifiers (e.g., decision trees) to see that
behavior is general
trying these methods on rare decays

Britsch, Gagunashvili, Schmelling (MPIK) Extremely imbalanced data sets 2010-2-23 26 / 46



Extremely
imbalanced
data sets

Britsch,
Gagunashvili,

Schmelling

Introduction

D0 MC

Cover type
data

Compare
ROC curves

Conclusions
and outlook

Back up slides

Back up slides

Britsch, Gagunashvili, Schmelling (MPIK) Extremely imbalanced data sets 2010-2-23 27 / 46



Extremely
imbalanced
data sets

Britsch,
Gagunashvili,

Schmelling

Variables

RIPPER

cost-
sensitivity

Bagging

Cover type
confidence

Cover type –
the data

SMOTE

Outline

6 Variables

7 RIPPER

8 Cost-sensitive classification

9 Bagging

10 Cover type confidence

11 Cover type – the data

12 SMOTE

Britsch, Gagunashvili, Schmelling (MPIK) Extremely imbalanced data sets 2010-2-23 28 / 46



Extremely
imbalanced
data sets

Britsch,
Gagunashvili,

Schmelling

Variables

RIPPER

cost-
sensitivity

Bagging

Cover type
confidence

Cover type –
the data

SMOTE

D0 → K−π+-Cuts

long tracks only
pion/kaon track #LHCbIDs > 27
pt > 700 MeV
ptdaughters > 500 MeV
cos ξ < −0.7
FL > 1.5 mm
DoCA < 0.07 mm
log DoCA

FL < −4.0
IP < 0.08 mm
IPdaughters > 0.05 mm

log
(

IP2
K+IP2

π

IP2

)
> 3.0

for MVA: FL · M
p ≈ ct

ξ: angle between impact vectors
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A new variable: ξ

ξ
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π

D

K

0
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What are rule sets?

Technique for classifying events using a collection of
"if. . . then. . . " rules. For example:

(IPpi >= 1.039316) and (DoCA <= 0.307358) and
(IP <= 0.270767) and (IPp >= 0.800645)
=> class=Lambda

(IPpi >= 0.637403) and (DoCA <= 0.159043) and
(IP <= 0.12081) and (ptpi >= 149.2332) and
(IP >= 0.003371)
=> class=Lambda

=> class=BG
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What is RIPPER, why RIPPER?

direct rule based classifier (Cohen 1995)
1 divide training set into growing and pruning sets

2 grow a rule adding conditions greedily
3 prune rule
4 go to 2), stopping criteria: description length, error rate
5 optimization of rules

Advantages:
rule set: relatively easy to interpret
good for imbalanced problems
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What is Cost-sensitive classification?

assign a cost to wrongly (or correctly) classified
instances ("events", "candidates")

→ cost matrix, e.g.:

predicted BG predicted signal
true BG 0 100

true signal 1 0

classification algorithm minimizes cost
mainly two ways:

threshold adjusting
instance weighting
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Threshold adjusting

Let’s start with a cost matrix as before:
pred. BG pred. signal

tr. BG 0 C(BG, s)

tr. signal C(s,BG) 0

Compare costs for a rule t , class s,BG:

C(BG|t)

=
∑

j=s,BG

p(j |t)C(j ,BG)

>? C(s|t)

=
∑

j=s,BG

p(j |t)C(j , s)

t is assigned to the signal class if:

p(s|t)

C(s,BG)

> p(BG|t)

C(BG, s)

⇒ p(s|t)C(s,BG) > (1− p(s|t))C(BG, s)

⇒ p(s|t) > C(BG, s)

C(BG, s) + C(s,BG)

→ This is equivalent to a cut on the probability!
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Sampling and instance weighting

simplest forms:
undersampling by leaving out instances
oversampling by replicating instances

mainly equivalent to applying a cost:

p(s|t)C(s,BG) > p(BG|t)C(BG, s)

C(s,BG) (C(BG, s)) – replication factor of signal (BG)
instance weighting: automated sampling/weighting of
instances according to cost
for some classifiers (e.g. neural networks) not better
than threshold adjusting
better than threshold adjusting for classifiers that
change with the balance of training data
e.g. decision trees, rules – typically using error rate
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What is bagging, why bagging?

similar to boosting, but no weights

draw with replacement at random instances from your
sample
do this r times
learn r classifiers (here r rule sets) on these
let them vote or average their probabilities
this works very well if your classifier is unstable, i.e.
prone to change with noise (RIPPER, decision trees)
reduces overfitting
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draw with replacement at random instances from your
sample
do this r times
learn r classifiers (here r rule sets) on these

let them vote or average their probabilities
this works very well if your classifier is unstable, i.e.
prone to change with noise (RIPPER, decision trees)
reduces overfitting
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Confidence intervals

From the distributions we can compute confidence intervals:

CL kind interval interval center
90 % signal [229, 368] 299
90 % BG [20, 30] 25
68 % signal [282, 351] 317
68 % BG [23, 28] 26
SD signal [276, 354] 315
SD BG [22.2, 28.0] 25.1

Agreement between 68 % CL and SD, 90 % interval
asymmetric for the signal.

Time limitations→ not practical to produce 300 classifiers
(× number of bagging iterations) per point in ROC space.
So we have to live with the standard deviations as errors.
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The data set – variables

54 variables, of which 44 are binary, the rest integer
integer variables, e.g.,

Elevation: Elevation in meters
Slope: Slope in degrees
Vertical_Distance_To_Hydrology: vert dist to nearest
surface water features in meters

binary variables are: wilderness types and soil types
classes 1-7 (# instances):

1 Spruce/Fir (211840)
2 Lodgepole Pine (283301)
3 Ponderosa Pine (35754)
4 Cottonwood/Willow (2747)
5 Aspen (9493)
6 Douglas-fir (17367)
7 Krummholz (20510)

total # instances: 581012
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Data preparation

first lesson: draw training & test sample randomly
ignore the 40 soil type binary variables
use class 4 (Cottonwood/Willow) as “signal”
use all other classes as “background”
⇒ 2747 signal and 578265 BG
use half as test sample
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Randomization

The SMOTE algorithm
multiply # of instances in a cunning way (instead of just
replication)

usually you want to balance the signal to BG ratio in the
training set, but not here!
SMOTE:

find n nearest neighbors (NN) for each instance
(candidate)
do k loops

choose one of the NN randomly for each instance
choose all variables randomly in between the value of
this variable of the instance and that of its neighbor
these variable choices make up a new instance
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