
ACAT 2010, Jaipur, India, 22-27 February 2010

SFrame -
A high-performance ROOT-based

framework for HEP analysis
Attila Krasznahorkay,

David Berge, Johannes Haller

Monday, February 22, 2010

Overview

• Data analysis at the LHC

• SFrame’s role in the analysis model

• The framework’s structure - writing/running
analysis code

• Performance comparisons

2

Monday, February 22, 2010

Data analysis at the
LHC

3

Monday, February 22, 2010

LHC’s data processing
• ~300 MB/s from the experiments during data

taking

• Prompt reconstruction and data distribution ->
Reconstructed files get copied worldwide

• Reco. files are processed on the LHC GRID

• Turn-around times are on the order of 1 day
(when lucky) -> Not adequate for developing/
tuning an analysis

• -> Create skimmed data samples that can be
analysed on local clusters

4

Monday, February 22, 2010

Requirements
• Read data from ROOT ntuples, and create event

level output data (ROOT TTree), result
histograms or other objects.

• Has to be easy to develop/debug code locally,
and then be able to send the analysis to a cluster
of machines

• The framework has to provide some functionality
often needed in HEP analyses

• Should be easily configurable (without having to
re-compile the user code)

• The code has to be as fast as possible
5

Monday, February 22, 2010

Analysis flow

6

MC2 files
MC1 files

data files
ntuple files “offline” jobs

ROOT TTree
ROOT TTree

ROOT TTree

ROOT TTree
ROOT TTree

ROOT TTree

ROOT TTree
ROOT TTree

ROOT TTree

Histogram
Histogram

Histogram
Histogram

Histogram
Histogram

1st cycle:
dataset cleaning,
calculations

2nd cycle:
event selection,
calculations

Analysis framework,
handles:
 - I/O information
 - meta-data
 - luminosities
 - generator cuts

Monday, February 22, 2010

The SFrame code

7

Monday, February 22, 2010

SFrame

• Started out as a framework for ATLAS analyses
done outside of the ATLAS offline software

• Lives on SourceForge:
http://sourceforge.net/projects/sframe/

• Most of the documentation is on the SF Wiki:
http://sourceforge.net/apps/mediawiki/sframe/

8

Monday, February 22, 2010

http://sourceforge.net/projects/sframe/
http://sourceforge.net/projects/sframe/
http://sourceforge.net/apps/mediawiki/sframe/
http://sourceforge.net/apps/mediawiki/sframe/

SFrame features (1)
• If the user follows some simple rules on writing an

analysis package, the package:
• Compiles a shared library

• Creates a .par file that can be used by PROOF

• This library and .par package can then be
declared in an XML configuration file so that
SFrame uses them

• Makes code sharing within a group very simple ->
Can share “analysis cycles” for common tasks
(dataset cleaning, etc.)

9

Monday, February 22, 2010

SFrame features (2)
• Arranges input files into InputData blocks (blocks

that should be handled homogeneously)
• Keeps track of the integrated luminosity of the

InputData blocks
• Provides a way of scaling the Monte Carlo to the

data’s integrated luminosity
• Easy-to-use functions for reading/writing TTrees
• Simple interface for writing various TObjects into

the output file.
• Some additional classes, providing convenience

functionalities and speed increases
10

Monday, February 22, 2010

SFrame code structure
• Compiles 3 shared libraries by default

• libSFrameCore: The core classes that all SFrame
jobs need

• libSFramePlugIns: Classes providing convenience
functionality

• libSFrameUser: Library with some user code
examples

• Compiles an executable (sframe_main) which is
only linked against libSFrameCore. Other
libraries -> loaded at runtime.

11

Monday, February 22, 2010

SCycleBase (1)
• The user writes classes inheriting from

SCycleBase. Example can be found here.

12

Monday, February 22, 2010

http://sframe.svn.sourceforge.net/viewvc/sframe/SFrame/trunk/user/include/FirstCycle.h?revision=120&view=markup
http://sframe.svn.sourceforge.net/viewvc/sframe/SFrame/trunk/user/include/FirstCycle.h?revision=120&view=markup

SCycleBase (2)
• The base class is highly modular -> It is possible

to create new base classes with extended
capabilities.
• Reading something else than ROOT TTree-s as input

(like HepMC events for instance)

• Writing new kinds of outputs

• The framework executes cycles through the
ISCycleBase interface. As long as the new base
class implements this interface, it works with the
framework. -> Can overwrite functions from
SCycleBaseExec.

13

Monday, February 22, 2010

Creating a package/cycle

14

cd a_good_directory_for_the_analysis_code/
svn co https://sframe.svn.sourceforge.net/svnroot/sframe/SFrame/trunk SFrame
cd SFrame
source ./setup.[c]sh
make
cd ../
sframe_new_package.sh MyAnalysis
cd MyAnalysis/
sframe_create_cycle.py --name My::AnalysisCycle \
 --linkdef include/SFrameMyAnalysis_LinkDef.h

Edit the created AnalysisCycle.h and AnalysisCycle.cxx code skeletons, adding your analysis code.

cd MyAnalysis/
make

• With only a few commands one can arrive at
compilable code, starting from scratch.

Monday, February 22, 2010

http://sframe.svn.sourceforge.net/viewvc/sframe/SFrame/trunk/bin/sframe_new_package.sh?revision=139&view=markup
http://sframe.svn.sourceforge.net/viewvc/sframe/SFrame/trunk/bin/sframe_new_package.sh?revision=139&view=markup
http://sframe.svn.sourceforge.net/viewvc/sframe/SFrame/trunk/bin/sframe_create_cycle.py?revision=120&view=markup
http://sframe.svn.sourceforge.net/viewvc/sframe/SFrame/trunk/bin/sframe_create_cycle.py?revision=120&view=markup

A simple cycle (1)

15

 namespace My {
 class AnalysisCycle : public SCycleBase {
 public:
 AnalysisCycle();

 virtual void BeginCycle() throw(SError);
 virtual void EndCycle() throw(SError);

 virtual void BeginInputData(const SInputData& id) throw(SError);
 virtual void EndInputData(const SInputData& id) throw(SError);

 virtual void BeginInputFile(const SInputData& id) throw(SError);

 virtual void ExecuteEvent(const SInputData& id, Double_t weight) throw(SError);

 private:
 std::vector< float >* m_inputVar1;
 std::vector< float >* m_inputVar2;
 std::vector< double > m_outputVar1;
 std::vector< double > m_outputVar2;

 ClassDef(My::AnalysisCycle, 0)
 };
 }

Functions declared in the
base class

Pointers connected to the input variables

Objects to be written to the output

Declare the class to ROOT

Inherits from common base class

Monday, February 22, 2010

A simple cycle (2)

16

 void AnalysisCycle::BeginInputData(const SInputData&) throw(SError) {
 // Create histograms in the output file:
 Book(TH1F(“FirstHistogram”, “First histogram”, 100, 0.0, 100.0));
 Book(TH1F(“SecondHistogram”, “Second histogram”, 50, 0.0, 50.0), “control”);
 // Put the variables in the output TTree:
 DeclareVariable(m_outputVar1, “OutputVar1”);
 DeclareVariable(m_outputVar2, “OutputVar2”);
 }

 void AnalysisCycle::BeginInputFile(const SInputData&) throw(SError) {
 // Connect the pointers to the input variables:
 ConnectVariable(“CollectionTree”, “InputVar1”, m_inputVar1);
 ConnectVariable(“CollectionTree”, “InputVar2”, m_inputVar2);
 }

 void AnalysisCycle::ExecuteEvent(const SInputData&, Double_t weight) throw(SError) {
 m_outputVar1.clear(); m_outputVar2.clear(); // Reset the output variables
 // Do an event selection. Events failing the selection will not be written out:
 if(m_inputVar1->size() < 2) throw SError(SError::SkipEvent);
 // Fill the previously booked histograms:
 Hist(“FirstHistogram”)->Fill((*m_inputVar1)[0], weight);
 Hist(“SecondHistogram”, “control”)->Fill((*m_inputVar1)[1], weight);

 // Now fill the output variables using some code
 }

Histogram put into
“control” directory in output

Monday, February 22, 2010

A full job configuration

17

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<!DOCTYPE JobConfiguration PUBLIC "" "JobConfig.dtd">

<JobConfiguration JobName="MyAnalysisJob" OutputLevel="INFO">

 <Library Name="libSFrameMyAnalysis" />
 <Package Name="SFrameCore.par" />
 <Package Name="SFrameMyAnalysis.par" />

 <Cycle Name="My::AnalysisCycle" OutputDirectory="./results/" PostFix="_test"
 TargetLumi="123.4" RunMode="PROOF" ProofServer="lite" ProofWorkDir="" >

 <InputData Type=”MC” Version=”MyPhysicsProcess” NEventsMax=”-1” NEventsSkip=”0” >
 <In FileName=”MyInputFile.root” Lumi=”43.2” />
 <InputTree Name=”CollectionTree” />
 <OutputTree Name=”SFrameTree” />
 </InputData>

 <UserConfig>
 <Item Name="InputTreeName" Value="CollectionTree" />
 <Item Name=”OutputTreeName” Value=”SFrameTree” />
 </UserConfig>
 </Cycle>
</JobConfiguration>

Libraries and packages
used by the job Declaration of what should

run and where

Declaration of inputs and
outputs

Settings of the user
properties

Monday, February 22, 2010

Handling different inputs

18

 <InputData Type=”data” Version=”run123456” NEventsMax=”-1” NEventsSkip=”0” >
 <In FileName=”Data_run123456_001.root” Lumi=”5.5” />
 <In FileName=”Data_run123456_002.root” Lumi=”2.3” />
 <In FileName=”Data_run123456_003.root” Lumi=”6.4” />
 <InputTree Name=”CollectionTree” />
 <OutputTree Name=”SFrameTree” />
 </InputData>

 <InputData Type=”MC” Version=”ttbar” NEventsMax=”-1” NEventsSkip=”0” >
 <In FileName=”TTbar_001.root” Lumi=”100.0” />
 <In FileName=”TTbar_002.root” Lumi=”100.0” />
 <In FileName=”TTbar_003.root” Lumi=”100.0” />
 <InputTree Name=”CollectionTree” />
 <OutputTree Name=”SFrameTree” />
 </InputData>

 <InputData Type=”MC” Version=”Zee” NEventsMax=”-1” NEventsSkip=”0” >
 <In FileName=”Zee_001.root” Lumi=”50.0” />
 <In FileName=”Zee_002.root” Lumi=”50.0” />
 <In FileName=”Zee_003.root” Lumi=”50.0” />
 <InputTree Name=”CollectionTree” />
 <OutputTree Name=”SFrameTree” />
 </InputData>

Treated in a special
way

If one sets the TargetLumi option to the sum
of these, the MC gets weighted to the data

Monday, February 22, 2010

Performance
comparisons

19

Monday, February 22, 2010

The analysis
• Generated 10M events distributed in 200 files using the

ATLAS offline software

• Each event contains 10 particles with flat distributions in
|η| < 3.0, 5.0 < pT < 50.0 GeV, -π < Φ < π

• Stored the generated events in ATLAS’s MC event
format

• Using the offline software, “translated” the events into
“flat” ROOT TTree-s to serve as input to non-ATLAS
analysis code.

• Wrote a simple but CPU intensive code analysing these
events using multiple languages/frameworks

20

Monday, February 22, 2010

The analysis software

• Athena: An AthAlgorithm that does only the analysis
tasks, in a minimalistic ATLAS offline job

• ACLiC: The analysis code put into a class created by
TTree::MakeClass(...), compiled and run from ROOT

• CINT: The analysis put into a single function, and run
from ROOT in interactive mode

• PyROOT: A stand-alone Python analysis script using the
ROOT bindings

• SFrame: A cycle implementing this analysis
• LOCAL mode: Running the cycle on one processor core
• PROOF-Lite mode: Running the cycle on all 4 cores of one PC
• PROOF mode: Running the cycle on all 8 cores of two PCs

21

Monday, February 22, 2010

Processing speeds

22

Input locationInput location Local XRootD
AthenaAthena 1.77±0.02 kHz N/A

ACLiCACLiC 3.85±0.03 kHz 3.77±0.04 kHz

CINTCINT 259.0±2.2 Hz N/A

PyROOTPyROOT 127.2±2.2 Hz 123.1±1.6 Hz

SFrame
LOCAL 4.04±0.02 kHz 4.02±0.03 kHz

SFrame PROOF-Lite 15.92±0.15 kHz 15.81±0.13 kHzSFrame
PROOF N/A 29.53±0.17 kHz

From 5 consecutive runnings.

Monday, February 22, 2010

Comparison conclusions

23

• ATLAS offline software performing very well with small MC
events. -> Full reconstructed events with a real analysis
perform usually ~100 Hz.

• Dedicated ACLiC code very fast. Speed increase in SFrame’s
“LITE mode” only due to different histogram handling.
Realistic analyses -> O(1-2 kHz)

• The code was just too complicated for PyROOT to process
quickly. However code development can be very quick.

• Same holds for interactive CINT, however coding is similar in
difficulty to using ACLiC.

• As long as I/O is not a limiting factor, SFrame scales well with
CPU count. (Relationship more complicated when writing
TTree-s.) Realistic analyses do O(1-2 kHz) per CPU core.

Monday, February 22, 2010

Summary

24

• SFrame is used by many groups in ATLAS by now

• Offers good speed increase even over compiled ROOT
code without much effort

• Can run the same code locally or using PROOF by just
changing a configuration option

• Development continuing: Adding new convenience
classes for using PROOF, integrating ATLAS file reading
into the code (as an external library), and anything else
that comes up while performing the first ATLAS analyses
with real data.

Monday, February 22, 2010

Backup slides

25

Monday, February 22, 2010

Analysis code used in the
performance comparison

26

• Create TLorentzVector-s from the generated
particles

• Plot the properties of the generated particles,
including the total (transverse) energy of the
particles

• Calculate the invariant mass of all 2, 3, 4 and 5
particle combinations

• Calculate the distance in pseudorapidity,
azimuthal angle and ΔR between all 2-particle
combinations

• Total number of created histograms: 14

Monday, February 22, 2010

Hardware used for the
performance comparison

• 2 “standard” CERN PCs running SLC5 64-bit
• Quad-core AMD Phenom™ 9600B CPU

• 4/8 GB RAM

• 160 GB local disk

• 4 TB LaCie 4big Quadra on one PC serving files
over XRootD

• ROOT 5.22/00d

• Python 2.5

• ATLAS offline software 15.6.4

27

Monday, February 22, 2010

