# Fast parallel tracking algorithm for the muon detector of the CBM experiment at FAIR

### Andrey Lebedev<sup>1,2</sup>

Claudia Höhne<sup>1</sup> Ivan Kisel<sup>1</sup> Gennady Ososkov<sup>2</sup>

**ACAT 2010** February 22-27, 2009 Jaipur, India

<sup>&</sup>lt;sup>1</sup> GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany

<sup>&</sup>lt;sup>2</sup> Laboratory of Information Technologies, Joint Institute for Nuclear Research, Dubna, Russia

# The CBM experiment at FAIR



- exploration of the QCD phase diagram in regions of high baryon densities and moderate temperatures.
- comprehensive measurement of hadron and lepton production in pp, pA and AA collisions for 8-45 AGeV beam energy
- fixed target experiment

### Challenges for tracking

#### **Peculiarities for CBM:**

- large track multiplicities
  - up to **800** charged particles per reaction in  $\pm$ /- 25°
- high reaction rate
  - up to **10 MHz**
- measurement of rare probes → need for fast and efficient trigger algorithms
- high hit density
- large material budget especially in the muon detector
- complex detector structure, overlapping sensors, dead zones
- enormous amount of data: foreseen are currently 1Gb/s archiving rate (600Tb/week)



Central Au+Au collision at 25 AGeV (UrQMD + GEANT3)

#### → fast tracking algorithms are essential

## The Muon detector (MUCH)



Choose alternating detector-absorber layout for continuos tracking of the muons through the absorber

### **Measurements of:**

Low mass vector mesons

5 Fe absorbers (125 cm)

7.5  $\lambda_{I}$ , p> 1.5 GeV/c

Charmonium

- - 6 Fe absorbers (225 cm) 13.5  $\lambda_T$ , p> 2.8 GeV/c

**3** detector stations between the absorbers

#### **Detector challenges:**

- High hit density (up to 1 hit per cm<sup>2</sup> per event)
- High event rates (10<sup>7</sup> events/s)
- Position resolution < 300 μm
- $\rightarrow$  use pad readout (e.g. GEMs), minimum pad size 2.8x2.8 mm<sup>2</sup>.
- → for the last stations **straw tubes** are under investigation

### Track reconstruction algorithm

### Two main steps:

- Tracking
- Global track selection

#### Tracking is based on

- Track following
- Initial seeds are tracks reconstructed in the STS (fast Cellular Automaton (CA), I.Kisel)
- Kalman Filter
- Validation gate
- Hit-to-track association techniques
  - nearest neighbor: attaches the closest hit from the validation gate



#### **Global track selection**

- aim: remove clone and ghost tracks
- tracks are sorted by their quality, obtained by chi-square and track length
- Check for shared hits

### Track propagation

- Inhomogeneous magnetic field:
  - solution of the equation of motion with the 4<sup>th</sup> order Runge-Kutta method
- Large material budget:
  - Energy loss (ionization: Bethe-Bloch, bremsstrahlung: Bethe-Heitler, pair production)
  - Multiple scattering (Gaussian approximation)

### **Parallelism**



- S. Borkar et al. (Intel), "Platform 2015: Intel Platform Evolution for the Next Decade", 2005.
- SIMD Single Instruction Multiple Data
  - o CPU's have it!
  - o Today: SSE 128 bit registers
    - 4 x float
  - o **Future**: AVX, LRB
    - AVX: 8 x float
    - LRB: 16 x float
  - o Benefits:
    - X time more operations per cycle
    - X time more memory throughoutput
- Multithreading
  - o Many core era coming soon...
  - Tool for CPU: Threading Building Blocks

- We're already at the age of parallel computing
- · Parallel computing relies on parallel hardware
- Parallel computing needs parallel software
- So parallel programming is very important
  - o new way of thinking
  - o identification of parallelism
  - o design of parallel algorithm
  - o implementation can be a challenge



(a) Scalar Operation



(b) SIMD Operation



4 concurrent add operations

# Optimization of the algorithm

- Minimize access to global memory
  - Approximation of the 70 MB large magnetic field map
    - 5 degree polynomial in the detector planes
    - parabola between the stations





- Simplification of the detector geometry
  - Problem
    - Monte-Carlo geometry consists of 800000 nodes
    - Geometry navigation based on ROOT TGeo
  - Solution
    - Create simplified geometry by converting Monte-Carlo geometry
    - Implement fast geometry navigation for the simplified geometry



- Computational optimization of the Kalman Filter
  - From double to float
  - o Implicit calculation on non-trivial matrix elements
  - Loop unrolling
  - o Branches (if then else ..) have been eliminated

### All these steps are necessary to implement SIMD tracking

### SIMDization of the track fitter

- Vectorization of the tracking data
  - Xvector contains (X0,X1,X2,X3)
- Vectorization of the track fitter algorithm
  - SSE instructions were overwritten in a header file
- All tracks are independent and fitted by the same algorithm: 4 tracks packed into one vector and fitted in parallel

Finally SIMD version of the track fitter can fit 4 tracks at a time!



### Serial tracking

#### **Initial serial scalar version**

```
for (nofTrackSeeds)
    Follow each track through the detector
    Pick up nearest hits
end for (nofTrackSeeds)
```

# Can not be directly used in SIMD approach, so it has to be significantly restructured!

# **Parallel tracking**

```
∠Parallel loop
for (station groups)
    parallel_for (nofTracks/4)
        PackTrackParameters
        SIMDPropagateThroughAbsorber
    end parallel_for (nofTracks/4)
                             Parallel loop
    for (stations)
        parallel_for (nofTracks/4)
            PackTrackParameters
            SIMDPropagateToStation
            AddHitToTrack
        end parallel_for (nofTracks/4)
    end for (stations)
end for (station groups)
```

### Performance of the track fit

#### **Track fit quality**

| Residuals |           |                         |                         | Pulls                                            |      |      |      |      |      |
|-----------|-----------|-------------------------|-------------------------|--------------------------------------------------|------|------|------|------|------|
| X<br>[cm] | Y<br>[cm] | Tx<br>*10 <sup>-3</sup> | Ty<br>*10 <sup>-3</sup> | q/p<br>*10 <sup>-3</sup><br>[GeV <sup>-1</sup> ] | X    | Y    | Tx   | Ту   | q/p  |
| 0.38      | 0.39      | 9.1                     | 8.7                     | 3.4                                              | 1.02 | 0.99 | 1.08 | 1.08 | 0.92 |

### **Speedup of the track fitter**

|                | Time [µs/track] | Speedup |
|----------------|-----------------|---------|
| Initial        | 1200            | -       |
| Optimization   | 13              | 92      |
| SIMDization    | 4.4             | 3       |
| Multithreading | 0.5             | 8.8     |
| Final          | 0.5             | 2400    |

Throughput: 2\*10<sup>6</sup> tracks/s

**Computer** with 2xCPUs Intel Core i7 (8 cores in total) at 2.67 GHz

### Performance of the parallel tracking

#### Simulation:

• 1000 UrQMD events at 25 AGeV Au-Au collisions + 5  $\mu$ + and 5  $\mu$ - embedded in each event

| Initial        | version | <b>Parallel version</b> |
|----------------|---------|-------------------------|
| Efficiency [%] | 94.7    | 94.0                    |

### **Speedup of the track finder**

|                | Time [ms/event] | Speedup |
|----------------|-----------------|---------|
| Initial        | 730             |         |
| Optimization   | 7.2             | 101     |
| SIMDization    | 4.8             | 1.5     |
| Multithreading | 1.5             | 3.3     |
| Final          | 1.5             | 487     |

**Computer** with 2xCPUs Intel Core i7 (8 cores in total) at 2.67 GHz

### Summary

- fast reconstruction algorithms are essential!
- successful demonstration that tracking in the muon detector is feasible in a high track density environment:
  - 95% tracking efficiency for muons passing the absorber
  - low rate of ghosts, clones and track mismatches
- Considerable optimization and parallelization of the algorithms allows to achieve a speed up factor of 2400 for the track fit and a factor 487 for the track finder
- All algorithms were implemented and tested in the CBMROOT framework and are intensivly used by CBM physicists

- → use established tracking routines for layout optimization
- → Investigate new parallel languages (CUDA, OpenCL)