

Storage discovery in AliEn

Background – AliEn

- ALIce ENvironment a lightweight Grid environment, users' door to the Grid
- Central Services
 - File catalogue, AAA services, Job & Transfer queues, various Optimizers
- Site Services
 - CE, ClusterMonitor, MonALISA
- More information on AliEn in Poster 64

Site structure

Sites overview

105 VOBoxes in 83 centers, >22000 CPU cores 55 Storage Elements

http://alimonitor.cern.ch/

The problem

- We only write to one user-specified target storage
- How to efficiently write N replicas of a file ?
 - from jobs running inside the sites
 - by a user running its software on a laptop while at home
 - same case as for a worker running somewhere in the clouds
- Then, how to efficiently read the data when N replicas are available?
- In the end this is just a variation of the data locality problem

Step 1 – Storage status

- To simplify the decision we first remove the problematic storages from the options
- Periodic functional tests of all known SEs (currently every 2h)
 - add, get, remove of a test file from a remote location
- The status of an SE can be also set by the administrators

Step 1 – Storage status

 And this is how the monitoring of the storage elements looks like

			Statistics				Fun	ctional	tests			Last day	tests
SE Name	Size	Used	Free	Usage	No. of files	add	ls	get	whereis	rm	Last OK test	Successful	Failed
1. Bari - SE	33.69 TB	1.398 TB	32.29 TB	4.149%	75,820						25.02.2010 06:00	12	0
2. Bologna - SE	500 GB	94.45 GB	405.6 GB	18.89%	28,280	Feb	Last	Last	Last	Last	04.09.2009 13:02	0	12
3. Catania - DPM	0	15.78 TB	-	-	666,539	Feb	Last	Last	Last	Last	14.01.2010 12:00	0	12
4. Catania - SE	66 TB	3.527 TB	62.47 TB	5.343%	118,715						25.02.2010 06:00	12	0
5. CCIN2P3 - DCACHE_TAPE	0	35.54 TB	-	-	41,585						25.02.2010 06:00	12	0
6. CCIN2P3 - SE	96 TB	12.31 TB	83.69 TB	12.82%	221,451						25.02.2010 06:00	12	0
7. CERN - ALICEDISK	849.6 TB	71.52 TB	778.1 TB	8.418%	713,318						25.02.2010 06:00	12	0
8. CERN - CASTOR2	4.547 PB	4.274 PB	280.5 TB	93.98%	16,254,417						25.02.2010 06:00	12	0
9. CERN - CERNMAC	5.588 TB	580.6 GB	5.021 TB	10.15%	560	Feb	Last	Last	Last	Last	03.01.2010 06:00	0	12
10. CERN - GLOBAL	-	0	1.863 TB	-	514						25.02.2010 06:00	9	3
11. CERN - SE	20.49 TB	5.572 TB	14.92 TB	27.19%	1,696,156	€ 6	(H)		N	lessage			0
12. CERN - TOALICE	180.7 TB	112.9 GB	180.6 TB	0.061%	602	Feb 25 0	6:00:42 i	nfo Gettir	g a security	envelope.		^	0
13. Clermont - SE	28.32 TB	12.19 TB	16.13 TB	43.05%	283,842	Feb 25 0	6:00:43 i	nfo Acco	rding to the e	nvelope:	<u>root://ipnsedpm.in2p3:</u> 1ca-11df-84b5-001e0bo	fr:1094	0
14. CNAF - CASTOR2	43.95 TB	17.6 TB	26.34 TB	40.05%	55,773				001e0bd3f4		rca-11di-0-05-001e001	and	3
15. CNAF - SE	122.1 TB	71.36 TB	50.71 TB	58.46%	1,211,397				thing went w Cnt'with val	_	-	U	0
16. CyberSar_Cagliari - SE	30.83 TB	1.052 TB	29.78 TB	3.412%	301,740	Last serv	er error 30	005 ('Unal	ble to to acce	ess/dpm/ii	n 2p 3.fr/home/alice/06/6	60900	0
17. Cyfronet - SE	10 TB	1.052 TB	8.948 TB	10.52%	16,155	/b 9e 9c 6t	e-21ca-1	1df-84b5-	001e0bd3f4	4c; Timer	expired')		0
18. FZK - SE	322.3 TB	82.22 TB	240 TB	25.51%	1,254,521						25.02.2010 06:00	12	0
19. FZK - TAPE	480 TB	204.1 GB	479.8 TB	0.042%	474						25.02.2010 06:00	12	0
20. Grenoble - DPM	24.6 TB	4.278 TB	20.32 TB	17.39%	135,311						25.02.2010 06:00	12	0
21. GRIF_IPNO - DPM	34.33 TB	1.11 TB	33.22 TB	3.233%	20,808						25.02.2010 06:01	6	6

Step 2 – Discover network topology

- Each SE is associated a set of IP addresses
 - The IP of the VOBox
 - IPs of xrootd redirector & nodes
- MonALISA performs tracepath/traceroute between all VOBoxes
 - Recording all routers and the RTT of each link
 - + status of storage nodes
 - + bandwidth tests between sites

Step 2 – Discover network topology

Step 3 – Derived network topology

But if we ...

- group the routers in the respective Autonomous Systems (AS)
- compute the distance (RTT) between them
- then we have a better understanding of the relation between sites

Step 3 – Derived network topology

Step 3 – Derived network topology

Step 4 – Client to Storage distance

- distance(IP, IP)
 - Same C-class network
 - Common domain name
 - Same AS
 - Same country (+ function of RTT between the respective AS-es if known)
 - If distance between the AS-es is known, use it
 - Same continent
- 1 Far far away
- distance(IP, Set<IP>): Client's public IP to all known IPs for the storage

Solution

Samples

		/alice/sim/LHC10a6/analysis/ESD/TR0	16/002/078		
Permissions	0wner	Timestamp	Size	Filename	
-rwxr-xr-x	alitrain: alitrain	15 Feb 2010 14:59	11.17 MB	hist_archive.zip 🥑	
-rwxr-xr-x	alitrain:alitrain	15 Feb 2010 14:59	324 B	log_archive.zip 🛂	List of SEs
-rwxr-xr-x	alitrain: alitrain	15 Feb 2010 14:59	4.741 MB	PWG2histograms root	LICE::PNPI::SE LICE::MEPHI::SE
-rwxr-xr-x	alitrain: alitrain	15 Feb 2010 14:59	497.4 KB	PWG3histograms.root	LICE::JINR::SE
-rwxr-xr-x	alitrain: alitrain	15 Feb 2010 14:59	9.658 KB	PWG4histograms.root 🥝	
-rwxr-xr-x	alitrain: alitrain	15 Feb 2010 14:59	5.929 MB	resonances.root 🥝	
-rwxr-xr-x	alitrain: alitrain	15 Feb 2010 14:59	342 B	stderr 🥝	
Job execute	d at JINR			22.33 MB in 7 files	

	Filename	Size	Timestamp	Owner	Permissions
	hist_archive.zip 🐠	3.902 MB	15 Feb 2010 15:41	alitrain: alitrain	wxr-xr-x
List LICE::CCIN2P	log_archive.zip	321 B	15 Feb 2010 15:41	alitrain: alitrain	wxr-xr-x
LICE::KOLKATA	BWG2histograms root (AL	1.647 MB	15 Feb 2010 15:41	alitrain: alitrain	wxr-xr-x
LICE::BARI::SE		100.4 KB	15 Feb 2010 15:41	alitrain: alitrain	wxr-xr-x
	PWG4histograms.root	8.833 KB	15 Feb 2010 15:41	alitrain: alitrain	wxr-xr-x
	resonances.root 🎱	2.147 MB	15 Feb 2010 15:41	alitrain: alitrain	wxr-xr-x
	stderr 🕐	341 B	15 Feb 2010 15:41	alitrain: alitrain	wxr-xr-x
	7.803 MB in 7 files			LALKOLKATA	

Job executed at KOLKATA ACA1, 26.02.2010

Bottom line

- Flexible storage configuration
 - QoS tags are all that users should know about the system
 - We can store N replicas at once
- Maintenance-free system
 - Monitoring feedback on known elements and automatic discovery and configuration of new resources
- Reliable and efficient file access
 - No more failed jobs due to auto discovery and failover in case of temporary problems
 - Use the closest working storage element(s) to where the application runs