

Precision measurements of electroweak parameters

Alexander A. Savin University of Wisconsin, Madison, USA

XXXVII Physics in Collision, Prague, Czech Republic, September 4-8, 2017

A.Savin, UW

Introduction

- EW motivation at LHC:
 - Cross sections, better understanding of SM predictions
 - Backgrounds for searches
 - SM parameters

$$\alpha_{_{em}}, G_{_F}, m_{_W}, m_{_Z}, \sin^2\theta_{_W}, m_{_H}$$

- Provide critical tests of SM (NNLO QCD and NLO EW predictions are available)
- Require precise understanding of different sources of experimental uncertainties, both experimental and theoretical

05/09/2017

Standard Model Parameters

 α_{em}, G_F, m_Z - these parameters are well measured ;

some parameters are constrained

 $\sin^2 \theta_W = 1 - \frac{m_W^2}{m_Z^2} \qquad m_W^2 \sin^2 \theta_W = \frac{\pi \alpha}{\sqrt{2}G_F}$

but modified by high-order corrections

$$m_W^2 \sin^2 \theta_W = \frac{\pi \alpha}{\sqrt{2}G_F} \frac{1}{1 - \Delta r}$$

Incorporates higher-order + sensitive to top and Higgs masses + BSM

Direct measurements and global fit

	Measurement	HEPfit result	ar
m _H ,GeV	125.09 ± 0.24	102.8 ± 26.3	
m _t ,GeV	173.34 ± 0.76	176.6 ± 2.5	
m _w ,GeV	80.385 ± 0.015	80.3618 ± 0.0080	

arXiv:1407.3792

Gfitter

• Forward-Backward asymmetry A_{fb} and $\sin^2\theta_{eff}$

Measurements discussed in this talk

• CMS: CMS-PAS-SMP-16-007

ATLAS: arXiv:1701.07240

- CMS: EPJC C76 (2016) 325
- LHCb: JHEP 1511 (2015) 190
- Angular coefficients

• W mass

- ATLAS: JHEP 08 (2016) 159
- CMS: PLB 750 (2015) 154
- Z/W + 2jets EWK
 - ATLAS: Zjj CERN-EP-2017-115
 - CMS: Zjj CMS-PAS-SMP-16-018
 - ATLAS: Wjj arXiv:1703.04362
- Tau polarization
 - ATLAS: Z ATLAS-CONF-2017-049

CMS Integrated Luminosity, pp

ATLAS W mass measurement

W production at LHC

- D0 (Phys.Rev.Lett. 108 (2012) 151804 80.367 ± 0.023 GeV
- CDF (Phys.Rev.Lett. 108 (2012) 151803 80.387 ± 0.019 GeV
- In pp collisions at the LHC
 - Large signal (10⁷) and calibration (10⁶) samples
 - Events are distributed between positive and negative helicity states PDF uncertainty
 - HF contribution (25% of events) W p_T
 - Z can be used for different calibrations and for checks, measurements can be performed in Z events and transformed to W

Main experimental observables

Lepton kinematics:

$$p_T^l, \eta_l, \phi_l, m_l$$

Recoil to transverse plain

$$\vec{u}_{\mathrm{T}} = \sum_{i} \vec{E}_{\mathrm{T},i}$$

Transverse momentum of neutrino

$$\vec{p}_{\rm T}^{\rm miss} = -\left(\vec{p}_{\rm T}^{\,\ell} + \vec{u}_{\rm T}\right)$$

W-boson transverse mass

$$m_{\rm T} = \sqrt{2p_{\rm T}^{\ell}p_{\rm T}^{\rm miss}(1-\cos\Delta\phi)}$$

Analysis strategy

$p_T^* > 30 GeV;$	$ \eta_\ell $ range	0-0.8	0.8–1.4	1.4–2.0	2.0–2.4	Inclusive
$u_T < 30 GeV;$	$W^+ ightarrow \mu^+ u$ $W^- ightarrow \mu^- ar{ u}$	1 283 332 1 001 592	1 063 131 769 876	1 377 773 916 163	885 582 547 329	4 609 818 3 234 960
$p_{-}^{miss} > 30 GeV$	$ \eta_\ell $ range	0-0.6	0.6–1.2		1.8–2.4	Inclusive
$P_T \rightarrow 50007$,	$W^+ \rightarrow e^+ \nu$	1 233 960	1 207 136		956 620	3 397 716
$m_T > 60 GeV$	$W^- \rightarrow e^- \bar{\nu}$	969 170	908 327		610 028	2 487 525
		1				

The mass of W boson is defined from the fit to:

$$p_T^l, m_T$$

templates for signal+background for different W masses are compared to data using χ^2 - interpolation + minimization of χ^2 function.

Calibration of electrons and muons 10

Corr. of imperfect simulation/calibration of detector response. Applied to simulation/muon sagitta bias + electron energy - to data

Systematics

$ \eta_{\ell} $ range	[0.0	0, 0.8]	[0.	8, 1.4]	[1.4	4, 2.0]	[2	2.0, 2.4]	Com	bined
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^{ℓ}	m_{T}	p_{T}^ℓ	m_{T}
δm _W [MeV]										
Momentum scale	8.9	9.3	14.2	15.6	27.4	29.2	111.0	115.4	8.4	8.8
Momentum resolution	1.8	2.0	1.9	1.7	1.5	2.2	3.4	3.8	1.0	1.2
Sagitta bias	0.7	0.8	1.7	1.7	3.1	3.1	4.5	4.3	0.6	0.6
Reconstruction and								\		
isolation efficiencies	4.0	3.6	5.1	3.7	4.7	3.5	6.4	5.5	2.7	2.2
Trigger efficiency	5.6	5.0	7.1	5.0	11.8	9.1	12.1	9.9	4.1	3.2
Total	11.4	11.4	16.9	17.0	30.4	31.0	112.0	116.1	9.8	9.7

$ \eta_{\ell} $ range	[0.0	0,0.6]	[0.	6, 1.2]	[1.82	2, 2.4]	Com	bined
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	$p_{\rm r}^{\ell}$	m_{T}
δm_W [MeV]							V	
Energy scale	10.4	10.3	10.8	10.1	16.1	17.1	8.1	8.0
Energy resolution	5.0	6.0	7.3	6.7	10.4	15.5	3.5	5.5
Energy linearity	2.2	4.2	5.8	8.9	8.6	10.6	3.4	5.5
Energy tails	2.3	3.3	2.3	3.3	2.3	3.3	2.3	3.3
Reconstruction efficiency	10.5	8.8	9.9	7.8	14.5	11.0	7.2	6.0
Identification efficiency	10.4	7.7	11.7	8.8	16.7	12.1	7.3	5.6
Trigger and isolation efficiencies	0.2	0.5	0.3	0.5	2.0	2.2	0.8	0.9
Charge mismeasurement	0.2	0.2	0.2	0.2	1.5	1.5	0.1	0.1
Total	19.0	17.5	21.1	19.4	30.7	30.5	14.2	14.3
							-,,	

Recoil calibration

Event activity correction:

Pile-up

05/09/2017

Transverse momentum

Residual correction:

- Beam effects
- Offset of IP

W-boson charge	V	V ⁺	V	V-	Com	bined
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}
δm_W [MeV]						
$\langle \mu \rangle$ scale factor	0.2	1.0	0.2	1.0	0.2	1.0
$\Sigma \bar{E_{\rm T}}$ correction	0.9	12.2	1.1	10.2	1.0	11.2
Residual corrections (statistics)	2.0	2.7	2.0	2.7	2.0	2.7
Residual corrections (interpolation)	1.4	3.1	1.4	3.1	1.4	3.1
Residual corrections ($Z \rightarrow W$ extrapolation)	0.2	5.8	0.2	4.3	0.2	5.1
Total	2.6	14.2	2.7	11.8	2.6	13.0

W/Z production and decay simulation¹² Reweighted Powheg + Pythia 8 MC

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_1\,\mathrm{d}p_2} = \left[\frac{\mathrm{d}\sigma(m)}{\mathrm{d}m}\right] \left[\frac{\mathrm{d}\sigma(y)}{\mathrm{d}y}\right] \left[\frac{\mathrm{d}\sigma(p_{\mathrm{T}},y)}{\mathrm{d}p_{\mathrm{T}}\,\mathrm{d}y} \left(\frac{\mathrm{d}\sigma(y)}{\mathrm{d}y}\right)^{-1}\right] \left[(1+\cos^2\theta) + \sum_{i=0}^7 A_i(p_{\mathrm{T}},y)P_i(\cos\theta,\phi)\right].$$

BW, EW corrections: QED FSR (LO photon emission, NLO, Photos etc)

Decay channel	И	$V \rightarrow ev$	W	$' \rightarrow \mu \nu$
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m _T
δm_W [MeV]				
FSR (real)	< 0.1	< 0.1	< 0.1	< 0.1
Pure weak and IFI corrections	3.3	2.5	3.5	2.5
FSR (pair production)	3.6	0.8	4.4	0.8
Total	4.9	2.6	5.6	2.6

Fixed order optimized DYNNLO with CT10nnlo PDF

$$\left[(1+\cos^2\theta)+\sum_{i=0}^7 A_i(p_{\rm T},y)P_i(\cos\theta,\phi)\right]$$

Low p_T, NP effects using Pythia 8 + AZ tune

W/Z production and decay simulation¹³

Validation of QCD parameters in Pythia 8 - AZ tune. Good description of p_T

05/09/2017

Major uncertainty is PDF, second largest - PS

W-boson charge	W	7+	W	7-	Com	bined
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}
δm_W [MeV]						
Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	8.0	8.7
AZ tune	3.0	3.4	3.0	3.4	3.0	3.4
Charm-quark mass	1.2	1.5	1.2	1.5	1.2	1.5
Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation	5.0	6.9	5.0	6.9	5.0	6.9
Parton shower PDF uncertainty	3.6	4.0	2.6	2.4	1.0	1.6
Angular coefficients	5.8	5.3	5.8	5.3	5.8	5.3
Total	15.9	18.1	14.8	17.2	11.6	12.9

Fitted distributions, consistency test¹⁴

Consistency test on Z events shows expected performance of the mass measurement procedure

W mass measurement, diff. categories

combined result

 $m_W = 80369.5 \pm 6.8 \text{ MeV(stat.)} \pm 10.6 \text{ MeV(exp. syst.)} \pm 13.6 \text{ MeV(mod. syst.)}$ = 80369.5 ± 18.5 MeV,

Combined	Value	Stat.	Muon	Elec.	Recoil	Bckg.	QCD	EW	PDF	Total	χ^2/dof
categories	[MeV]	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	of Comb.
m_{T} - p_{T}^{ℓ} , W^{\pm} , e - μ	80369.5	6.8	6.6	6.4	2.9	4.5	8.3	5.5	9.2	18.5	29/27

Comparison to other experiments

The result is compatible with the current world average and similar in precision to the currently leading 05/09/2017 measurements A.Savin, U

Compatibility in context of the global fit

Forward-Backward Asymmetry in Z's¹⁸

• Vector and axial-vector couplings in NC annihilation

$$q\bar{q} \rightarrow Z/\gamma^* \rightarrow \ell^+\ell^-$$

$$ar{f}(g_V^f+g_A^f\gamma_5)f$$

• Differential cross section

$$\frac{\mathrm{d}\sigma}{\mathrm{d}(\cos\theta)} = \frac{4\pi\alpha^2}{3\hat{s}} \left[\frac{3}{8} A(1+\cos^2\theta) + B\cos\theta \right]$$

 Collins-Soper frame, the events are classified to forward and backward in CS to calculate the A_{FB}

$$A_{\rm FB} = \frac{\sigma_{\rm F} - \sigma_{\rm B}}{\sigma_{\rm F} + \sigma_{\rm B}}$$

A_{FB} measurement with di-muon and ¹⁹ di-election events CMS: EPJC C76 (2016) 325

Muon/electron candidates with $p_T > 20$ GeV, $|\eta| < 2.4$ (for electrons up to 5!)

The measured $\cos\theta_{CS}^{*}$ distribution

A_{FB} is measured as a function of dilepton mass in bins of pseudorapidity

Dilution of A_{FB}

 A_{FB} PDF dependence; near Z peak is sensitive to leptonic $sin^2\theta_{eff}$

Since ambiguity in the quark direction is more significant at low |y|, the dilution of A_{FB} is also larger there and the measurement is done in bins of |y|

A_{FB} measurement with di-muon and ²¹ di-election events CMS: EPJC C76 (2016) 325

- Wrt 7 TeV CMS A_{FB} measurement is extended to high |y|
 closer to parton-level asymmetry ;
- Predictions well describe the measured values

$\frac{22}{\sin^2 \theta_{eff}^{lept}} = \operatorname{Re}[k_l(m_Z^2, \sin^2 \theta_W)]\sin^2 \theta_W$ This measurement constraints the W mass !

A_{FB} measurement near Z mass peak is used

05/09/2017

Effective mixing angle measurement³

Minimizing χ^2 between data and templates POWHEG+PYTHIA8

05/09/2017

Uncertainties

channel	statistical uncertainty
muon	0.00044
electron	0.00060
combined	0.00036

Source	muons	electrons
MC statistics	0.00015	0.00033
Lepton momentum calibration	0.00008	0.00019
Lepton selection efficiency	0.00005	0.00004
Background subtraction	0.00003	0.00005
Pileup modeling	0.00003	0.00002
Total	0.00018	0.00039

Statistical

Experimental systematics

model variation	Muons	Electrons
Dilepton p_T reweighting	0.00003	0.00003
QCD $\mu_{R/F}$ scale	0.00011	0.00013
POWHEG MiNLO Z+j vs NLO Z model	0.00009	0.00009
FSR model (PHOTOS vs PYTHIA)	0.00003	0.00005
UE tune	0.00003	0.00004
Electroweak ($\sin^2 \theta_{eff}^{lept} - \sin^2 \theta_{eff}^{u, d}$)	0.00001	0.00001
Total	0.00015	0.00017

Theoretical systematics

PDF uncertainty

Channel	without constraining PDFs	with constraining PDFs
Muon	0.23125 ± 0.00054	0.23125 ± 0.00032
Electron	0.23054 ± 0.00064	0.23056 ± 0.00045
Combined	0.23102 ± 0.00057	0.23101 ± 0.00030

Effective mixing angle results

 $\sin^2 \theta_{\text{eff}}^{\text{lept}} = 0.23101 \pm 0.00036(\text{stat}) \pm 0.00018(\text{syst}) \pm 0.00016(\text{theory}) \pm 0.00030(\text{pdf}) \\ \sin^2 \theta_{\text{eff}}^{\text{lept}} = 0.23101 \pm 0.00052.$

Statistical uncertainty still dominate, followed by PDF, that was reduced by reweighting by 50%. Experimental uncertainties are relatively small, theoretical are dominated by QCD/scales

Effective mixing angle at LHCb

- Di-muons in region 60-160 GeV;
- 7 TeV (1 fb⁻¹) + 8 TeV (2 fb⁻¹)

high rapidity - less dilution between parton and proton

 $\sin^2 \theta_{\rm W}^{\rm eff} = 0.23142 \pm 0.00073 \pm 0.00052 \pm 0.00056,$

Uncertainties: stat (will improve with more data); theo (will <u>os</u>/improve with PDF) -> measurement most precise at LHC.

LHCb: JHEP 1511 (2015) 190

Effective mixing angle: experimental summary

A0-A3 become not 0 at NLO ; A0-A2=0 Lam-Tung relation (valid at $O(\alpha_s)$) ; A4 is only coefficient !=0 at LO ; A5-A7 appear at NNLO .

Angular coefficients in Z events

ATLAS: JHEP 08 (2016) 159

8 TeV, 20.3 fb⁻¹ muons and electrons mass 80-100 GeV; leptons p_T > 25 GeV extended |η|>2.5 electrons

CMS: PLB 750 (2015) 154 8 TeV, 19.7 fb⁻¹ muons mass 80-100 GeV; leptons p_T > 25(10) GeV |η|<2.5 (2.1)

Template fit to extract the coefficients

05/09/2017

Angular coefficients in Z events ATLAS: JHEP 08 (2016) 159

NNLO describes the data well within uncertainties

 $A_5 - A_7$ deviate from 0 in agreement with MC, at higher values of p^{Z} some deviations observed, still within uncertainties

³² Angular coefficients in Z events CMS: PLB 750 (2015) 154 FEWZ(NNLO) and POWHEG(NLO) in general describe the data

MadGraph (LO)+up to 4 jets describes the data except A4 -> uses $sin^2\theta_w$ without radiative corrections

Checking Lam-Tung relation $(A_0-A_2=0)^{33}$

Violating (as anticipated) Lam-Tung relation At high p^z_T the models do not describe data

CMS: PLB 750 (2015) 154

ATLAS: JHEP 08 (2016) 159

EW production of W/Z with two jets

(Z:2 electrons/muons) + 2 jets

EW production W+2jets at 8 TeV Di-muons in region 60-160 GeV; ATLAS: arXiv:1703.04362

7 TeV + 8 TeV

Selection requirements

Lepton $p_{\rm T} > 25 \text{ GeV}$ Lepton $|\eta| < 2.5$ $E_{\rm T}^{\rm miss} > 20 \, {\rm GeV}$ $m_{\rm T} > 40 \, {\rm GeV}$ $p_{\rm T}^{J_1} > 80 \,{\rm GeV}$ $p_{\rm T}^{J_2} > 60 \,{\rm GeV}$ Jet |y| < 4.4 $M_{jj} > 500 \, \text{GeV}$ $\Delta y(j_1,j_2)>2$ $\Delta R(j,\ell) > 0.3$

 $\sigma_{\rm EW \ W(\rightarrow \ell \nu) jj}^{\rm fid}$ (7 TeV) 144 ± 23 (stat) ± 23 (exp) ± 13 (th) fb, $\sigma_{\mathrm{EW}\ W(\rightarrow\ell\nu)jj}^{\mathrm{fid}}$ $159 \pm 10 \text{ (stat) } \pm 17 \text{ (exp) } \pm 20 \text{ (th) fb},$ (8 TeV)

 $144 \pm 11 (198 \pm 12) \text{ fb}$

Measured cross sections agree well with SM predictions

35

LHC EW X+2jets measurements 7 and 8 TeV

05/09/2017

EW production Z + 2 jets at 13 TeV

ATLAS: Zjj - CERN-EP-2017-115

• Electrons/muons

QCD corrected

Object	Baseline	High-mass	High-p _T	EW-enriched	EW-enriched, $m_{jj} > 1$ TeV	QCD-enriched
Leptons	$ \eta < 2.47, p_{\rm T} > 25 { m GeV}, \Delta { m R}_{j,\ell} > 0.4$					
Di lenton poir	$81 < m_{\ell\ell} < 101 \text{ GeV}$					
	—			$p_{\mathrm{T}}^{\ell\ell} > 20 \; \mathrm{GeV}$		
y			<i>y</i> < 4.4			
Jets	$p_{\mathrm{T}}^{j_1} > 55 \mathrm{GeV}$		$p_{\mathrm{T}}^{j_1} > 85 \; \mathrm{GeV}$	$p_{\mathrm{T}}^{j_{1}}$ > 55 GeV		
	$p_{\mathrm{T}}^{j_2}$ > 45 GeV		$p_{\mathrm{T}}^{j_2}$ > 75 GeV	$p_{\mathrm{T}}^{j_2}$ > 45 GeV		V
Di-jet system		$m_{jj} > 1$ TeV	_	$m_{jj} > 250 { m ~GeV}$	$m_{jj} > 1 \text{ TeV}$	$m_{jj} > 250 \text{ GeV}$
Interval jets	_			$N_{jet (p_T > 25 \text{ GeV})}^{\text{interval}} = 0$		$N_{jet (p_T > 25 \text{ GeV})}^{interval} \ge 1$
Zjj system	_			$p_{\rm T}^{\rm balance} < 0.15$		$p_{\rm T}^{\rm balance,3} < 0.15$

EW production Z + 2 jets at 13 TeV

Fiducial region	EW-Zjj cross-sections [fb]			
r iducial region	Measured	Powheg+Pythia		
EW-enriched, $m_{jj} > 250 \text{ GeV}$	$119 \pm 16 \pm 20 \pm 2$	125.2 ±3.4		
EW-enriched, $m_{jj} > 1$ TeV	$34.2 \pm 5.8 \pm 5.5 \pm 0.7$	38.5 ± 1.5		

In agreement with the SM predictions

EW production Z + 2 jets at 13 TeV Electrons and muons CMS: CMS-PAS-SMP-16-018

 $\sigma(\text{EW} \ \ell \ell \text{jj}) = 552 \pm 19 \text{ (stat)} \pm 55 \text{ (syst)} \text{ fb} = 552 \pm 58 \text{ (total)} \text{ fb}$

For m_{ll} >50 GeV, p_T^j >25 GeV, $|\eta^j|<5$, m_{jj} >120 GeV, ΔR_{jj} >0.5 05/09/2017 Theoretical value at LO: 543 ±28 fb A.Sav

Measurement of aTGC with Wjj events
The measurement is sensitive to
WWV coupling, eff. Lagrangian
operators up to mass-dimension six

$$i\mathcal{L}_{eff}^{WWV} = g_{WWV} \left\{ \left[g_{1}^{V} \mathcal{V}^{\mu} (W_{\mu\nu} W^{+\nu} - W_{\mu\nu}^{+} W^{-\nu}) + \kappa_{V} W_{\mu}^{\mu} W_{\nu}^{-} \mathcal{V}^{\mu\nu} + \frac{\lambda_{V}}{m_{W}^{2}} \mathcal{V}^{\mu\nu} W_{\nu}^{+\rho} W_{\rho}^{-\mu} \right] CP$$

$$-\left[\frac{\tilde{k}_{V}}{2} W_{\mu}^{-} W_{\nu}^{+} e^{i\nu\rho\sigma} V_{\rho\sigma} + \frac{\tilde{\lambda}_{V}}{2m_{W}^{2}} W_{\rho\mu}^{+\mu} \psi^{+\mu} e^{i\rho\sigma\theta} V_{\alpha\beta} \right] \right\}, \qquad \text{PCP}$$

$$\frac{1}{2} K_{Z} + \tan^{2} \theta_{W} \Delta \kappa_{\gamma}, \quad \lambda_{\gamma} = \lambda_{Z} \equiv \lambda_{V}, \quad g_{1}^{\gamma} = 1, \quad \tilde{\kappa}_{\gamma} = -\cot^{2} \theta_{W} \tilde{\kappa}_{Z}, \quad \text{and} \quad \tilde{\lambda}_{\gamma} = \tilde{\lambda}_{Z} \equiv \tilde{\lambda}_{V}$$
Presence of anomalous couplings -> cross section increase,
to preserve unitarity form-factor with $\Lambda = 4$ TeV
$$\frac{\alpha(q^{2})}{\Lambda^{2}} = \frac{\alpha}{(1 + q^{2}/\Lambda^{2})^{2}}$$

$$\frac{CW}{\Lambda^{2}} = \frac{2}{m_{Z}^{2}} (g_{1}^{Z} - 1), \\ \frac{C_{B}}{\Lambda^{2}} = \frac{2}{\tan^{2} \theta_{W} m_{Z}^{2}} (g_{1}^{Z} - 1) - \frac{2}{\sin^{2} \theta_{W} m_{Z}^{2}} (\kappa_{Z} - 1), \\ \frac{CW}{\Lambda^{2}} = \frac{2}{3g^{2} m_{W}^{2}} \lambda_{V}, \qquad X_{SVIN}, W$$

Measurement of aTGC with Wjj events

Region with $M_{jj} > 1$ TeV and $p_T(lead.jet) > 600$ GeV SHERPA for aTGC + k=NLO/LO at SM

	$\Lambda =$	4 TeV	$\Lambda = \infty$		
	Expected	Observed	Expected	Observed	
Δg_1^Z	[-0.39, 0.35]	[-0.32, 0.28]	[-0.16, 0.15]	[-0.13, 0.12]	
$\Delta \kappa_Z$	[-0.38, 0.51]	[-0.29, 0.42]	[-0.19, 0.19]	[-0.15, 0.16]	
λ_V	[-0.16, 0.12]	[-0.13, 0.090]	[-0.064, 0.054]	[-0.053, 0.042]	
κ _Z	[-1.7, 1.8]	[-1.4, 1.4]	[-0.70, 0.70]	[-0.56, 0.56]	
$ ilde{\lambda}_V$	[-0.13, 0.15]	[-0.10, 0.12]	[-0.058, 0.057]	[-0.047, 0.046]	

Parameter	Expected [TeV ⁻²]	Observed [TeV ⁻²]
$\frac{c_W}{\Lambda^2}$	[-39, 37]	[-33, 30]
$\frac{c_B}{\Lambda^2}$	[-200, 190]	[-170, 160]
$\frac{c_{WWW}}{\Lambda^2}$	[-16, 13]	[-13,9]
$\frac{c_{\tilde{W}}}{\Lambda^2}$	[-720, 720]	[-580, 580]
$rac{c_{ ilde WWW}}{\Lambda^2}$	[-14, 14]	[-11, 11]

Measurement of Tau polarisation

47

 $P_{\tau} = \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}}$

- Z/γ* decaying to ττ, where one tau lepton decays hadronically (is used to measure polarization) and another one leptonically (electron/muon)
- Polarization negative/positive helicity

Measurement of Tau polarisation

Agrees well with the LEP combination - 0.1439 ± 0.0043 theoretical prediction - 0.1517 ± 0.0019

05/09/2017

Conclusions

- This talk presents only some of the EW measurements. Precise measurements require more time and we are now finishing with 8 TeV data
- We are expecting measurements at 13 TeV with more statistics, but in many cases we are already restricted by systematics, understanding of uncertainties is extremely important
- Looking forward to see more new results soon !

Backup

Effective mixing angle

A_{FB} vs mass for different sinθ_{eff} in region 70-250 GeV;
Only 7 TeV with 4.8 fb⁻¹

			$\sin^2 heta_{ m eff}^{ m lept}$
CC electron	$0.2302 \pm$	0.0009(stat.)	$\pm 0.0008(\text{syst.}) \pm 0.0010(\text{PDF}) = 0.2302 \pm 0.0016$
CF electron	$0.2312 \pm$	0.0007(stat.)	$\pm 0.0008(\text{syst.}) \pm 0.0010(\text{PDF}) = 0.2312 \pm 0.0014$
Muon	$0.2307 \pm$	0.0009(stat.)	± 0.0008 (syst.) ± 0.0009 (PDF) = 0.2307 ± 0.0015
El. combined	$0.2308 \pm$	0.0006(stat.)	± 0.0007 (syst.) ± 0.0010 (PDF) $= 0.2308 \pm 0.0013$
Combined	$0.2308 \pm$	0.0005(stat.)	$\pm 0.0006(\text{syst.}) \pm 0.0009(\text{PDF}) = 0.2308 \pm 0.0012$

Compared to other experiments and PDG. LEP+SLC are the most precise

ATLAS: JHEP 1509 (2015) 49

Angular coefficients at different |n|⁴⁷

CMS: PLB 750 (2015) 154

Major uncertainties: statistical, efficiencies low p_T - scale/resolution/templates

EW production Z + 2 jets at 8 TeV Electrons(muons): p_T>25 GeV, |η|<2.5(2.4), |M_z-M_{ll}|<15 GeV Jets with P_T > 50 (30) GeV CMS: EPJC 75 (2015) 66

 $\sigma(\text{EW} \ \ell \ell \text{jj}) = 174 \pm 15 \,(\text{stat}) \pm 40 \,(\text{syst}) \,\text{fb} = 174 \pm 42 \,(\text{total}) \,\text{fb}$

For m_{ll} >50 GeV, p_T^j >25 GeV, $|\eta^j|<5$, $m_{jj}>120$ GeV, $\Delta R_{jj}>0.5$ Theoretical value at LO: 208 ±18 fb

05/09/2017

.Savin, UW

Event selection changes compared to signal region Region same sign region inverted opposite charge sign requirement inverted lepton isolation requirement opposite sign multijet control region same sign multijet control region inverted lepton isolation and opposite charge sign requirements

opposite sign W+jets control region same sign W+jets control region

 $\sum \Delta \phi \ge 3.5, m_{\rm T} > 70 \text{ GeV}$ (instead of $\sum \Delta \phi < 3.5, m_{\rm T} < 30 \text{ GeV}$) $\sum \Delta \phi \ge 3.5$, $m_{\rm T} > 70$ GeV (instead of $\sum \Delta \phi < 3.5$, $m_{\rm T} < 30$ GeV), inverted opposite charge sign requirement

$$R\left(p_{\mathrm{T}}^{\mathrm{hard}}\right) = \frac{|\vec{p}_{\mathrm{T}j_{1}} + \vec{p}_{\mathrm{T}j_{2}} + \vec{p}_{\mathrm{T}Z}|}{|\vec{p}_{\mathrm{T}j_{1}}| + |\vec{p}_{\mathrm{T}j_{2}}| + |\vec{p}_{\mathrm{T}Z}|} = \frac{|\vec{p}_{\mathrm{T}}^{\mathrm{hard}}|}{|\vec{p}_{\mathrm{T}j_{1}}| + |\vec{p}_{\mathrm{T}j_{2}}| + |\vec{p}_{\mathrm{T}Z}|}$$

$$y^* = y_Z - \frac{1}{2}(y_{j_1} + y_{j_2}),$$

 $z^* = rac{y^*}{\Delta y_{
m jj}}.$

