

Higgs production & decays PIC 2017 Prague

Ben Kilminster

Deep Thought finally spoke : "The answer to the great question ... of Life, the Universe, and Everything ... is ... is ... 42. "

So what is the question ?

the same thing happened in physics in 2012

It started with a question

1964: How do particles get mass? Is there a physical Higgs boson?

50 years later, we could answer this question

Delivering proton-proton collisions

- 2010-2011 : 7 TeV
- 2012 : 8 TeV
- 2015-2017 : 13 TeV

Higgs production – SM theory

arXiv:1610.07922

N³LO for ggF

ggF: ~ 87%

pp → H (N3LO QCD + NLO EW)

 $pp \rightarrow qqH (NNLO QCD + NLO EW)$

pp → WH (NNLO QCD + NLO EW) pp → ZH (NNLO QCD + NLO EW) pp → ttH (NLO QCD + NLO EW)

 $pp \rightarrow tH (NLO QCD)$

122

pp → bbH (NNLO QCD in 5FS, NLO QCD in 4FS)

124

126

128

M_н [GeV]

 10^{2}

 10^{-1}

120

VBF: ~7.5%

√s= 13 TeV

LHC HIC

130

VH ≡ **WH** or **ZH**: ~4.5%

ttH: ~1.0%

$\sigma = 48.58 \text{pb}_{-3.27 \text{pb} (-6.72\%)}^{+2.22 \text{pb} (+4.56\%)}$	(theory) $\pm 1.56 {\rm pb} (3.20\%) ({\rm PDF+}\alpha_s)$.
---	---

$\delta\sigma \sim 5.6\%$ theory, 3.2% (PDF+ α_{s})

$48.58\mathrm{pb} =$	$16.00\mathrm{pb}$	(+32.9%)	(LO, rEFT)
	$+20.84\mathrm{pb}$	(+42.9%)	(NLO, rEFT)
	$-2.05\mathrm{pb}$	(-4.2%)	((t, b, c), exact NLO)
	+ 9.56 pb	(+19.7%)	(NNLO, rEFT)
	$+ 0.34 \mathrm{pb}$	(+0.7%)	$(NNLO, 1/m_t)$
	$+ 2.40\mathrm{pb}$	(+4.9%)	(EW, QCD-EW)
	+ 1.49 pb	(+3.1%)	(N ³ LO, rEFT)

Higgs decay

Higgs decays at m_H=125GeV

Precision Higgs boson mass measured from tiny fraction of Higgs decays : $H \rightarrow ZZ (3\%) \rightarrow eeee, ee\mu\mu, \mu\mu\mu\mu$ (0.01%) $H \rightarrow \gamma\gamma (0.2\%)$

CMS & ATLAS

Multipurpose detectors designed for Higgs boson study

Coverage

	CMS	ATLAS			$\sigma_{\rm M}/{ m M}$
Tracking	n < 2.5	n < 2.5		• bb	10%
Muons	ŋ < 2.4	ŋ < 2.7	~90% solid angle	• TT	10-20%
Electrons	η < 2.5	ŋ < 2.5	ee /e eena angle	• WW	16%
Photons	η < 2.5	ŋ < 2.5		• ZZ	1-2%
Jets	ŋ < 5	n < 4.5	~99%	• YX	1-2%
MET	InI < 5	Inl < 4.9			

Oh great LHC, what is the answer to how particles get mass, and if there is a Higgs boson ?

The answer is ... is ... 125

Higgs boson discovery 2012

2 papers from CMS & ATLAS now with 15000 total citations

ATLAS Higgs observation

CMS Observation

1: ATLAS H→WW also plays important role in constraining signal yield

We checked quite carefully and we are quite certain the answer is 125

Run 1 combination

PRL 114 (2015) 191803

Higgs mass CMS+ATLAS end of Run 1

14 Statistics

Advances in computation

Douglass Adams wrote "Hitchhiker's Guide to the Galaxy" in 1978 Indeed, with 1978 computers: It would take about 7.5 million years to discover the Higgs boson

= same amount of time as Deep Thought !

But why is the answer 125 ?

Should be much larger unless there is new physics

What is the question ?

Its always the same old story

Hitchhikers Guide to the Galaxy

- Build a super powerful computer
- Ask it the answer to the universe
- It calculates for over 7 million years
- The answer is 42
- Build another machine to calculate the question

• Particle physics

- Build a huge experiment and a giant distributed computing system
- Ask it how mass arises in the universe
- It calculates in 1 year what used to take 7 millions years
- The answer is 125
- Build another machine (or upgrade to HL-LHC) to calculate why the answer is 125

Clearly, we need more measurements to help answer this

Higgs boson width

Phys.Lett.B 736 (2014) 64-85

SM $\Gamma_H = 4 \text{ MeV}$ Far below experimental resolution ~ 1-2 GeV

• MeV-level measurement of Higgs width possible using off-shell Higgs production

Therefore, $\Gamma_{H} \sim 2m_{H} (\sigma_{off} / \sigma_{on})$

Measured $\Gamma_H < 22 \text{ MeV} @ 95\% \text{ CL}$

(Indirect, assumes no new physics)

Other highlights from Run 1

<u>CMS PRD89 (2014) 092007</u> <u>ATLAS HWW PRD</u>

Production & decay

JHEP 08 (2016) 045

μ is ratio to SM expectation

 $\mu = 1.09^{+0.11}_{-0.10} = 1.09^{+0.07}_{-0.07}$ (stat) $^{+0.04}_{-0.04}$ (expt) $^{+0.03}_{-0.03}$ (thbgd) $^{+0.07}_{-0.06}$ (thsig)

Single global fit, relative to SM expectation

Run 2

Move from 8 TeV (2012) \rightarrow 13 TeV (2015) Higher Energy : *1.6

2013-2014 : 10,000 superconducting splices reinforced

50 ns bunches (20 MHz) → 25 ns (40 MHz) Higher instantaneous luminosity

Mechanism	σ _{13TeV} / σ _{8TeV}
gg→H	2.3
WH	2.0
VBF H+qq	2.4
ttH	3.9

ttH gets the most help

Why Higgs boson is still interesting

- Higgs boson is manifestation of scalar field filling the universe
 - $\cdot\,$ Field gives mass to (most?) fermions and W/Z bosons
 - Scalar field should be sensitive to fluctuations of higher energy scales
 - In fact, if next scale is Planck scale, mass should naturally be 16 orders of magnitude bigger
- Higgs boson is the only particle that can tell the difference between copies of particles
 - $\cdot\,$ Tau (3rd gen.) and muon (2nd gen.) are heavy copies of electron
 - $\cdot\,$ How does Higgs boson know which one is which ?
 - How does Higgs boson know what mass to give these particles ?

Goals for Run 2 Higgs program

- Reestablish H→ZZ, H→γγ, H→WW
- Establish fermionic couplings
 - · H→bb
 - · $H \rightarrow \tau \tau$ (not yet observed by a single experiment)
 - ttH
- More precise Higgs couplings
 - Coupling deviations from SM expectations ↔ new physics
 - For a new mass scale of 1 TeV
 - Composite Higgs -> Couplings change ~3%
 - SUSY (tan β =5) -> H→bb, H→ $\tau\tau$ ~2%
 - Top partners -> ggH ~3%
- Investigate rare decays that could be enhanced by new physics
- Reduce theory uncertainties by measuring in carefully constructed signal regions ...
 - · Identify signal regions more sensitive to new physics
- Differential cross-section measurements

New 13 TeV data

CMS Integrated Luminosity, pp

Precision measurements

• Н→үү

26

Differential measurements refine what we can learn

- Measuring Higgs P_T probes perturbative QCD modeling for the production mechanism
- Measuring Jet multiplicity sensitive to different relative production modes
- Angular observables (e.g., angle between Higgs and beam axis) sensitive to spin & charge conjugation
- Jet rapidity gaps can suppress color flow as in VBF production

Simplified template cross section framework

- New framework established by LHC Higgs Cross section working group
 - Staged approach to factorize signal into truth-level regions of phase space
 - Combination of all channels without overlap
 - Measure cross-sections instead of signal strengths, in mutually exclusive regions of phase space
 - Cross-section measured for specific SM production mode in simple fiducial volumes
 - Goals
 - Minimize dependence on theoretical uncertainties (extrapolations)
 - Maximize experimental sensitivity
 - Isolation of possible BSM effects
 - Minimize the number of bins without loss of experimental sensitivity

Example of simplified template bins

Example of simplified template bins

ATLAS-CONF-2016-067

ATLAS-CONF-2017-045

$H \rightarrow ZZ \rightarrow 4I$

Signal reestablished with c.m.=13 TeV

GeV 60 Data **ATLAS** Preliminary Higgs (m, = 125.09 Ge Events/2.5 ZZ* $H \rightarrow ZZ^* \rightarrow 4I$ 50 tī+V. VVV 13 TeV, 36.1 fb⁻¹ Z+jets, tt ////// Uncertainty 40 30 20 10 0 100 120 160 140 maconstrained [GeV]

Simplified template cross-sections

H→ZZ→4l in more detail

CMS arXiv:1706.09936

VBF-tagged

Differential in H P_T

Precision production modes

• ATLAS $H \rightarrow \gamma \gamma + H \rightarrow ZZ \rightarrow 4I$ combined

Effort to combine simplified template regions between different Higgs decays

Precision 13 TeV results in H→γγ & H→ZZ

	Measurement	CMS	ATLAS
15%	σ/σ _{SM} Η→γγ	$1.16^{+0.11}_{-0.10}(\text{stat})^{+0.09}_{-0.08}(\text{exp})^{+0.06}_{-0.05}(\text{theo})$	$0.99^{+0.12}_{-0.11}$ (stat.) $^{+0.06}_{-0.05}$ (exp.) $^{+0.06}_{-0.05}$ (theory)
~20%	σ/σ _{SM} H→ZZ	$1.05^{+0.15}_{-0.14}$ (stat) $^{+0.11}_{-0.09}$ (syst)	$1.28^{+0.18}_{-0.17}(\text{stat.})^{+0.08}_{-0.06}(\text{exp.})^{+0.08}_{-0.06}(\text{th.})$
	Mass H→ZZ→4I [GeV]	125.26 ±0.20(stat) ± 0.08(sys) best measurement	124.88 ±0.37 ± 0.05
	Mass H→γγ & H→ZZ [GeV]		124.98 ± 0.28

Compare to run 1 CMS+ATLAS combined mass : 125.09 ±0.24

Statistical uncertainties still dominate this page

Searches for BSM

• Tensor structure probed using effective Langrangian with no new physics below $\Lambda = 1$ TeV

$$\mathcal{L}_{0}^{V} = \begin{cases} \kappa_{\mathrm{SM}} \left[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \right] \\ -\frac{1}{4} \left[\kappa_{Hgg} g_{Hgg} G_{\mu\nu}^{a} G^{a,\mu\nu} + \tan \alpha \kappa_{Agg} g_{Agg} G_{\mu\nu}^{a} \tilde{G}^{a,\mu\nu} \right] \\ -\frac{1}{4} \frac{1}{\Lambda} \left[\kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + \tan \alpha \kappa_{AZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu} \right] \\ -\frac{1}{2} \frac{1}{\Lambda} \left[\kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + \tan \alpha \kappa_{AWW} W_{\mu\nu}^{+} \tilde{W}^{-\mu\nu} \right] \end{cases} \chi_{0}$$

Fit to $\mathbf{\kappa}_{Hvv}$ is coupling of CP-even (scalar) BSM interaction with W/Z

Decay-side BSM probes

• Search for anomalous interactions using matrixelement approach to study angular distributions

Coupling to fermions

· (same-sign, µ from

 $H \rightarrow WW/ZZ$, μ from t)

Coupling to Taus

arXiv:1708.00373

JHEP 08 (2016) 045

• First single-experiment observation of $H \rightarrow \tau \tau$

(previously, achieved with CMS+ATLAS combo)

Higgs coupling to leptons, directly to fermions, and 3rd generation firmly established

Dominant decay of H→bb

- Tevatron 2 TeV ppbar by 2012
 - Tevatron data (2003-2011) 10 fb⁻¹
 - Evidence for Higgs reported from CDF + D0
 - Local significance of 3σ at 125 GeV (1.9 σ expected)
 - Dominated by H→bb channel

• LHC as of 2016

- CMS & ATLAS each found only ~ 2σ significance
 - 5 fb⁻¹ of 7 TeV 2011
 - 20 fb⁻¹ of 8 TeV data 2012
 - 4 fb⁻¹ of 13 TeV data 2015
- Why so hard ?

The search for H→bb

Differences between Tevatron & LHC

Cross- sections fb	Tevatron	LHC	factor
gg→H	800	50000	*60
qq→WH (w/lepton)	40	150	*4

gg→H→bb impossible at both due to QCD bbX (cross-section is 500 000 000 pb at LHC)

Signal bigger at LHC, but backgrounds much bigger

VH→V+bb

100

arXiv:1708.03299 10.1103/PhysRevLett.101.251803

Kinematic fit to get best Mbb mass for ZH→IIbb similar to technique developed at CDF

δM(bb)/M(bb) improved from 12% to 7% for ZH→IIbb

$VH \rightarrow V+bb$

• 2017 brought LHC evidence for H→bb finally

gg→H→bb

- Highest cross-section, highest branching ratio
 - · gg \rightarrow H \rightarrow bb : σ = 30 000 pb
- However, highest background
 - QCD b prod. : $\sigma = 500\ 000\ 000\ pb$
- And resolution is 5-10 times larger than for γγ & ZZ
 - · δM(bb)/M(bb) ~ 10%
- Conventional wisdom says impossible to find

High-PT Higgs

Low PT

High P_T Higgs bosons have boosted decay products

Identifying high P_T H→bb

<u>JME-14-010</u> <u>CMS-PAS-BTV-15-002</u>

Tagging high P_T jets with two b's

Improving Mjj res. with softdrop algorithm

Search for gg→H→bb [™]

- Selection keys on high-P_T (potential new physics) region
 - · Trigger on high-PT ISR jet or high Σ(PT)
 - jets PT > 450 GeV, applying soft-drop mass, double-b tagger

Extrapolating ... evidence could be possible with CMS+ATLAS by end of Run 3 !

Coupling to 2nd generation

- SM BR(H→μμ) = 0.2%
- ATLAS analysis searches for all types of production modes
 - Using all data : 5fb⁻¹ 7 TeV, 20 fb⁻¹ 8 TeV, 36 fb⁻¹ 13 TeV
 - Split events into 8 categories, BDT to identify pure VBF category, then combined

σ < 2.7*SM @ 95% CL

10X more data $\rightarrow 2\sigma$ significance \rightarrow with CMS+ATLAS Run 2

Rare decays of the Higgs

VVVV Z

arXiv:1305.0663

			H f
Rare Higgs decay	CMS 95% CL limit	ATLAS 95% CL limit	f mm y
H→Zγ	< 9	< 6.6 _{New}	Obtainable with < 1000 fb ⁻¹
Η→J/ψγ	< 540	<540	Probes 2nd generation quark couplings
H→ee	< 10 ⁵		Probes 1st generation couplings
Η→ργ		< 52 _{New}	Probes u,d,s quarks

	VP mode	$\mathcal{B}^{ ext{SM}}$	VP^* mode	$\mathcal{B}^{\mathrm{SM}}$
Other nessibilities .	$W^-\pi^+$	$0.6 imes 10^{-5}$	$W^- ho^+$	$0.8 imes 10^{-5}$
other possibilities.	W^-K^+	0.4×10^{-6}	$Z^0 \phi$	$2.2 imes 10^{-6}$
	$Z^0\pi^0$	$0.3 imes 10^{-5}$	$Z^0 ho^0$	$1.2 imes 10^{-6}$
	$W^-D_s^+$	$2.1 imes 10^{-5}$	$W^-D_s^{*+}$	$3.5 imes 10^{-5}$
	W^-D^+	0.7×10^{-6}	W^-D^{*+}	1.2×10^{-6}
	$Z^0\eta_c$	1.4×10^{-5}	$Z^0 J/\psi$	$2.2 imes 10^{-6}$

Observation in foreseeable future would mean new physics

Double-Higgs production

Higgs potential with a physical Higgs boson

$$V(H) = \frac{1}{2}M_{H}^{2}H^{2} + \frac{1}{2}\frac{M_{H}^{2}}{\nu}H^{3} + \frac{1}{8}\frac{M_{H}^{2}}{\nu^{2}}H^{4} + \text{constant}$$

Leading diagrams ~ 40 fb

120 000 HH with 3000 fb :

 $\lambda_{HHH} = \frac{3M_H^2}{M_H^2}$

bb Channels	Nevts
bbbb	39,951
bbWW	14,886
bb2lep (e/mu)	85
bbtautau	4,375
bbZZ	1,827
bb4lep (e/mu)	9
bb2lep+X	131
bbgamgam	158

Considered so far by CMS+ATLAS

Best limit so far CMS with **19*SM** using 36 fb⁻¹

Score card

Channel	Result CMS and/or ATLAS
Decay	
H→ZZ	Observed
Η→γγ	Observed
H→WW	Observed
Н→тт	Observed
H→bb	Evidence
H→µµ	95% CL - end of Run 2
Production	
gg→H	Observed
gg→H VBF	Observed Observed (in combination)
gg→H VBF ttH	Observed Observed (in combination) Close to evidence
gg→H VBF ttH VH	Observed Observed (in combination) Close to evidence Evidence
gg→H VBF ttH VH HH	Observed Observed (in combination) Close to evidence Evidence end of Run HL-LHC
gg→H VBF ttH VH HH Global properties	Observed Observed (in combination) Close to evidence Evidence end of Run HL-LHC
gg→H VBF ttH VH HH Global properties Uncertainty on global fit	Observed Observed (in combination) Close to evidence Evidence end of Run HL-LHC 10%
gg→H VBF ttH VH HH Global properties Uncertainty on global fit Mass	Observed Observed (in combination) Close to evidence Evidence end of Run HL-LHC 10% 0.2%

Future

As of now ~ 100 fb⁻¹

	300 fb ⁻¹			3000 fb ⁻¹
2017-18	2019-20	2021-23	2024-2026	2026-2037
13 TeV run	LHC upgrade	14 TeV run	LHC upgrade & Major upgrades of CMS & ATLAS	14 TeV run

Goals for Run 2 Higgs program

- Reestablish H→ZZ, H→γγ, H→WW
- Establish fermionic couplings
 - · H→bb
 - · $H \rightarrow \tau \tau$ (not yet observed by a single experiment)
 - ttH
- More precise Higgs couplings
 - Coupling deviations from SM expectations ↔ new physics
 - For a new mass scale of 1 TeV
 - Composite Higgs -> Couplings change ~3%
 - SUSY (tan β =5) -> H→bb, H→ $\tau\tau$ ~2%
 - Top partners -> ggH ~3%
- Investigate rare decays that could be enhanced by new physics
- Reduce theory uncertainties by measuring in carefully constructed signal regions ...
 - · Identify signal regions more sensitive to new physics
- Differential cross-section measurements

Conclusions

Reestablish H→ZZ, H→γγ, H→WW

ZZ, yy observed, WW on its way

- Establish fermionic couplings
 - · H→bb
 - · $H \rightarrow \tau \tau$ (not yet observed by a single experiment)
 - ttH

bb evidence from both experiments, $\tau\tau$ observed, ttH close

- More precise Higgs couplings
 - Coupling deviations from SM expectations ↔ new physics
 - For a new mass scale of 1 TeV
 - Composite Higgs -> Couplings change ~3%
 - SUSY $(\tan\beta=5) \rightarrow H \rightarrow bb, H \rightarrow \tau \tau \sim 2\%$
 - Top partners -> ggH ~3%

Rare channels considered including (μμ, ργ)

cross section method

- Investigate rare decays that could be enhanced by new physics
- Reduce theory uncertainties by measuring in carefully constructed signal regions ... Implemented signal template
 - Identify signal regions more sensitive to new physics
- Differential cross-section measurements

Differential ZZ, yy measurements

Conclusions 2

- We know the answer (125 GeV)
- Now we just need to know the question ...

BACKUPS

Theory approximations

$48.58\mathrm{pb} =$	$16.00\mathrm{pb}$	(+32.9%)	(LO, rEFT)
	$+20.84\mathrm{pb}$	(+42.9%)	(NLO, rEFT)
	$-2.05\mathrm{pb}$	(-4.2%)	((t, b, c), exact NLO)
	$+ 9.56 \mathrm{pb}$	(+19.7%)	(NNLO, rEFT)
	$+ 0.34 \mathrm{pb}$	(+0.7%)	(NNLO, $1/m_t$)
	$+ 2.40\mathrm{pb}$	(+4.9%)	(EW, QCD-EW)
	+ 1.49 pb	(+3.1%)	(N ³ LO, rEFT)

- rEFT : approximation from EFT scaled by R_{LO} which scales to the exact LO cross-section
- t,b,c mass effects from top, bottom, charm quarks
- 1/m_t: heavy top approximation with expansion in 1/ m_t

How do the SM measurements fit together ?

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Standa	rd Model Total Produ	ction Cross	Section Measure	ements July 2017	∫£ dt [fb ⁻¹]	Reference
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	nn	$\sigma = 96.07 \pm 0.18 \pm 0.91 \text{ mb (data)}$ COMPETE HPR1R2 (theory)			4	50×10 ⁻⁸	PLB 761 (2016) 158
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ЧЧ	$\sigma = 95.35 \pm 0.38 \pm 1.3$ mb (data) COMPETE HPR1R2 (theory)		0	•	8×10 ⁻⁸	Nucl. Phys. B, 486-548 (201
VV = $\frac{1}{2}$ ($$	۱۸/	$\sigma = 190.1 \pm 0.2 \pm 6.4$ nb (data) DYNNLO + CT14NNLO (theory)			þ	0.081	PLB 759 (2016) 601
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	VV	$\sigma = 98.71 \pm 0.028 \pm 2.191 \text{ nb (data)}$ DYNNLO + CT14NNLO (theory)		0		4.6	EPJC 77 (2017) 367
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\sigma = 58.43 \pm 0.03 \pm 1.66$ nb (data) DYNNLO+CT14 NNLO (theory)				3.2	JHEP 02 (2017) 117
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Z	$\sigma = 34.24 \pm 0.03 \pm 0.92$ nb (data) DYNNLO+CT14 NNLO (theory)		Δ		20.2	JHEP 02 (2017) 117
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\sigma = 29.53 \pm 0.03 \pm 0.77$ nb (data) DYNNLO+CT14 NNLO (theory)		0		4.6	JHEP 02 (2017) 117
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	tī	$\sigma = 818 \pm 8 \pm 35 \text{ pb} (\text{data})$ top++ NNLO+NLL (theory)	¢		0	3.2	PLB 761 (2016) 136
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$\sigma = 242.9 \pm 1.7 \pm 8.6 \text{ pb} (\text{data})$ top++ NNLO+NNLL (theory)	Ą			20.2	EPJC 74: 3109 (2014)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\sigma = 182.9 \pm 3.1 \pm 6.4$ pb (data) top++ NNLO+NNLL (theory)	φ [']			4.6	EPJC 74: 3109 (2014)
$ \begin{array}{c} t_{t-chan} & = \frac{9}{6} \frac{9}{6} \frac{1}{4} \frac{1}{4} - 4 \frac{1}{6} 1$	t _{t-chan}	$\sigma = 247 \pm 6 \pm 46 \text{ pb} (\text{data})$ NLO+NLL (theory)	þ			3.2	JHEP 04 (2017) 086
$\frac{1}{10^{-5}} = \frac{10}{10^{-2}} + \frac{10}{10^{-2}} + \frac{10}{10^{-2}} + \frac{10}{10^{-1}} + \frac{10}$		$\sigma = 89.6 \pm 1.7 + 7.2 - 6.4 \text{ pb (data)}$ NLO+NLL (theory)	Δ			20.3	arXiv:1702.02859 [hep-ex]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\sigma = 68 \pm 2 \pm 8 \text{ pb (data)}$ NLO+NLL (theory)	0			4.6	PRD 90, 112006 (2014)
WW $r = 68.2 - 1.2 + 4.6 p (stab)$ A Theory A Plant Pla	WW	$\sigma = 142 \pm 5 \pm 13$ pb (data) NNLO (theory)	Ū.			3.2	arXiv: 1702.04519 [hep-ex]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$\sigma = 68.2 \pm 1.2 \pm 4.6 \text{ pb (data)}$ NNLO (theory)	Δ	Theory		20.3	PLB 763, 114 (2016)
$ \begin{array}{c} H \\ H \\ \hline & - 57 + 6 - 59 + 4 - 33 \text{ be (data)} \\ \hline & - 57 + 6 - 59 + 4 - 33 \text{ be (data)} \\ \hline & - 217 + 3 + 33 - 27 \text{ po (data)} \\ \hline & - 217 + 3 + 33 - 27 \text{ po (data)} \\ \hline & - 217 + 3 + 33 - 27 \text{ po (data)} \\ \hline & - 217 + 57 + 39 + 33 - 27 \text{ po (data)} \\ \hline & - 214 - 145 + 10 + 76 - 29 + 33 - 27 \text{ po (data)} \\ \hline & - 214 - 145 + 10 + 76 - 29 + 33 - 27 \text{ po (data)} \\ \hline & - 214 - 145 + 10 + 76 - 29 + 33 - 27 \text{ po (data)} \\ \hline & - 214 - 145 + 10 + 76 - 29 + 33 - 27 \text{ po (data)} \\ \hline & - 214 - 145 + 10 + 76 - 29 + 33 - 27 \text{ po (data)} \\ \hline & - 214 - 145 + 10 + 76 - 29 + 76 + 20 + 20 + 20 + 20 + 20 + 20 + 20 + 2$		$\sigma = 51.9 \pm 2 \pm 4.4$ pb (data) NNLO (theory)	0			4.6	PRD 87, 112001 (2013) PRL 113, 212001 (2014)
H $r = 77, r = 3, r = 3, r = 3, r = 0, $	Н	$\sigma = 57 + 6 - 5.9 + 4 - 3.3 \text{ pb (data)}$ LHC-HXSWG YR4 (theory)	¢	LHC pp $\sqrt{s} = 7$ TeV	¢ l	36.1	ATLAS-CONF-2017-047
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\sigma = 27.7 \pm 3 + 2.3 - 1.9$ pb (data) LHC-HXSWG YR4 (theory)	Å	Data		20.3	EPJC 76, 6 (2016)
Wt $v = 94 \pm 10 + 38 - 23 \text{ pb} (dala)$ $v = 23 \pm 1.3 \pm 3.4 - 3.7 \text{ pb} (dala)$ $v = 10.8 \pm 2.4 \pm 3.4 - 3.7 \text{ pb} (dala)$ $v = 10.8 \pm 2.4 \pm 3.4 - 3.7 \text{ pb} (dala)$ $v = 10.8 \pm 2.4 \pm 3.4 - 3.7 \text{ pb} (dala)$ $v = 10.8 \pm 2.4 \pm 3.4 - 3.7 \text{ pb} (dala)$ $v = 10.8 \pm 2.4 \pm 3.4 - 3.7 \text{ pb} (dala)$ $v = 10.8 \pm 2.6 \pm 0.9 \text{ pb} (dala)$ $v = 10.8 \pm 2.6 \pm 0.9 \text{ pb} (dala)$ $v = 10.8 \pm 2.6 \pm 0.9 \text{ pb} (dala)$ $v = 10.8 \pm 2.6 \pm 0.9 \text{ pb} (dala)$ $v = 10.8 \pm 2.6 \pm 0.9 \text{ pb} (dala)$ $v = 10.4 \pm 1.3 \pm 1.6 \text{ cdal}$ $v = 10.4 \pm 1.3 \pm 1.6 \text{ cdal}$ $v = 10.4 \pm 1.4 \pm 1.6 \text{ cdal}$ $v = 10.4 \pm 1.4 \pm 1.6 \text{ cdal}$ $v = 10.4 \pm 0.4 \pm 0.4 \text{ cdal}$ $v = 10.4 \pm 0.4 \pm 0.4 \text{ cdal}$ $v = 10.4 \pm 0.4 \pm 0.4 \text{ cdal}$ $v = 10.4 \pm 0.4 \text{ cdal}$ $v = 10.4 \pm 0.3 \text{ cdal}$ v = 10.4 cdal v = 10.4 cd v = 10.4 cd		$\sigma = 22.1 + 6.7 - 5.3 + 3.3 - 2.7$ pb (data) LHC-HXSWG YR4 (theory)	Þ	stat		4.5	EPJC 76, 6 (2016)
Wt $r = 23 \pm 1.3 \pm 3.4 - 3.7 \text{ bb}(\text{data})$ A LHC pp $\sqrt{s} = 8 \text{ TeV}$ 20.3 JHEP 01.084 (2016) WZ $r = 50 \pm 3.2 \pm 3.0 \pm 0.0 \text{ tab}$ Data Stat Stat <td< td=""><td rowspan="3">Wt</td><td>$\sigma = 94 \pm 10 + 28 - 23 \text{ pb (data)}$ NLO+NNLL (theory)</td><td></td><td>stat ⊕ syst</td><td></td><td>3.2</td><td>arXiv:1612.07231 [hep-ex]</td></td<>	Wt	$\sigma = 94 \pm 10 + 28 - 23 \text{ pb (data)}$ NLO+NNLL (theory)		stat ⊕ syst		3.2	arXiv:1612.07231 [hep-ex]
$\frac{\sigma = 168 + 29 + 39 + 90}{WZ} = \frac{\sigma = 168 + 29 + 39 + 90}{WXZ} = \frac{\sigma = 168 + 29 + 38 + 90}{WXZ} = \frac{\sigma = 168 + 29 + 38 + 90}{WXZ} = \frac{\sigma = 168 + 29 + 38 + 90}{WXZ} = \frac{\sigma = 168 + 29 + 38 + 90}{WXZ} = \frac{\sigma = 168 + 29 + 38 + 90}{WXZ} = \frac{\sigma = 168 + 29 + 38 + 90}{WXZ} = \frac{\sigma = 168 + 29 + 38 + 90}{WXZ} = \frac{\sigma = 168 + 29 + 38 + 90}{WXZ} = \frac{\sigma = 168 + 29 + 38 + 90}{WXZ} = \frac{\sigma = 168 + 29 + 38 + 90}{WXZ} = \frac{\sigma = 168 + 29 + 38 + 90}{WXZ} = \frac{\sigma = 168 + 29 + 38 + 90}{WXZ} = \frac{\sigma = 168 + 29 + 38 + 90}{WXZ} = \frac{\sigma = 168 + 29 + 38 + 90}{WXZ} = \frac{\sigma = 168 + 29 + 38 + 90}{WXZ} = \frac{\sigma = 168 + 29 + 38 + 90}{WXZ} = \frac{\sigma = 168 + 29 + 38 + 90}{WXZ} = \frac{\sigma = 168 + 29 + 38 + 90}{WXZ} = \frac{\sigma = 168 + 29 + 38 + 90}{WXZ} = \frac{\sigma = 168 + 29 + 168 + 90}{WXZ} = \frac{\sigma = 168 + 29 + 168 + 90}{WXZ} = \sigma = 168 + 28 + 168 + 1$		$\sigma = 23 \pm 1.3 + 3.4 - 3.7 \text{ pb (data)}$ NLO+NLL (theory)	↓ '	LHC pp $\sqrt{s} = 8$ TeV		20.3	JHEP 01, 064 (2016)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\sigma = 16.8 \pm 2.9 \pm 3.9 \text{ pb} (\text{data})$ NLO+NLL (theory)	þ			2.0	PLB 716, 142-159 (2012)
WZ $r = 24.3 = 0.6 \pm 0.9 \text{ pb}(\text{diab})$ WATRX (NALO) (theory) A Stat \oplus syst 20.3 PED 93.092004 (2016) (2016) 179 ZZ $r = 19 \pm 1.4 - 1.3 \pm 1.0 \text{ pb}(\text{diab})$ WATRX (NALO) (theory) C LHC pp $\sqrt{s} = 13 \text{ TeV}$ 4.6 PED 73.09204 (2016) (2016) (2016) 179 ZZZ $r = 7.2 \pm 0.6 \pm 0.7 \text{ pb}(\text{diab})$ WATRX (NALO) (theory) Data Stat Data Stat Stat \oplus syst 36.1 PLE 73.(2012) (2017) (20	WZ	$\sigma = 50.6 \pm 2.6 \pm 2.5 \text{ pb} (\text{data})$ MATRIX (NNLO) (theory)	¢	▲ Dala	Ū Ū	3.2	PLB 762 (2016) 1 PLB 761 (2016) 179
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\sigma = 24.3 \pm 0.6 \pm 0.9 \text{ pb} (\text{data})$ MATRIX (NNLO) (theory)	Δ	stat ⊕ syst	4	20.3	PRD 93, 092004 (2016) PLB 761 (2016) 179
$ \begin{array}{c} r^{2} = 17.2 \pm 0.6 \pm 0.7 \text{ (bfory)} \\ \text{Matrix (NLO) (sheary)} \\ r = 33 \pm 0.4 \pm 0.4 = 0.3 \text{ pb} (data) \\ r = 0.3 \pm 0.4 \pm 0.4 = 0.3 \text{ pb} (data) \\ r = 0.3 \pm 0.4 \pm 0.4 = 0.3 \text{ pb} (data) \\ r = 0.3 \pm 0.4 \pm 0.4 = 0.3 \text{ pb} (data) \\ r = 0.3 \pm 0.4 \pm 0.4 = 0.3 \text{ pb} (data) \\ r = 0.3 \pm 0.4 \pm 0.4 = 0.3 \text{ pb} (data) \\ r = 0.3 \pm 0.4 \pm 0.4 = 0.3 \text{ pb} (data) \\ r = 0.3 \pm 0.4 \pm 0.4 = 0.3 \text{ pb} (data) \\ r = 0.3 \pm 0.4 \pm 0.4 = 0.3 \text{ pb} (data) \\ r = 0.3 \pm 0.4 \pm 0.4 = 0.3 \text{ pb} (data) \\ r = 0.3 \pm 0.4 \pm 0.4 = 0.3 \text{ pb} (data) \\ r = 0.3 \pm 0.4 \pm 0.4 = 0.3 \text{ pb} (data) \\ r = 0.3 \pm 0.4 \pm 0.4 = 0.3 \text{ pb} (data) \\ r = 0.3 \pm 0.4 \pm 0.4 = 0.3 \text{ pb} (data) \\ r = 0.3 \pm 0.4 \pm 0.4 = 0.4 \text{ pb} (data) \\ r = 0.3 \pm 0.4 \pm 0.4 = 0.4 \text{ pb} (data) \\ r = 0.3 \pm 0.4 \pm 0.4 = 0.4 \text{ pb} (data) \\ r = 0.3 \pm 0.4 \pm 0$		$\sigma = 19 + 1.4 - 1.3 \pm 1 \text{ pb (data)}$ MATRIX (NNLO) (theory)	Ò	$1 \text{ HC nn} \sqrt{5} = 12 \text{ To}/$		4.6	EPJC 72, 2173 (2012) PLB 761 (2016) 179
ZZ $\sigma = 7.3 \pm 0.4 + 0.4 - 0.3 \text{ pb} (data)$ A Data stat stat Data stat $\sigma = 6.7 \pm 0.7 \pm 0.5 - 0.4 \text{ pb} (data)$ A Data stat 20.3 JHEP 10, 099 (2017) $T_s = chan$ $\sigma = 4.8 \pm 0.8 \pm 1.6 \pm 1.3 \text{ pb} (data)$ A 20.3 Stat $T_s = chan$ $\sigma = 4.8 \pm 0.8 \pm 1.6 \pm 1.3 \text{ pb} (data)$ A 20.3 JHEP 00, 328 (2013) $T_s = chan$ $\sigma = 1.5 \pm 0.72 \pm 0.3 \text{ pb} (data)$ A ZO.3 PLB 756, 228-246 (2016) $T_s = 0.92 \pm 0.3 \text{ pb} (data)$ A ATLAS Preliminary 3.2 EPUC 77 (2017) 40 $\sigma = 0.92 \pm 0.2 \text{ p0} (1p) (data)$ B Bun 1,2 $\sqrt{s} = 7, 8, 13 \text{ TeV}$ 3.2 EPUC 77 (2017) 40 $\tau = 176 \pm 52 - 48 \pm 24 \text{ b} (data)$ B B B B B B $\tau = 176 \pm 52 - 48 \pm 24 \text{ b} (data)$ B B	ZZ	$\sigma = 17.2 \pm 0.6 \pm 0.7 \text{ pb (data)}$ Matrix (NNLO) & Sherpa (NLO) (theory)	¢.		6	36.1	ATLAS-CONF-2017-031 PLB 735 (2014) 311
$\frac{1}{ttV} = \frac{1}{ttV} = \frac{1}{tt} + \frac{1}{t} +$		$\sigma = 7.3 \pm 0.4 + 0.4 - 0.3 \text{ pb} \text{ (data)}$	$\mathbf{\Delta}$	Data		20.3	JHEP 01, 099 (2017)
$ \begin{array}{c} \sigma = 4.8 \pm 0.8 \pm 1.6 \pm 1.3 \text{ pb} (data) \\ \hline \mathbf{t} \overline{\mathbf{W}} \\ \hline \mathbf{t} \overline{\mathbf{W}} \\ \sigma = 3.69 \pm 66 - 79 \pm 4.40 (data) \\ \hline \mathbf{M} adgraph5 \pm 3MCNLO (theory) \\ \sigma = 3.69 \pm 66 - 79 \pm 4.40 (data) \\ \hline \mathbf{M} CFM (theory) \\ \sigma = 0.92 \pm 0.29 \pm 0.1 \text{ pb} (data) \\ \hline \mathbf{M} adgraph5 \pm 3MCNLO (theory) \\ \sigma = 1.76 \pm 52 - 48 \pm 24 \text{ tb} (data) \\ \hline \mathbf{T} \overline{\mathbf{Z}} \\ \hline \mathbf{T} \overline{\mathbf{Z}} \\ \mathbf{T} \overline$		$\sigma = 6.7 \pm 0.7 + 0.5 - 0.4$ pb (data) NNLO (theory)	0	stat ⊕ svst		4.6	JHEP 03, 128 (2013) PLB 735 (2014) 311
$\sigma = 1.5 \pm 0.72 \pm 0.33 \text{ pb} (data) \\ Madgraph5 + aMCNLO (theory) \\ \sigma = 369 + 86 - 79 \pm 44 \text{ fb} (data) \\ MCFM (theory) \\ \sigma = 0.92 \pm 0.29 \pm 0.1 \text{ pb} (data) \\ MCFM (theory) \\ \sigma = 176 + 52 - 48 \pm 24 \text{ fb} (data) \\ HELAC-NLO (theory) \\ \sigma = 0.92 \pm 1.70 \pm 160 \text{ fb} (data) \\ HELAC-NLO (theory) \\ \sigma = 0.92 \pm 1.70 \pm 160 \text{ fb} (data) \\ HELAC-NLO (theory) \\ \sigma = 0.92 \pm 1.70 \pm 160 \text{ fb} (data) \\ HELAC-NLO (theory) \\ \sigma = 0.92 \pm 1.70 \pm 10^{-1} \text{ fb} (data) \\ HELAC-NLO (theory) \\ \sigma = 0.92 \pm 1.70 \pm 10^{-1} \text{ fb} (data) \\ HELAC-NLO (theory) \\ \sigma = 0.92 \pm 1.70 \pm 10^{-1} \text{ fb} (data) \\ HELAC-NLO (theory) \\ \sigma = 0.92 \pm 1.70 \pm 10^{-1} \text{ fb} (data) \\ HEV = 1.10^{-1} \text{ fb} ($	t _{s-chan}	$\sigma = 4.8 \pm 0.8 \pm 1.6 - 1.3 \text{ pb} (\text{data})$ NLO+NNL (theory)				20.3	PLB 756, 228-246 (2016)
ttw $\sigma = 369 + 86 - 79 \pm 44$ ib (data) MCFM (theory) 20.3 JHEP 11, 172 (2015) tiZ $\sigma = 0.92 \pm 0.29 \pm 0.1$ pb (data) Madgraph5 + aMCNLO (theory) $r = 0.23 + 0.1$ pb (data) ($\sigma = 176 + 52 - 48 \pm 24$ ib (data) 20.3 JHEP 11, 172 (2015) tZj $\sigma = 620 \pm 170 \pm 160$ fb (data) NLO+NLL (theory) $r = 0.23 + 10^{-1} \pm 10^{-1}$ 10^{-1}	t ī W	$\sigma = 1.5 \pm 0.72 \pm 0.33 \text{ pb (data)}$ Madgraph5 + aMCNLO (theory)	ATLAS	Preliminary		3.2	EPJC 77 (2017) 40
tīZ $\sigma = 0.92 \pm 0.29 \pm 0.1 \text{ pb (data)}$ Madgraph5 + at 24 fb (data) Run 1,2 $\sqrt{s} = 7, 8, 13 \text{ TeV}$ 3.2 EPJC 77 (2017) 40 tZj $\sigma = 620 \pm 170 \pm 160 \text{ fb (data)}$ NLO+NLL (theory) Image: Constrained and the constrated and the constrained and the constrained and the c		$\sigma = 369 + 86 - 79 \pm 44 \text{ fb} \text{ (data)}$				20.3	JHEP 11, 172 (2015)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. – –	$\sigma = 0.92 \pm 0.29 \pm 0.1 \text{ pb (data)}$ Maddraph5 + aMCNLO (theory)	b Run 1.2	$\sqrt{s} = 7.8.13$ TeV		3.2	EPJC 77 (2017) 40
$tZj = \frac{620 \pm 170 \pm 160 \text{ fb} (data)}{10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 1 10^{1} 10^{2} 10^{3} 10^{4} 10^{5} 10^{6} 10^{11} 0.5 1 1.5 2 2.5$	ttZ	$\sigma = 176 + 52 - 48 \pm 24 \text{ fb} \text{ (data)}$ HEI AC-NLO (theory)		v		20.3	JHEP 11, 172 (2015)
$10^{-5} \ 10^{-4} \ 10^{-2} \ 10^{-1} \ 1 \ 10^{1} \ 10^{2} \ 10^{3} \ 10^{4} \ 10^{5} \ 10^{6} \ 10^{11} \ 0.5 \ 1 \ 1.5 \ 2 \ 2.5$	tZj	$\sigma = 620 \pm 170 \pm 160 \text{ fb (data)}$ NLO+NLL (theory)	4	, , , <u>, , , , , , , , , , , , , , , , </u>		36.1	TOPQ-2016-14
$10^{-3} 10^{-4} 10^{-3} 10^{-2} 10^{-1} I 10^{1} 10^{2} 10^{3} 10^{4} 10^{3} 10^{0} 10^{11} 0.5 I 1.5 2 2.5$							
ro - [nh] data/thaary		$10^{-5} \ 10^{-4} \ 10^{-5} \ 10^{-2} \ 10^{-1}$	$1 10^{1} 10^{2} 10^{2}$	$10^{\circ} 10^{4} 10^{\circ} 10^{\circ} 10^{11}$	0.5 1 1.5 2 2.5		
				FO - [nh]	data/theory		

How does the SM **theory** fit together ?

60