

Searches for \mathbb{Z} **at the LHC**

Jet $pT = 104$ GeV

Sezen Sekmen for ATLAS and CMS⁶²61/aborations **Kyungpook National University PIC2017, Prague, 4-8 Sept 2017**

MET = 269 GeV

Why do we keep searching for SUSY?

W

H

Y

?

SM is an effective theory. We would like to understand physics in a more generic framework which completes the missing pieces.

SUSY unifies gauge couplings at the GUT scale because contributions from new particles modify running of the gauge couplings.

SM does not incorporate gravity. SUSY could.

> Fine tuning in the corrections to the Higgs mass can be resolved by adding new particles with different spin. SUSY contributions to Higgs mass cancel SM contributions and stabilize the EW scale.

A symmetry called R-parity forces the lightest supersymmetric particle (LSP) to be stable. When LSP is heavy, neutral and stable, it is a good dark matter candidate.

Naturalness drives most SUSY searches

Hierarchy problem: Measured Higgs mass is 125 GeV despite the divergent corrections from the top loop. The divergencies can be cancelled and EW scale can be stabilized by contributions from SUSY particles – but this imposes requirements on the SUSY mass spectrum:

- Leading contribution to the Higgs mass comes from Higgsinos \rightarrow \leq few hundred GeV
- Stops contribute to Higgs mass via 1-loop corrections \rightarrow \leq few hundred GeV
- Sbottom left can be tied to stop left \rightarrow \leq few hundred GeV.
- Gluinos contribute to Higgs mass via 2-loop corrections \rightarrow \leq few TeV
- Rest of the spectrum can be decoupled / heavy.
- But *strained* by the current mass limits.

R.Barbieri & D.Pappadopulo JHEP 0910:061,2009

SUSY(-like) models for interpretation

- Use mainly simplified models. Occasional use of full models like phenomenological MSSM (generic interpretation at the end of a Run).
- A simplified model spectrum (SMS) is defined by a set of hypothetical particles and a sequence of their production and decays.
- Mainly production of 2 particles.
- Each particle decays directly or via a cascade to particles $X + a$ neutral, undetected particle (i.e., neutralino lighterst SUSY particle), or to SM particles (for RPV).
- For each SMS point, experimental acceptance times efficiency (A X e) is calculated.
- From this information, a 95% confidence level upper limit on the product of σ x BR is derived as a function of the particle mass.

A SUSY analys

Run1: 2008-2013, $7 TeV, ~5 fb^{-1} + 8 TeV, ~20fb^{-1}$ Run2: 2015-2018 13TeV, \sim 36 fb⁻¹ (data taking continues)

~1000 papers from ATLAS and CMS.

ATLAS and CMS are generic purpose LHC detectors designed to optimally make standard model measurements and new physics searches.

SUSY at the LHC

SUSY has O(100) free parameters. It can be realized in diverse ways: different sparticle masses, cross sections, branching ratios...

- In R parity conserving SUSY, sparticles are produced in pairs. Decay chain ends with lightest SUSY particle (LSP).
- Masses up to ~2.1 TeV are accessible at the 13 TeV LHC with \sim 36 fb⁻¹.

SUSY sparticle mass [GeV] Heavy sparticles decay to lighter sparticles and SM particles. Can see final states with large number and diversity of particles: multijets, multi-b-jets,-t-quarks, multi-leptons. • R parity conserving SUSY: neutralino or gravitino LSP \rightarrow high missing transverse energy (E_T^{miss}). • R parity violating SUSY: decay to SM particles. -> reconstruct resonances, search excesses in SM. • Suppress and estimate SM backgrounds with orders of magnitude larger cross sections.

A typical SUSY analys

- Identify a target signal and a final state of objects
	- target signal: gluinos, stops, EW gauginos, etc.
	- final state: multijets + E_T ^{miss}, 2 leptons, 1 lepton + jets, boosted W + jets, etc.
- Design triggers to most efficiently collect data with the target characteristics
- Reconstruct and identify objects (jets, electrons, muons, photons, E_T^{miss} , ...)
- Find object and event variables to discriminate signal from backgrounds
	- many variables especially for SUSY-like final states: ET miss, H_T, m_{eff}, M_{T2}, etc.
- Estimate the irreducible backgrounds in the signal regions
	- use data control regions; MC simulation; functional fits, etc.
- Compute systematic uncertainties
- Results: Compare the estimated background with observed data
- Interpret the result using simplified or full physics models

Results in summary

No **Kayayay** yet

But lots of searches for lots of processes in lots of final states using lots of variables and methods, resulting in lots of limits.

- Inclusive searches are sensitive to:
	- mainly gluinos due to their high production cross sections and diverse decay modes, simple decays or cascades.
	- also squarks and EW gauginos.
- Used multiple objects (jets, b jets, leptons, photons, E_T^{miss}).
- Final states: fully hadronic, single or dileptons, single or diphotons.
- Used kinematic variables designed to discriminate final states with heavy particles and/or ETmiss:
- Used multiple search regions defined by different object multiplicities and kinematic variables.
- Current integrated luminosity allows us to work with disjoint search regions. Gluino examples

Kinematic variables for inclusive searches 10

inclusive inclusive

 $E_T^{miss} = \left| - \sum_{i}^{n \, visible} \, \bar{p}_T^{visible} \right|$ **Missing transverse** for neutral LSP: energy: neutralinos, $\label{eq:4} \begin{aligned} \not\!\!H_T = H_T^{miss} = -\sum_i^{n\, jets} \vec{p}_T^{jet_i} \end{aligned}$ gravitinos… **Missing hadronic** transverse momentum: Hadronic $H_T = \sum_i^{n\, jet} p_T^{jet}$ transverse energy $m_{\text{eff}} = E_T^{\text{miss}} + H_T$ **Effective mass:** for high Stransverse mass: For $\tilde{q} \to X \tilde{\chi}_1^0$ transverse $m_{T2}(m_{\tilde{\chi}}) = \min_{\vec{p}^{\tilde{\chi}_1}_{T} + \vec{p}^{\tilde{\chi}_2}_{T} = \vec{p}^{miss}_{T}} \left[\max \left(m_T(\vec{p}^{j_1}_{T}, \vec{p}^{\tilde{\chi}_1}_{T}), m_T(\vec{p}^{j_2}_{T}, \vec{p}^{\tilde{\chi}_2}_{T}) \right) \right] \leq m_{\tilde{q}}^2$ activitywhere the transverse mass is: \bullet

$$
m_{T,W}^2 = m_\ell^2 + m_\nu^2 + 2(p_T^\ell p_T^\nu - \vec{p}_T^\ell \vec{p}_T^\nu)
$$

$$
(m_\ell, m_\nu \sim 0 \to) \simeq 2p_T^\ell p_T^\nu (1 - \cos \Delta \phi(\ell, \nu))
$$

For a system with 2 massive particles decaying to 2 massless visible and 2 massive invisible particles. Kinematic variables built by first building a dijet system.

alphaT: For a dijet system with

$$
\alpha_T = E_T^{J2}/M_T(ij)
$$

where $m_T(i)$ is the dijet transverse mass system.

Razor variables: Estimate

$$
|\vec{p}^q| = (m_G^2 - m_\chi^2)/2m_G = m_\Delta/2
$$

using longitudional lab fr. observables:

inclusive inclusive

$$
M_R = \sqrt{\frac{(\bar{p}_z^{q_1} E^{q_2} - \bar{p}_z^{q_2} E^{q_1})^2}{(\bar{p}_z^{q_1} - \bar{p}_z^{q_2})^2 - (E^{q_1} - E^{q_2})^2}} \approx m_\Delta
$$

using transverse lab fr. observables:

$$
M_T^R = \sqrt{\frac{E_T^{miss}}{2} (p_T^{q_1} + p_T^{q_2}) - \frac{1}{2} \vec{E}_T^{miss} \cdot (\vec{p}_T^{q_1} + \vec{p}_T^{q_2})} < m_\Delta
$$

$$
R \equiv M_T^R / M_R
$$

Variables in multijet searches

CMS SUS-16-036, m_{T2} analysis.

35.9 fb⁻¹ (13 TeV)

计目标

 $\overline{\text{tf}}$ (1l) + jets

 $DY + jets$

T1tttt (1400/1100)

t/t

Data

CMS SUS-16-042 1 lep + jets + E_T ^{miss}. using m_{T2} . Data - BG estimate comparisons in 39 search regions defined by n_{jets} , n_b , H_T , $L_T = p_T^{\text{lepton}} + E_T^{\text{miss}}$

10 HT0 HT23 IT23 IT23 IT4 HT4 IHT4 IHT0 HT0 HT2 HT23 IT23 IT24 IHT4 IHT4 IHT4 IHT0 HT23 IT23 IT4 IHT0 IHT0 IHT0 HT0 HT0 IHT0 IHT0 IT3 IHT4 IHT4 IHT4 IHT0 IHT0 IHT0 IHT0 IHT0 IHT0 IHT0 IHT4 IHT4 IHT0 IHT0 IHT0 IHT0 IHT0 IHT0 $\geq 3b$ 1b 2b $\geq 3b$ 1b 2b $\geq 3b$ 1b 2b 2b $\geq 3b$ 1b 2b 1b 2b 1b $2b \ge 3b$ 1b $2b$ 1b $2b$ ≥ 9 j ≥9i ≥9j ≥9j

12 T12LT12LT12LT12LT12LT12LT3LLT3LT3LT3LT3LT3LT3LT3LT3LT3LT4LT4LT4LT4LT4LT4LT4LT4LT4LT4iLT5iLT5iLT12L

CMS SUS-16-034: Opposite sign dileptons + jets + E_T ^{miss}.

Uses dilepton invariant mass m_{\parallel} to search for

inclusive inclusive

- a resonance-like excess compatible with the Z boson mass (targets both strongly and electroweakly produced new physics.
- or a kinematic edge (targets strong production)

Kinematic fit to m_{\parallel} to find an edge in the non-resonant search. Signal: triangle convoluted with a Gaussian.

CMS SUS-16-035

Same sign dileptons + jets + E_T^{miss} .

Dominant backgrounds from non-prompt leptons.

Signal regions based on H_T , E_T ^{miss}, $m_T^{min}(I_1, I_2)$, n_j , n_b .

Inclusive searches: multileptons

inclusive inclusive

Similar CMS search: CMS-SUS-16-041, using H_T , E_T^{miss} , m_T , n_b , and invariant mass of the opposite charge same flavor dilepton pairs. No excess observed.

Kinematic variables for inclusive searches 17

inclusive inclusive

- CMS probed gluinos up to mass \sim 2TeV in the t/b decay channels. ATLAS has similar results.
- Having different searches provides sensitivity to different final states and kinematical regions.
- More sensitivity to gluino decays via b quarks due to better measured objects.

Kinematic variables for inclusive searches

inclusive inclusive

- ATLAS gluino mass limits for different decay channels.
- Highest gluino mass limits are for light quark decay channels.
- Highest neutralino mass limits are for 3rd gen decay channels.

- Probed 1st/2nd generation squarks up to \sim 1.6TeV in different decay channels. ATLAS and CMS similar.
- Probed by signal regions with low jet multiplicities, or by reducing the event to a dijet-like state.

Physics on the stop-neutralino plane ¹⁹

Hadronic stop searches²⁰ *3rd gen 3rd gen*

 $(13$ TeV) CMS-SUS-16-050, $0.9\frac{E}{E}$ **CMS Combined** Top tagging + E_T ^{miss}. **Simulation Preliminary Monojet** $0.8\overline{E}$ **Dijet** Top quark tagger efficiency **Trijet** Tagging both measured in T2tt(850,100) 0.6 boosted tops (with 0.5 n-subjettiness) and 0.4 **Top tagging** 0.3 resolved tops (with efficienciesrandom forest $\frac{a}{p}$ 0.2 $0₁$ discriminator) 500 100 200 300 400 600 700 800 900 1000 p_{τ}^{gen} [GeV] Uses M_{T2} .

ATLAS-CONF-2017-020: Resolved tops.

 \geq 4 jets + 1b + E_T ^{miss}. m_T ^{b,min}($b_{1,2}$, E_T ^{miss}) is an effective discriminating variable.

> CMS-SUS-16-049: Top tagging + E_T^{miss} . Tagging both resolved and merged tops using an alternative method. Signal regions defined by n_j , n_t , n_w , n_b , $n_{resolved top}$, M_T ^b, E_T ^{miss}.

1 lepton stop searches and the set of the set of 21

3rd gen 3rd gen

ATLAS-CONF-2017-037 1 lep + jets + E_T ^{miss}. Wide range of stop scenarios with various mass splittings. Used a boosted decision tree as a powerful signal discriminator.

Data / pred

 E vents

 10^3

 $10²$

 10

2 leptons stop searches and the state of 22 *3rd gen 3rd gen*

CMS-SUS-17-001: $2lep + jets + b jet + E_Tmiss$. Longer stop cascades with charginos/sleptons.

ATLAS arXiv:1708.03247

Compressed stop; stop to Z, h and the compressed stop; stop to Z, h

Sensitivity to stops and the stops of 24 *3rd gen 3rd gen*

- Huge diversity of searches probing different regions in the stop-neutralino parameter space.
- Stop branching ratios are 100%.
- Dedicated stop searches perform better compared to inclusive.
- Very similar results in CMS.
- Most difficult region lies between m_{stop} - $m_{neutralino}$ = m_W and m_{stop} $m_{\text{neutralino}} = m_{\text{top}}$.
- Exploring top quark properties which would discriminate stop pair production from top pair production further could help to close the gaps.
- Increased mass limits suggest a tension with Naturalness.

Direct sbottom searches and the contract 25 *3rd gen 3rd gen*

Sensitivity to sbottoms²⁶ *3rd gen 3rd gen*

- Probed sbottoms up to $^{\sim}1.2$ TeV.
	- Interplay of direct sbottom searches with the inclusive searches help to obtain the best sensitivity.
		- direct sbottom search reaches higher msbottom.
		- inclusive M_{T2} search accesses lower sbottom neutralino mass difference.

Searches with taus and the search of 27

ATLAS-CONF-2016-048: $\tau_{\text{had}} + 1$ lep + jets + E τ^{miss} . stop \rightarrow stau \rightarrow gravitino.

CMS-SUS-17-003 $2\tau_{\text{had}} + E_T^{\text{miss}}$.

Discriminate using $M_{T2}(\tau_1,\tau_2)$ and ΣM_T

> Interpret for stau pair production with different stau helicities.

 $\Sigma M_T = M_T(\tau_1, E_T^{miss}) + M_T(\tau_2, E_T^{miss}).$

EW production of sparticles 28

- SUSY can be produced via EW interactions, leading to direct production of charginos, neutralinos and sleptons.
	- Cross sections depend on the EW state composition (bino, wino, Higgsino) for charginos / neutralinos, and on chirality for sleptons.
	- EW sector could be the only accessible sector at the LHC if the colored sparticles are above 3-4 TeV.
- Complex decay structures:
	- directly via leptons
	- indirectly via lighter EW gauginos, sleptons/sneutrinos, W/Z/h.
	- Investigated cases with both neutralino and gravitino LSP.
- Searches mainly exploit the multilepton nature of the final states.

EW EW production in multilepton searches 29

CMS-SUS-16-039:

Search for direct EW production of charginos and neutralinos.

Final states with:

- 2 same charge light leptons + E_T^{miss} .
- ≥3 leptons including up to 2 hadronically decaying τ leptons + E_T^{miss} .

Using M_T, $p_T(II)$, M_{II}, E_T ^{miss}, M_{T2}(I_1 , I_2) as discriminating variables.

No excess.

Extended the probed mass space considerably compared to the previous searches.

$EWK \tilde{\chi}^{\pm_1} \tilde{\chi}^0$ ₂ in Wh and WZ channels ³⁰ **ื**

CMS-SUS-16-043: Search for chargino-neutralino2 production with decays to $W(-\frac{1}{v})h(-\frac{1}{v})h$.

 $1 \text{ lep} + 2b + E_T^{\text{miss}}$.

Look for an excess in m_{bb} around the Higgs mass.

CMS-SUS-16-048:

2 opposite charge soft leptons + E_T^{miss} .

Nearly degenerate chargino-neutralino2 production, as in natural compressed higgsino models. Exploit decay to W Z (\rightarrow soft II).

Events/30 GeV

EWK Combining searches with W/Z/h 31

CMS-SUS-17-004: Combined search for EW production of charginos and neutralinos.

Targets decays with W/Z/h.

Additional optimized analysis with ≥3 charged leptons, for models with Δm (neutralino2-neutralino1 ~= mZ.

Searches in combination and target signal topologies

EWK Searches with sleptons and staus 32

ATLAS-CONF-2017-039: EWK gauginos, sleptons at the 2 or 3 leptons + E_T ^{miss} channel.

ATLAS arXiv:1708.07875: Search for charginos/ neutrainos decaying to τs. $2\tau s + E_T^{miss}$.

EWK Sensitivity to EW gauginos³³

- Diversity of searches and channels give a complementary picture.
- For decays via W/Z/h bosons, sensitivity is up to $^{\sim}600$ GeV.
- For decays via sleptons, sensitivity is up to \sim 1.2 TeV. Highest sensitivity is reached in the slepton/sneutrino decays.

Photons + E_T ^{miss} searches 34

Target gauge mediated SUSY breaking (GMSB) —
ලී 2000 models with gravitino LSP. Neutralino next-to-^{ET}1800 LSP decays to gravitino $+$ y + others.

pho^t*ns*

ATLAS-CONF-2016-066: Isolated $γ$ + jets + E_T ^{miss}. Use $\Delta\varphi(\gamma)$, E τ^{miss}), $\Delta\varphi(j)$, E τ^{miss} , Γ^{miss} , m_{eff}, etc. to discriminate. $pp \rightarrow \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow Z/\gamma \tilde{G}$

CMS-SUS-16-046: Isolated $γ + E_Tmiss$. Studied scenarios where neutralino has bino or wino components. Use E_T ^{miss}, S_T ^γ, m_T(γ, E_T ^{miss})

 $m_{\tilde{\sigma}}$ [GeV]

High H_T, decays with $h \rightarrow bb$

CMS-SUS-16-045:

Anomalous Higgs production in the γγ decay channel in association with $>= 1$ jet.

Razor variables M_R , R^2 to suppress SM.

Categorize events using M_R , R^2 ; momentum and mass resolution of the γγ system.

Extract signal from non-resonant QCD BG through a fit to the γγ mass distribution.

Interpret in terms of SMS sbottom \rightarrow h b neutralino.

longSearches for long lived particles

³⁷ *lived*

In many cases, particles may decay non-promptly, outside the beamspot.

- A wide diversity of searches for non-prompt particles complement the prompt searches. Improving and exploring further in Run2.
- Not much SM background outside the beamspot. Mostly detector noise, cosmic rays, reconstruction failure, etc. estimated from data.

ATLAS-CONF-2017-017: Short track $+$ jets $+$ E_T^{miss}.

Long-lived chargino decay, common to wino LSP scenario - \sim 1/3 of pMSSM phase space.

 $\widetilde{\chi}$ ± NLSP almost degenerate with $\widetilde{\chi}^0$ LSP \overline{a} \Rightarrow $\tilde{\chi}^{\pm}$ \Longrightarrow $\tilde{\chi}^{0}$ π^{\pm} (soft) \Longrightarrow π^{\pm} not reconstructed ׇֺ֝ **∫** -> disappearing track.

Disappearing condition: Tracking algorithm with shorter tracks than standard tracks (tracklets). Looking for tracklets with hits only in pixeldetector (pixel tracklets):

Improved sensitivity in the gluino-chargino mass plane compared to inclusive searches, specifically for low gluino-chargino mass difference.

longSearches for long lived particles

¹⁶

1622

- Dedicated searches for long-lived gluinos enhance sensitivity significantly as lifetime gets longer.
- For long-lived charginos, sensitivity drops for shorter lifetimes. Using additional SUSY search variables, tracker only triggers or short tracks to probe such signatures.

⁴⁰ *RPV* Gluinos

Stops with 2 body decays; neutralinos 41

ATLAS-CONF-2017-036: RPV stop \rightarrow b l.

Upper limits on RPV stops between 600-1100 GeV.

ATLAS-CONF-2016-075: Charginos decaying to RPV neutralinos. 4 leptons final state. Excluded charginos up to mass \sim 1.1 GeV.

LHC impact on SUSY
ATLAS SUSY Searches* - 95% CL Lower Limits

similar for CMS

ATLAS Preliminary \sqrt{s} = 7, 8, 13 TeV

May 2017

simplified models, c.f. refs. for the assumptions made.

To conclude… And the set of the set

We found no significant hint for SUSY after 7 years at the LHC...

- \sim 36 fb⁻¹ of 13 TeV data
- ~60 searches at 13 TeV in ATLAS and CMS in a diversity of final states involving jets, b-jets, leptons, photons, E_T^{miss} . Special searches for longlived particles and R parity violation.
- Not all results were included in this talk. Full list of results here:
	- ATLAS: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ [SupersymmetryPublicResults](https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults)
	- CMS: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS
- Further constraints from direct SUSY Higgs sector searches.
- Even further constraints from 125GeV Higgs, w/Z, top measurements.
- Many other searches being performed with upcoming data
- Designing refined analysis methods and tools to improve sensitivity for probing SUSY most efficiently.

The journey looks as delightful as ever :) Perhaps in the next Runs?

44