
Femtocode: development of a query
language for HEP

Jim Pivarski

Princeton – DIANA

December 12, 2016

1 / 51

Motivations

Specific motivation: to accelerate data pulls, both

for the humans
shorter time from
concept to code

and
for the computers.
shorter time from

code to results

(By “data pull,” I mean extract, transform, and filter data from a
collaboration’s central dataset (AOD) and download it for further
processing. Right now, we’re writing C++ modules.)

“Chip on my shoulder”

To show that a very high-level, abstract view of computation can
nevertheless be fast.

2 / 51

Motivations

Specific motivation: to accelerate data pulls, both

for the humans
shorter time from
concept to code

and
for the computers.
shorter time from

code to results

(By “data pull,” I mean extract, transform, and filter data from a
collaboration’s central dataset (AOD) and download it for further
processing. Right now, we’re writing C++ modules.)

“Chip on my shoulder”

To show that a very high-level, abstract view of computation can
nevertheless be fast.

3 / 51

High-level and speed are not antithetical

Code like

bestmuon =
muons.filter(m => m.iso > 10)

.maxBy(m => m.pt)

does not need to create
function objects or
muon objects at
runtime!

It need not be “taken
literally.”

Another possible execution plan:

1. Start with all muon.iso values in one array, all muon.pt
values in another array, and a “repetition level” to specify
where events begin and end.

2. Apply the contents of the filter function to make a mask.

3. Use the mask and repetition level to compact the muon.pt

into zero or one results per event.

4 / 51

How fast should it be?

Suppose we want to plot all CMS tt̄ data ever collected.

I About 100 fb−1 (plot) × 1 nb (plot) is 100 million events.

I Derivation of a plotted quantity could involve O(100)
double-precision values per event.

I That’s only 80 GB of data that needs to be evaluated;
anything else is overhead.

Single computer, single thread, treat all data as an array:

load from disk: 21 minutes (Numpy), 22 minutes (ROOT)

CPU execution: 70 seconds (no optimization), 13 seconds (-O3)

GPU execution: 12 seconds to copy to GPU, 5 seconds to compute

(Probably close to “theoretical optimum.” Distributed processing
and multi-user cache can help.)

5 / 51

http://cms-service-lumi.web.cern.ch/cms-service-lumi/publicplots/int_lumi_cumulative_pp_1.png
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SM/ATLAS_p_SMSummary_SqrtS_Zoom/ATLAS_p_SMSummary_SqrtS_Zoom.png

Role of language

Directly filling histograms from the collaboration-wide repository,
eliminating private skims, would fundamentally improve analysis
workflows. Analysis could become “interactive.”

But. . . how can a language help?

I Writing vectorized, one-array-at-a-time algorithms is
unnatural, distracting from analysis.

I Physicists should be thinking about one event at a time and
muons as objects.

Transforming human concepts into physical execution is exactly
what programming languages are for.

6 / 51

Role of language

Directly filling histograms from the collaboration-wide repository,
eliminating private skims, would fundamentally improve analysis
workflows. Analysis could become “interactive.”

But. . . how can a language help?

I Writing vectorized, one-array-at-a-time algorithms is
unnatural, distracting from analysis.

I Physicists should be thinking about one event at a time and
muons as objects.

Transforming human concepts into physical execution is exactly
what programming languages are for.

7 / 51

What’s wrong with the languages we have?

As I said in my June 20 talk, C++ and Python are too expressive
to permit these kinds of optimizations.

Automatic vectorization (in general) is an unsolved problem in
computer science. But building a vectorizable language is relatively
easy: they’re just less capable. Typically, query languages like SQL
are vectorized.

Business intelligence with SQL is typically “interactive,” and big
data projects are pushing O(second) response times to petabyte
scales: Ibis, Impala, Kudu, Drill, . . . others? (Google paper).

However, SQL and its relatives are not sufficient for us.

8 / 51

https://indico.cern.ch/event/544650/
http://research.google.com/pubs/pub36632.html

Nested query in C++

Example query:

“Momentum of the track with |η| < 2.4 that has the most hits.”

Track *best = NULL;
for (int i = 0; i < tracks.size(); i++) {

if (fabs(tracks[i]->eta) < 2.4)
if (best == NULL ||

tracks[i]->hits.size() > best->hits.size())
best = tracks[i];

}
if (best != NULL)

return best->pt;
else

return 0.0;

9 / 51

Nested query in SQL

Example query:

“Momentum of the track with |η| < 2.4 that has the most hits.”

WITH hit_stats AS (
SELECT hit.track_id, COUNT(*) AS hit_count FROM hit

GROUP BY hit.track_id),
track_sorted AS (

SELECT track.*,
ROW_NUMBER() OVER (
PARTITION BY track.event_id
ORDER BY hit_stats.hit_count DESC)

track_ordinal FROM track INNER JOIN hit_stats
ON hit_stats.track_id = track.id
WHERE ABS(track.eta) < 2.4)

SELECT * FROM event INNER JOIN track_sorted
ON track_sorted.event_id = event.id

WHERE
track_sorted.track_ordinal = 1

10 / 51

Nested query in Femtocode

Example query:

“Momentum of the track with |η| < 2.4 that has the most hits.”

tracks.filter(t => abs(t.eta) < 2.4) # drop tracks
.maxBy(t => t.hits.size) # pick one (if any)
.map(t => t.pt) # transform it
.impute(0.0) # replace "None"

with a value

11 / 51

Nested query in Femtocode

Example query:

“Momentum of the track with |η| < 2.4 that has the most hits.”

tracks.filter(abs($1.eta) < 2.4) # drop tracks
.maxBy($1.hits.size) # pick one (if any)
.map($1.pt) # transform it
.impute(0.0) # replace "None"

with a value

12 / 51

Femtocode

Combine the implementation flexibility of declarative languages like
SQL with the expressiveness of a functional language for dealing
with nested structure.

Example use in Python:

h = db.dataset("ttbar-MC")
.withColumn(varName = "<Femtocode goes here>")
.filter("<Femtocode using varName>")
.flatMap("<Femtocode changing nesting level>")
.Label(hist1 = Bin(100, -5.0, 5.0, "<Femtocode>"),

hist2 = Bin(20, 0.0, 100.0, "<Femtocode>"),
hist3 = Bin(314, -pi, pi, "<Femtocode>"))

followed by Python analysis on h["hist1"], h["hist2"]. . .

Python manipulates streams of events and accepts the result, while
Femtocode (in quotes) operates on events (maybe remotely).

(Integrates with Histogrammar (Label, Bin) to aggregate result.)

13 / 51

Femtocode

Combine the implementation flexibility of declarative languages like
SQL with the expressiveness of a functional language for dealing
with nested structure.

Example use in Python:

h = db.dataset("ttbar-MC")
.withColumn(varName = "<Femtocode goes here>")
.filter("<Femtocode using varName>")
.flatMap("<Femtocode changing nesting level>")
.Label(hist1 = Bin(100, -5.0, 5.0, "<Femtocode>"),

hist2 = Bin(20, 0.0, 100.0, "<Femtocode>"),
hist3 = Bin(314, -pi, pi, "<Femtocode>"))

followed by Python analysis on h["hist1"], h["hist2"]. . .

Python manipulates streams of events and accepts the result, while
Femtocode (in quotes) operates on events (maybe remotely).

(Integrates with Histogrammar (Label, Bin) to aggregate result.)

14 / 51

Femtocode

Combine the implementation flexibility of declarative languages like
SQL with the expressiveness of a functional language for dealing
with nested structure.

Example use in Python:

h = db.dataset("ttbar-MC")
.withColumn(varName = "<Femtocode goes here>")
.filter("<Femtocode using varName>")
.flatMap("<Femtocode changing nesting level>")
.Label(hist1 = Bin(100, -5.0, 5.0, "<Femtocode>"),

hist2 = Bin(20, 0.0, 100.0, "<Femtocode>"),
hist3 = Bin(314, -pi, pi, "<Femtocode>"))

followed by Python analysis on h["hist1"], h["hist2"]. . .

Python manipulates streams of events and accepts the result, while
Femtocode (in quotes) operates on events (maybe remotely).

(Integrates with Histogrammar (Label, Bin) to aggregate result.)
15 / 51

Working examples

>>> from femtocode.parser import parse
>>> print ast.dump(parse("""
... tracks.filter(abs($1.eta) < 2.4)
... .maxBy($1.hits.size)
... .map($1.pt)
... .impute(0.0)
... """))

Suite(assignments=[], expression=FcnCall(function=Attribute(
value=FcnCall(function=Attribute(value=FcnCall(function=
Attribute(value=FcnCall(function=Attribute(value=Name(id='
tracks', ctx=Load()), attr='filter', ctx=Load()),
positional=[Compare(left=FcnCall(function=Name(id='abs',
ctx=Load()), positional=[Attribute(value=AtArg(num=1), attr
='eta', ctx=Load())], names=[], named=[]), ops=[Lt()],
comparators=[Num(n=2.4)])], names=[], named=[]), attr='
maxBy', ctx=Load()), positional=[Attribute(value=Attribute(
value=AtArg(num=1), attr='hits', ctx=Load()), attr='size',
ctx=Load())], names=[], named=[]), attr='map', ctx=Load()),
positional=[Attribute(value=AtArg(num=1), attr='pt', ctx=
Load())], names=[], named=[]), attr='impute', ctx=Load()),
positional=[Num(n=0.0)], names=[], named=[]))

16 / 51

Working examples

>>> propagateTypes("""
... data.map(x => x + y)
... """,
... data=collection(integer), y=integer)
collection(integer)

>>> propagateTypes("""
... data.map(x => x + y)
... """,
... data=collection(integer), y=real)
collection(real)

>>> propagateTypes("""
... data.map(x => x + y)
... """,
... data=collection(integer, fewest=10, most=10),
... y=integer)
collection(integer, fewest=10, most=10)

17 / 51

Working examples

Propagate intervals of validity:

>>> propagateTypes("""
... data.map(x => x + y)
... """,
... data=collection(real(min=3, max=5)),
... y=real(min=100, max=200))
collection(real(min=103.0, max=205.0))

Properly handle shadowed variable “x”:

>>> propagateTypes("""
... y = x + -100;
... data.map(x => x + y)
... """,
... data=collection(real(min=3, max=5)),
... x=real(min=100, max=200))
collection(real(min=3.0, max=105.0))

18 / 51

Type system is highly granular

Collections have fewest and most number of elements, and
numbers have min and max intervals:

I real(almost(0), 10) {x |x ∈ R and 0 < x ≤ 10}
I integer(almost(-inf), almost(inf)) Z
I extended(-inf, inf) R ∪ {−∞,∞}
I union(integer, real(0)) Z ∪ {x |x ∈ R and x ≥ 0}

Why?

To eliminate the possibility of runtime errors.

With enough information in the type system, the compiler can
identify runtime errors before submitting the job, saving the author
time and protecting shared resources from waste.

(Someday, they might be cloud-based and cost real money.)

19 / 51

Type system is highly granular

Collections have fewest and most number of elements, and
numbers have min and max intervals:

I real(almost(0), 10) {x |x ∈ R and 0 < x ≤ 10}
I integer(almost(-inf), almost(inf)) Z
I extended(-inf, inf) R ∪ {−∞,∞}
I union(integer, real(0)) Z ∪ {x |x ∈ R and x ≥ 0}

Why?

To eliminate the possibility of runtime errors.

With enough information in the type system, the compiler can
identify runtime errors before submitting the job, saving the author
time and protecting shared resources from waste.

(Someday, they might be cloud-based and cost real money.)

20 / 51

Working examples

>>> propagateTypes("x / y", x=real, y=real)

femtocode.parser.FemtocodeError: Function "/" does not accept
arguments with the given types:

/(real,
real)

Indeterminate form (0 / 0) is possible; constrain with if-
else.

Check line:col 1:0 (pos 0):

x / y
----ˆ

Applying a constraint changes the type of “y” in the “if” clause to
union(real(max=almost(0)), real(min=almost(0))).

>>> propagateTypes("if y != 0: x / y else: None",
... x=real, y=real)
union(null, real)

21 / 51

Working examples

>>> propagateTypes("x / y", x=real, y=real)

femtocode.parser.FemtocodeError: Function "/" does not accept
arguments with the given types:

/(real,
real)

Indeterminate form (0 / 0) is possible; constrain with if-
else.

Check line:col 1:0 (pos 0):

x / y
----ˆ

Applying a constraint changes the type of “y” in the “if” clause to
union(real(max=almost(0)), real(min=almost(0))).

>>> propagateTypes("if y != 0: x / y else: None",
... x=real, y=real)
union(null, real)

22 / 51

Working examples

“if”, “and”, “or”, and “not” propagate constraints.

>>> propagateTypes("x == 5 and y == 6 and x == y",
... x=real, y=real)

femtocode.parser.FemtocodeError: Function "==" does not accept
arguments with the given types:

==(integer(min=5, max=5),
integer(min=6, max=6))

The argument types have no overlap (values can never be
equal).

Check line:col 1:27 (pos 27):

x == 5 and y == 6 and x == y
-------------------------------ˆ

(It’s a short step from here to simplifying the algebra with SymPy.)

23 / 51

Working examples

Order does not matter.

>>> propagateTypes("x == y and x == 5 and y == 6",
... x=real, y=real)

femtocode.parser.FemtocodeError: Function "==" does not accept
arguments with the given types:

==(integer(min=5, max=5),
integer(min=6, max=6))

The argument types have no overlap (values can never be
equal).

Check line:col 1:5 (pos 5):

x == y and x == 5 and y == 6
---------ˆ

(It’s a short step from here to simplifying the algebra with SymPy.)

24 / 51

Working examples

Order does not matter.

>>> propagateTypes("x == y and x == 5 and y == 6",
... x=real, y=real)

femtocode.parser.FemtocodeError: Function "==" does not accept
arguments with the given types:

==(integer(min=5, max=5),
integer(min=6, max=6))

The argument types have no overlap (values can never be
equal).

Check line:col 1:5 (pos 5):

x == y and x == 5 and y == 6
---------ˆ

(It’s a short step from here to simplifying the algebra with SymPy.)

25 / 51

Working examples
>>> viewAsTree("""
... a = x + y;
... b = a + y + z;
... xs.map(x => x + a + a + b).map(y => y + 2)""",
... xs=collection(real), x=real, y=real, z=real)

Call BuiltinFunction[".map"] has type collection(real)
Call BuiltinFunction[".map"] has type collection(real)

Ref xs (frame None) has type collection(real)
UserFunction has type real

Call BuiltinFunction["+"] has type real
Call BuiltinFunction["+"] has type real

Call BuiltinFunction["+"] has type real
Ref x (frame 2) has type real
Call BuiltinFunction["+"] has type real

Ref x (frame None) has type real
Ref y (frame None) has type real

Call BuiltinFunction["+"] has type real
Ref x (frame None) has type real
Ref y (frame None) has type real

Call BuiltinFunction["+"] has type real
Call BuiltinFunction["+"] has type real

Call BuiltinFunction["+"] has type real
Ref x (frame None) has type real
Ref y (frame None) has type real

Ref y (frame None) has type real
Ref z (frame None) has type real

UserFunction has type real
Call BuiltinFunction["+"] has type real

Ref y (frame 3) has type real
Literal 2 has type integer(min=2, max=2)

Notice that “a” and
“b” do not appear.

26 / 51

Working examples
>>> viewAsStatements("""
... a = x + y;
... b = a + y + z;
... xs.map(x => x + a + a + b).map(y => y + 2)""",
... xs=collection(real), x=real, y=real, z=real)

tmp_0 := (+ x y)
tmp_1 := (+ xs tmp_0)
tmp_2 := (+ tmp_1 tmp_0)
tmp_3 := (+ tmp_0 y)
tmp_4 := (+ tmp_3 z)
tmp_5 := (+ tmp_2 tmp_4)
tmp_6 := (+ tmp_5 2)

Repeated calculations
have been rolled into
tmp * for execution.

This statement-generation would be even better if it minimized the
length of time variables need to stay alive, while maintaining depen-
dency order, so that arrays can be overwritten in-place.

27 / 51

Status and plans

Done:

I Syntax, parsing, abstract syntax tree.

I Type system, type propagation, type inference for +, -, *, /,
//, **, %.

I Type constriction in “if”, “and”, “or”, and “not”.

I Prototype for generating statements.

To do:

I Fully generate statements and evaluate on arrays.

I Implement a few more built-in functions for basic usability.

I Focus-group the syntax and scope: will this work for busy
physicists?

I Get more feedback from Brian, Philippe, and other experts.

I Work with Jin Chang and Igor Mandrichenko on the server.

I Discuss with ROOT Team about the possibility of this
becoming the ROOT 7 TTreeFormula.

28 / 51

BACKUP

29 / 51

Features of Femtocode

Declarative: order written/order evaluated need not be the same.

Functional: map/filter/maxBy instead of explicit for loops.

Vectorizable: code appears to act on rows (e.g. events), but
automatically translated to operate on columns.

No unbounded loops: execution time strictly scales with input data
size; not Turing complete.

No runtime errors: any compilable query will return some result.

Statically typed: stronger type system than most languages is
needed to eliminate runtime errors.

Full type inference: explicitly writing down types is annoying.

No recursion: combining recursion with no unbounded loops is
complicated, but big data pulls don’t need recursion.

Pythonic syntax: familiar to physics users; don’t invent new syntax
unless absolutely necessary.

30 / 51

Syntax

BNF specification of Femtocode syntax

body: ';'* suite
suite: (assignment ';'*)* expression ';'*
lvalues: (NAME ',')* NAME [',']
assignment: (lvalues '=' closed_expression

| fcnndef)
fcnndef: ('def' NAME '(' [paramlist] ')'

closed_exprsuite)
expression: ifblock | fcndef | or_test
closed_expression: (closed_ifblock | fcndef

| or_test ';')
fcndef: '{' [paramlist] '=>' ';'* suite '}'
fcn1def: parameter '=>' expression
paramlist: (parameter ',')* (parameter [','])
parameter: NAME ['=' expression]
exprsuite: (':' expression

| [':'] '{' ';'* suite '}')
closed_exprsuite: (':' closed_expression

| [':'] '{' ';'* suite '}')
ifblock: ('if' expression exprsuite

('elif' expression exprsuite)*
'else' exprsuite)

closed_ifblock: ('if' expression exprsuite
('elif' expression exprsuite)*
'else' closed_exprsuite)

or_test: and_test ('or' and_test)*
and_test: not_test ('and' not_test)*
not_test: 'not' not_test | comparison
comparison: typecheck (comp_op typecheck)*
comp_op: ('<' | '>' | '==' | '>=' | '<='

| '!=' | 'in' | 'not' 'in')

typecheck: (arith_expr ['is' arith_expr
| 'is' 'not' arith_expr])

arith_expr: term (('+' | '-') term)*
term: factor (('*' | '/' | '%' | '//') factor)*
factor: ('+' | '-') factor | power
power: atom trailer* ['**' factor]
atom: ('(' expression ')'

| ('[' (expression ',')*
[expression [',']] ']')

| fcndef '(' [arglist] ')'

| MULTILINESTRING
| STRING
| IMAG_NUMBER
| FLOAT_NUMBER
| HEX_NUMBER
| OCT_NUMBER
| DEC_NUMBER

| ATARG

| NAME)
trailer: ('(' [arglist] ')'

| '[' subscriptlist ']' | '.' NAME)
subscriptlist: subscript (',' subscript)* [',']
subscript: (expression

| [expression] ':' [expression]
[sliceop])

sliceop: ':' [expression]

arglist: (((argument ',')* (argument [',']))
| fcn1def)

argument: expression | NAME '=' expression

31 / 51

Syntax

BNF specification of Femtocode syntax that is identical to Python

body: ';'* suite
suite: (assignment ';'*)* expression ';'*
lvalues: (NAME ',')* NAME [',']
assignment: (lvalues '=' closed_expression

| fcnndef)
fcnndef: ('def' NAME '(' [paramlist] ')'

closed_exprsuite)
expression: ifblock | fcndef | or_test
closed_expression: (closed_ifblock | fcndef

| or_test ';')
fcndef: '{' [paramlist] '=>' ';'* suite '}'
fcn1def: parameter '=>' expression
paramlist: (parameter ',')* (parameter [','])
parameter: NAME ['=' expression]
exprsuite: (':' expression

| [':'] '{' ';'* suite '}')
closed_exprsuite: (':' closed_expression

| [':'] '{' ';'* suite '}')
ifblock: ('if' expression exprsuite

('elif' expression exprsuite)*
'else' exprsuite)

closed_ifblock: ('if' expression exprsuite
('elif' expression exprsuite)*
'else' closed_exprsuite)

or_test: and_test ('or' and_test)*
and_test: not_test ('and' not_test)*
not_test: 'not' not_test | comparison
comparison: typecheck (comp_op typecheck)*
comp_op: ('<' | '>' | '==' | '>=' | '<='

| '!=' | 'in' | 'not' 'in')

typecheck: (arith_expr ['is' arith_expr
| 'is' 'not' arith_expr])

arith_expr: term (('+' | '-') term)*
term: factor (('*' | '/' | '%' | '//') factor)*
factor: ('+' | '-') factor | power
power: atom trailer* ['**' factor]
atom: ('(' expression ')'

| ('[' (expression ',')*
[expression [',']] ']')

| fcndef '(' [arglist] ')'

| MULTILINESTRING
| STRING
| IMAG_NUMBER
| FLOAT_NUMBER
| HEX_NUMBER
| OCT_NUMBER
| DEC_NUMBER

| ATARG

| NAME)
trailer: ('(' [arglist] ')'

| '[' subscriptlist ']' | '.' NAME)
subscriptlist: subscript (',' subscript)* [',']
subscript: (expression

| [expression] ':' [expression]
[sliceop])

sliceop: ':' [expression]

arglist: (((argument ',')* (argument [',']))
| fcn1def)

argument: expression | NAME '=' expression

32 / 51

Syntax

How is it like Python?

I mathematical expressions
and operator precedence:
(-b + sqrt(b**2 -

4*a*c))/(2*a)

I slices and 0-indexing:
lheweights[::2]

I numbers and string literals
(favoring Python 3):
0xff, 0o77, .3e7, 1j,
"""multi \"line\"
string"""

I chained comparisons:
0 < x <= 10

I keyword arguments:
f(arg, some=kwd)

How is it different?

I anonymous functions:
{x, y => x + y}
{$1 + $2}

I no statements and
whitespace independent:
if something:

doIfTrue()
else:

doIfFalse()

I curly-bracketed blocks with
semicolon-separated
assignments ending in a
single expression.
if something

{doIfTrue()} else

{doIfFalse()}
33 / 51

Abstract type system

Space of possible datasets is defined by the type system.

null: type with only one value

boolean: not the same as integers

number: further defined by attributes: min, max, whole
whole == True means integer,
whole == False means floating point

string: charset (“bytes” or “unicode”), fewest, most;
fewest/most constrain the string length

collection: fewest, most, ordered
fixed-size arrays/matrices have fewest == most
and ordered == True

record: defined by a dictionary of fields

union: tagged union, such as union(null, string) for
a nullable string type.

34 / 51

Semantics

Every Femtocode “program” is conceptually a single expression:
that which should be computed from the input fields.

I when called in a filter, it selects events,

I in map, it transforms,

I in flatMap, it restructures,

I in withColumn, it adds a field to the output,

I in Histogrammar quantities, it gets aggregated, probably for
plotting.

Most Femtocode snippets are small enough for this to be obvious!

35 / 51

Semantics

Assignments are provided as a convenience.

goodVertex = abs(z) < 3;
goodPt = pt > 20;
goodIsolation = iso > 12;
goodVertex and goodPt and goodIsolation

Expression ASTs are literally inserted where they are referenced
(handling shadowed variable names appropriately, with lexical
scope).

This is legal because Femtocode has perfect referential
transparency. (All variables are immutable, no side-effects, no
exceptions or non-halting functions.)

36 / 51

Semantics

The same is true of user-defined functions. Moreover, arguments
might have different types in different calls.

def nonempty(x) {
x.size > 0

}

nonempty(list) or nonempty(str)

When applied to a collection, nonempty takes the collection type,
when applied to a string, nonempty takes the string type.

Types are propagated independently through the function’s body
with each call. (Thus, it deals with ugly unions transparently.)

(This is what Julia does when you don’t provide type annotations.)
37 / 51

Semantics

So what about recursion? What’s its type?

def listsum(x) {
if nonempty(x):

x[0] + listsum(x[1:])
else:

0
}

listsum(list)

It can’t always be determined, and we want to eliminate infinite
loops anyway, so we simply don’t allow recursion.

38 / 51

Semantics

The rule against recursion applies equally to assignment (like a
zero-argument function).

x = x + 1

(If we attempted to interpret the above, we’d have to conclude
that x is inf or -inf. Probably not what the user intended.)

39 / 51

Semantics

Although not logically necessary, we require values and functions to
be defined before they are used.

goodParticle = goodVertex and goodPt and
goodIsolation;

goodVertex = abs(z) < 3;
goodPt = pt > 20;
goodIsolation = iso > 12;

and

def invmass(p4): sqrt(energy(p4)**2 - momentum
(p4)**2);

def energy(p4): p4[0];
def momentum(p4): sqrt(p4[1]**2 + p4[2]**2 +

p4[3]**2);

are not allowed. The first would likely be a user mistake.
40 / 51

Second-class functions

In some languages, functions are “first class” (in the sense of “first
class citizens”) because they can be treated as values, just like
numbers or strings. Femtocode is not such a language.

After all assignments have been expanded, anonymous functions
and function names can only appear in the arguments of built-in
functions that expect them.

def goodEta(t): abs(t.eta) < 2.4;
tracks.filter(goodEta)

.maxBy(t => t.hits.size)

.map($1.pt)

goodEta, t => t.hits.size, and $1.pt can only appear in
the appropriate argument slot of functions like .filter,
.maxBy, and .map.

And built-in functions never return functions.

41 / 51

Second-class functions

In some languages, functions are “first class” (in the sense of “first
class citizens”) because they can be treated as values, just like
numbers or strings. Femtocode is not such a language.

After all assignments have been expanded, anonymous functions
and function names can only appear in the arguments of built-in
functions that expect them.

def goodEta(t): abs(t.eta) < 2.4;
tracks.filter(goodEta)

.maxBy(t => t.hits.size)

.map($1.pt)

goodEta, t => t.hits.size, and $1.pt can only appear in
the appropriate argument slot of functions like .filter,
.maxBy, and .map.

And built-in functions never return functions.
42 / 51

Second-class functions

However, functions can be assigned

goodEta = {t => abs(t.eta) < 2.4};

and passed as the return value of a user-defined function

def cutEta(cut):
{t => abs(t.eta) < cut};

goodEta = cutEta(2.4);

because these constructs are expanded before any types are
checked. It gives the user the feeling of freedom when working
with functions when they are actually constrained.

The only aspect of first-class functions that the user might miss is
the ability to pick a function to call at runtime.

43 / 51

Why does this matter?

Since unevaluated functions only appear in arguments to
.filter, .maxBy, and .map, etc., they are no more powerful
than a “for” loop body.

For instance,

goodEta = {t => abs(t.eta) < 2.4};
data.filter(goodEta)

could be implemented by

[t for t in data if abs(t.eta) < 2.4]

In C terminology, all functions can be “inlined.” That is to say, the
exact code needed to execute them is known at compile-time and
can be literally inserted if desired.

44 / 51

Vectorization

It is in general difficult to “vectorize” code: that is, convert code
that operates on individual rows of data (events) to instead
operate on columns.

I The row-based view is more natural to the data analyst.

I But the column-based implementation is often faster.

This is the difficulty of porting algorithms from CPU to GPU: the
GPU is a 32 or 64 lane wide vector machine.

It is also the difficulty of porting pure Python to Numpy. Or “for”
loops in R into efficient “lapply.”

Even when the CPU is the target, modern CPUs have ∼4 lane
wide vector registers and can prefetch memory better when
operating on columns (circumventing the primary bottleneck in
most calculations).

45 / 51

Vectorization

It is in general difficult to “vectorize” code: that is, convert code
that operates on individual rows of data (events) to instead
operate on columns.

I The row-based view is more natural to the data analyst.

I But the column-based implementation is often faster.

This is the difficulty of porting algorithms from CPU to GPU: the
GPU is a 32 or 64 lane wide vector machine.

It is also the difficulty of porting pure Python to Numpy. Or “for”
loops in R into efficient “lapply.”

Even when the CPU is the target, modern CPUs have ∼4 lane
wide vector registers and can prefetch memory better when
operating on columns (circumventing the primary bottleneck in
most calculations).

46 / 51

Femtocode is vectorizable

Femtocode’s restriction on functions allows it to be vectorizable in
a way that C++ and Python aren’t.

For example, a collection of 1000 events may have 10,000 showers.
If the showers’ E2 (one per shower) is an array of length 10,000
and the events’ pedistal is an array of length 1000, we can’t
perform element-wise calculations on E2 and pedistal.

However, we can do this:

showers.map({s => sqrt(s.E2)}).max - pedistal

which translates into:

1. tmp1 = sqrt(E2) 10,000 operations

2. tmp2 = max(tmp1) stream compaction

3. tmp2 - pedistal 1000 operations

47 / 51

Intermediate representation

Femtocode “compiles” its expressions into a sequence of vector
statements and sends them to an execution engine for calculation.

{"version": "1.0",
"dataset": "ttbar-MC",
"operations": [
{"filter": [

{"fcn": ">", "args": ["MET", ["Literal", 20]],
"type": ["Boolean"], "deps": ["MET"]}]},

{"withColumn": {"varName": [
{"fcn": "+", "args": ["a", "b"], "to": "tmp1",
"type": ["Number", 0, ["almost", "inf"], true],
"deps": ["a", "b"]},

{"fcn": "sqrt", "args": ["tmp1"],
"type": ["Number", 0, ["almost", "inf"], false],
"deps": ["a", "b", "tmp1"]}]}},

{"histogrammar": ["Bin", 100, 0, 20, ["varName"],
"Count", "Count", "Count", "Count"]}

]}
48 / 51

Execution engine may reorder operations

Although the execution engine receives a list of operations, each
containing a list of assignment statements, it is free to change
their order as long as the dependencies ("deps") are satisfied.

I Some filters may be more effective than others, depending on
the distribution of data.

I One column at a time (Numpy style) may be more effective
than JIT-compiling a few operations together (Numexpr
style), or vice-versa, depending on register pressure, cache
misses, allocation and copy overhead, etc.

I Statements that use the same column as input could be
combined to avoid multiple memory fetches.

I The last use of a column may be operated upon in-place.
I If allocations and deallocations can be arranged as a stack,
malloc alternatives like Obstack may be used.

I Any JIT code must be written in a way that permits
vectorization, whether in a CPU, a GPU, or Xeon Phi.

49 / 51

Execution engine may reorder operations

Although the execution engine receives a list of operations, each
containing a list of assignment statements, it is free to change
their order as long as the dependencies ("deps") are satisfied.

I Some filters may be more effective than others, depending on
the distribution of data.

I One column at a time (Numpy style) may be more effective
than JIT-compiling a few operations together (Numexpr
style), or vice-versa, depending on register pressure, cache
misses, allocation and copy overhead, etc.

I Statements that use the same column as input could be
combined to avoid multiple memory fetches.

I The last use of a column may be operated upon in-place.
I If allocations and deallocations can be arranged as a stack,
malloc alternatives like Obstack may be used.

I Any JIT code must be written in a way that permits
vectorization, whether in a CPU, a GPU, or Xeon Phi.

50 / 51

Data representation

For all conceivable backends,
data will be stored in columnar
arrays, probably uncompressed.

I’ve gone back and forth on this, but now I see that Parquet’s
definition and repetition levels is the most elegant solution:

https://blog.twitter.com/2013/dremel-made-simple-with-parquet

Each group of columns with the same multiplicity would have one
“repetition level” array that indicates where collections and
subcollections start and end. Only one repetition level array is
needed for arbitrarily deep nesting: deeper repetition levels lead to
higher integer values in the repetition level array. In principle,
subcollections-within-collections could be as deep as 264.

51 / 51

https://blog.twitter.com/2013/dremel-made-simple-with-parquet

