
Explorations of  
Functional Programming  
with HEP Use Cases

LATBauerdick/Fermilab

Diana Meeting 2016-12-12

1

Functional Programming  
to fight Complexity

• 2006 paper "Out of the Tarpit" by Ben
Moseley and Peter Marks

• “Complexity is the single major difficulty
in the successful development of large-
scale software systems.”

• “…distinguish accidental from  
essential difficulty”

• “… most complexity … in contemporary
systems is [NOT] essential”

• common causes of “accidental complexity” 
- state, in particular hidden internal state 
- control, order in which things happen 
- others, like code volume etc

2

Inherent Complexity:
Example: Vertex Fitting

3

Ac
cid

en
ta

l C
om

pl
ex

ity
—

No
ise

Aleph, Fortran ca 1990Frühwirth, Algebra ca 1987

Inherent Complexity:
Example: Vertex Fitting

Ac
cid

en
ta

l C
om

pl
ex

ity
—

No
ise

4
CMS, C++ ca 2006Frühwirth, Algebra ca 1987

• Ruby, Io, Prolog, Scala, Erlang, Clojure, Haskell

• Lua, Factor, Elm, Elixir, Julia, miniKanren, Idris
5

Functional Programming Promises

• “FP[…] treats computation as the evaluation of mathematical functions and
avoids changing-state and mutable data” (Wikipedia)
• Without mutable state and with pure functions one gets referential

transparency: calling any function f with the same value for an argument x will
always produce the same result f(x)

• Thus any expression can replace function calls with the result of the function,
helping refactoring, allows parallelization and concurrency

• With non-strict or lazy evaluation, function arguments are evaluated only
when their values are required to evaluate the function call itself  
—> “computation on demand”

• Any “time domain” aspect is no longer part of the code, which becomes
merely the specification of data transformations

• Optimization, parallelization, moving to GPUs or FPGAs with help of
highly optimizing compilers, maybe w/ some code refactoring or compiler hints

6

Functional Programming Promises
• composition of functions can be done “cleanly”, and there are even more general ways to compose

data transformations that have a clean foundation in math
• (g ∘ f) (x) = g (f (x)), map and reduce-type operations on lists/vectors, Monadic compositions etc
• side effects and state (I/O, random numbers, data bases, …) are being handled explicitly  

(e.g., monads in Haskell, or by passing around state data structures)
• type systems and algebraic datatypes make manipulation of complex data structures convenient

and reduce them to their “math equivalence” — don’t need to be “re-invented”, are highly optimized
• strong compile-time type checking (together with type inference of compilers) makes programs

more reliable while freeing programmer from the need to manually declare types
• “nice” / consistent to program: syntactic sugar like pattern matching, list comprehension, etc
• naively, performance can be an issue (log in the # memory cells) but can also be very good:

• FP allows compilers to make assumptions that are unsafe in an imperative language, thus
increasing opportunities for e.g. inline expansion. Lazy evaluation / on-demand computation
helps, but also requires careful orchestration for modern processors with deep pipelines and
multi-level caches — which however can be done by experts, and would be mostly transparent
to the physicist providing the algorithm  

• Reality Check: Use Case of Vertex Fitting, implemented in Clojure and Haskell

7

Use Case: 
Vertex Fitting and Vertex Finding using Kalman Filter

• “Mature” algorithm (since ~1987!), e.g. used in Aleph 1990

• CMS implementation ~2006 (T.Speer et at):  
primary vertex, “vertex tools” etc

• Approach: use  
Kaman filter to  
combine helices  
into a common  
vertex by “adding”  
more and more  
helices finding the  
“best match”

8
Illustration from Harr (1995)

Measured Track HelixMeasured  
Vertex

Math description of algorithm  
translates ~directly to  
functional programming code:

• State Vector: vertex position  
and momenta of tracks at vertex

• filter step: add a new track p_k to a vertex
already fitted with k–1 tracks, updating its
position estimate x_k–1 —>, and
estimating the track’s at the vertex

• Smoothing is an update of the filtered
estimates q_ for k < n, just using the final
estimate of the vertex position x_n

• Taylor expansion 
 

• with Jacobian matrices

9

Math description of algorithm  
translates ~directly to  
functional programming code:

• State Vector: vertex position  
and momenta of tracks at vertex

• filter step: add a new track p_k to a vertex
already fitted with k–1 tracks, updating its
position estimate x_k–1 —>, and
estimating the track’s at the vertex

• Smoothing is an update of the filtered
estimates q_ for k < n, just using the final
estimate of the vertex position x_n

• Taylor expansion 
 

• with Jacobian matrices

10

type constructor
functions defined
elsewhere

KalFilter is
“folding” over list
of pk, updating x
on the way

this gets called
for each pk,
interfacing data
to worker
function kAdd’

this is really just the
math from slide 3!
matrix helper funcs
tr is transpose AT
sw is AT·B·A
inv is inverse A–1

call to calculate
Jacobian matrices,
implementing the
linearized
“measurement
equation” to get us
from “helices” to
“vertex, momenta”

In Haskell,  
calling function f(x)  
is written f x
[a] is a list of values  
e.g. [0,1,2,3…]
equation”

+ Math to move momentum
vectors along helices etc…

11

12

• Initial test: use a sample of 6-prong tau decay
(Aleph) Z → 𝜏 (𝜏 → 5 𝜋)

• vertex fit to constrain 𝜈𝜏 mass in 𝜏 → 5 𝜋 𝜈𝜏

• calc invariant mass of vertexed momenta

• test fit robustness and error propagation by

comparing propagated error with MC of
randomized helices 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Now testing it w/ CMS data for primary vertex
fit, playing with adaptive vertex finding etc  
—> it’s already a rather flexible vertex tool set!

Testing, I/O, random
numbers, Monads, …

Fit Mass 1494.8 ± 5.5 MeV
Mean Mass 1495.0 ± 4.0 MeV

https://github.com/LATBauerdick/fv.hs

https://github.com/LATBauerdick/fv.hs

13

• Initial test: use a sample of 6-prong tau decay
(Aleph) Z → 𝜏 (𝜏 → 5 𝜋)

• vertex fit to constrain 𝜈𝜏 mass in 𝜏 → 5 𝜋 𝜈𝜏

• calc invariant mass of vertexed momenta

• test fit robustness and error propagation by

comparing propagated error with MC of
randomized helices 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Now testing it w/ CMS data for primary vertex
fit, playing with adaptive vertex finding etc  
—> it’s already a rather flexible vertex tool set!

Testing, I/O, random
numbers, Monads, …

Fit Mass 1494.8 ± 5.5 MeV
Mean Mass 1495.0 ± 4.0 MeV

https://github.com/LATBauerdick/fv.hs

construct list of
randomized
VHMeas, must
carry around list
of normalized
randoms in rs

this gets called
from test harness

do the fit, calc
mass, print

Construct vector
of mass values
calculated from
randomized
VHMeas

print, histogram
and plot

construct list of
randomized
VHMeas, must
carry around list
of normalized
randoms in rs

construct list of
randomized
VHMeas, must
carry around list
of normalized
randoms in rs

Creates an infinite
(lazy) list of normal
distributed randoms

https://github.com/LATBauerdick/fv.hs

Some Observations and Conclusions
• This is really fun! For me, learning a new language was mind opening
• This is powerful stuff:

• functional declarative description of application domain problem,  
which in HEP almost always are “advanced” math problems anyway

• tools to deal with complexity are powerful math constructs (e.g. category theory) which might be a
great match to physics algorithms, and lend themselves to efficient hardware implementations

• compiler, runtime, language features to optimize, parallelize, vectorize, put on GPUs, FPGAs etc
• I do want want strong typing (Idris and Haskell vs. Clojure!) —> compiler supports type inference

• There’s a learning curve; does FP help writing comprehensible, maintainable s/w? Maybe not!
• certainly can’t expect a physicist to learn e.g. Haskell just to make a few plots or to try out ideas
• C++ w/ templates etc is really hard, too, and FP enables an appealing cleanness and brevity
• also “division of labor” and separation of concerns: math algorithm vs run-time optimization etc

• DSL for HEP, based on FP, could be very powerful, might be best bet for physicists use
• after all, ROOT C++ macro language is a “DSL”, too — just not a very clean one…

• I see many reasons why a closer look at FP in HEP would be very worthwhile
• Lots to learn and do, next steps: interfacing to CMS data sets and looking at performance
• Am looking for “fellow travelers” on this exciting journey!

14

Podcast series https://www.functionalgeekery.com/category/podcasts/
Category Theory: B.Milewsky https://www.youtube.com/watch?v=I8LbkfSSR58

https://www.functionalgeekery.com/category/podcasts/
https://www.youtube.com/watch?v=I8LbkfSSR58

