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Exchange	of	massive	gauge	bosons	gives	rise	double	
logarithmic	sensi6vity	in	both	virtual	and	real	diagrams
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Consider example of qq production 
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FIG. 1: Graphs contributing to the αW correction to the J → qq̄ rate.

⊗

FIG. 2: Virtual correction to J → qq.

⊗ ⊗

FIG. 3: Real radiation from J → qqW .

where σ0 is the tree-level cross section. The − ln2 r and
−3 ln r terms lead to large corrections at high energy.
The real radiation J → qqW arises from the graphs in

Fig. 3, and is

σR =
CFαW

2π
σ0

{
5(1− r2) + (3 + 4r + 3r2) ln r

+ (1 + r)2
[
ln2 r − 4 ln r ln(1 + r) − 4 Li2 (−r)−

π2

3

]}
.

(7)

Expanding in r gives

σR =
CFαW

2π
σ0

{
ln2 r + 3 ln r −

π2

3
+ 5 + . . .

}
. (8)

The total radiative correction is

σT = σR + σV

=
CFαW

2π
σ0

{
3

2
− 2r − 5r2 + (2 + 3r)r ln r

− 2(1 + r)2 [ln r ln(1 + r) + Li2 (−r)]

}
(9)
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FIG. 4: Plot of the real and virtual corrections to J → qq̄.
Plotted are the exact virtual correction (solid blue), the vir-
tual corrections using SCETEW (dashed blue), real radiation
(red), exact total rate (black) and the total rate using the
SCETEW virtual correction (dashed black).

and as r → 0 gives

σT =
3CFαW

4π
σ0 . (10)

The ln2 r and ln r terms cancel between σR,V . The cor-
rection to R in QCD is given by Eq. (10) with the re-
placement αW → αs and CF → 4/3.
The real and virtual corrections are shown in Fig. 4.

Also shown is the virtual correction computed using the
SCETEW result of Eq. (A2). The SCETEW and exact cal-
culations for the virtual correction have only very small
differences, which are below 1% for E > 2MW ∼ 160
GeV, and < 0.5% by 400GeV, whereas the real and
virtual corrections each exceed 5% by the time E >
15MW ∼ 1.2 TeV. This shows that in the regime where
the electroweak corrections are relevant at the LHC, the
SCETEW computation is sufficiently accurate. The fig-
ure also shows that the large real and virtual electroweak
corrections cancel in the total cross section.
The above calculation demonstrates the usual cancel-

lation of the L2 and L terms between real and virtual
graphs for the total cross section summed over all final
states. This cancellation is not guaranteed to hold if
the cross section is modified by restrictions on the final
state. One can impose phase space restrictions on the
kinematics of the emitted gauge boson. Consequences
of doing so were studied in detail in Ref. [6], and lead

3

⊗ ⊗

b
b

t

t
t

b
W

⊗ ⊗

t

bb

t

t t

W ⊗ ⊗

b

t

t

t

t

b

W

⊗ ⊗

t

b
t

t

t
t

W

FIG. 1: Graphs contributing to the αW correction to the J → qq̄ rate.
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and as r → 0 gives
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The ln2 r and ln r terms cancel between σR,V . The cor-
rection to R in QCD is given by Eq. (10) with the re-
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Also shown is the virtual correction computed using the
SCETEW result of Eq. (A2). The SCETEW and exact cal-
culations for the virtual correction have only very small
differences, which are below 1% for E > 2MW ∼ 160
GeV, and < 0.5% by 400GeV, whereas the real and
virtual corrections each exceed 5% by the time E >
15MW ∼ 1.2 TeV. This shows that in the regime where
the electroweak corrections are relevant at the LHC, the
SCETEW computation is sufficiently accurate. The fig-
ure also shows that the large real and virtual electroweak
corrections cancel in the total cross section.
The above calculation demonstrates the usual cancel-

lation of the L2 and L terms between real and virtual
graphs for the total cross section summed over all final
states. This cancellation is not guaranteed to hold if
the cross section is modified by restrictions on the final
state. One can impose phase space restrictions on the
kinematics of the emitted gauge boson. Consequences
of doing so were studied in detail in Ref. [6], and lead

For massive W,  IR “divergences” turn into log(mW2/s), and 
generally have two powers per power of alpha

Both virtual and real sensitive to log(mW2/s)

Fully inclusive observables: real and virtual “divergences” 
cancel



Since	no	exis6ng	experiment	collides	SU(2)	singlets,	
cancella6on	between	virtual	and	real	logs	incomplete
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For proton colliders, SU(2) breaking since fu/p(x,q) ≠ fd/p(x,q)
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Incomplete cancellation since the collider only collides 
electrons, not neutrinos. 



Logarithmic	effects	in	virtual	correc6ons	have	been	
resummed	in	SCET	quite	a	while	ago
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𝜇 = Q

𝜇 = mV

Full theory
SCETW,Z,𝛾 (M=0)

SCETW,Z,𝛾 (M≠0)

SCET𝛾

𝛾SCET

C(Q,𝜇)

D(mV,𝜇)

Problem is completely solved at NLL’ 
for any process

Chiu, Golf, Kelley, Manohar,  (’08)



Logarithmic	effects	in	real	radia6on	were	resummed	recently,	
using	analogy	with	parton	shower
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To	get	understanding	of	Sudakov	logarithms	for	general	
observable,	need	to	have	full	parton	shower
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Full parton shower has many advantages over previous 
analytical results

• Can describe fully realistic observables 
• Study multiple emissions of electroweak gauge bosons 
• Study how double logarithmic sensitivity depends on 

inclusivity of observable



Since	ini6al	state	effects	are	what	cause	non-cancella6on	of	
logs	even	for	“inclusive”	observables,	study	ISR	shower	first
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As is common for a parton shower, one defines no-branching 
probability, and from that an emission probability

Starting from initial state particle at scale q with flavor f and 
momentum fraction x, no branching probability is given by

Naive splitting probability given by

⇧i(t1, t2;x) =
�i(t1, t0)

�i(t2, t0)

fi/p(x, t2)

fi/p(x, t1)

P̃ij(z;x, t) = P

R
ij (z)

fj(x/z, t)

fi(x, t)

Why does one have the ratio’s of pdf’s?



Ini6al	state	parton	shower	nothing	but	a	“backward”	version	
of	DGLAP	equa6ons
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Defining the Sudakov factor …

�i(t, t0) = exp

⇢
�↵

⇡

Z t

t0

dt

0

t0
PV
i (t0)

�

… can write DGLAP equation as

Start from generic DGLAP equation

�i(t, t0) t
d

dt


fi/p(x, t)

�i(t, t0)

�
=

↵

⇡

X

j

C

R
ij

Z
dz PR

ij (z)fj/p(x/z, t)

t

d

dt
fi/p(x, t) =

↵

⇡

2

4
P

V
i (t)fi/p(x, t) +

X

j

C

R
ij

Z
dz PR

ij (z) fj/p(x/z, t)

3

5



Ini6al	state	parton	shower	nothing	but	a	“backward”	version	
of	DGLAP	equa6ons
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“Solve” this by writing as integral equation

By introducing the ratio’s of pdf’s (which is usually single 
log effect), ISR shower solves DGLAP exactly

�i(t, t0) t
d

dt


fi/p(x, t)

�i(t, t0)

�
=

↵

⇡

X

j

C

R
ij

Z
dz PR

ij (z)fj/p(x/z, t)

fi/p(x, t)

�i(t, t0)
=

fi/p(x, t0)

�i(t0, t0)
+

↵

⇡

Z t

t0

dt0

t

0
1

�i(t0, t0)

X

j

C

R
ij

Z
dz PR

ij (z)fj/p(x/z, t
0)

) 1 =
�i(t, t0)

�(t0, t0)

fi/p(x, t0)

fi/p(x, t)
+

↵

⇡

Z t

t0

dt0

t

0
�i(t, t0)

�i(t0, t0)

X

j

C

R
ij

Z
dz PR

ij (z)
fj/p(x/z, t

0)

fi/p(x, t)

= ⇧i(t, t0;x) +
↵

⇡

Z t2

t1

dt0

t

0
�i(t, t0)

�i(t0, t0)

X

j

C

R
ij

Z
dz PR

ij (z)
�j(t0, t0)

�j(t0, t0)

fj/p(x/z, t0)

fi/p(x, t)
+ . . .

= ⇧i(t, t0;x) +
↵

⇡

Z t

t0

dt0

t

0 ⇧i(t, t
0;x)

X

j

C

R
ij

Z
dz P̃ij(z;x, t

0)⇧j(t
0
, t0;x/z)



To	implement	any	ISR	parton	shower,	one	needs	solu6on	to	
DGLAP
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Splitting functions and Sudakov factors depend on ratios of 
pdf’s at different scales, thus on solution to DGLAP

While these ratios are always single logarithmic, can be 
numerically large at low q since some pdf’s vanish at q = mW

Solution to DGLAP already gives many interesting aspects of 
logarithmic effect in broken gauge theories

Will study DGLAP evolution of pdf’s for remainder of talk



Parton	distribu6on	func6ons	are	matrix	elements	of	collinear	
bi-local	operators
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Diagramatically, can think of them as

2. The evolution of parton distributions in the full Standard model

2.1 Definition of the parton distribution functions

The standard definition of an x-weighted parton distribution is given by the matrix element

of a bi-local operator, separated along the lightcone. For fermions, one finds the standard

definition, but without spin averaging as we are separating the fermions into left and right

handed, thus each fermion has only one possible spin determined by its helicity and the

sign of its momentum.

fi(x) = x

Z
dy

2⇡
e�i 2xn̄·p y⌦p

��  ̄(i)(y) n̄/ (i)(�y)
��p
↵
, (2.1)

f
¯i(x) = x

Z
dy

2⇡
e�i 2xn̄·p y⌦p

�� (i)(y) n̄/  ̄(i)(�y)
��p
↵
. (2.2)

To include all gauge interactions of the standard model, one needs to include separate

parton distribution functions for left- and right- handed fields. This implies that for each

generation, there are a total of 8 quark PDFs and 6 lepton PDFs to consider, for a total

of 42 fermion PDFs.

Parton distributions functions of the vector bosons are given by

fV (x) =
2

n̄·p
Z
dy

2⇡
e�i 2xn̄·p y n̄µn̄

⌫
⌦
p
��V µ�(y)V�⌫(�y)

��p
↵���
spin avg.

. (2.3)

Since SU(3) is unbroken, we consider a single PDF to describe the gluon field. For the

SU(2) ⌦ U(1) symmetry, on the other hand, one needs to take the symmetry breaking into

account. For the W+ and W� boson we simply include separate PDFs for each of the two

gauge bosons. For the B and W
3

, however, one needs to be more careful to take the mixing

between these two bosons into account. This implies that besides PDFs for each of these

two particles, one needs to include a mixed PDF, which is given by

fBW (x) =
1

2

✓
2

n̄·p
Z
dy

2⇡
e�i 2xn̄·p y n̄µn̄

⌫
⌦
p
��Bµ�(y)W 3

�⌫(�y)
��p
↵���
spin avg.

+ h.c.

◆
. (2.4)

From these PDFs one can then construct the PDF for the Z, the photon and their mixed

state as a transformation of the PDF for the B, the W 3 and their mixed state. Using

A = cWB + sWW 3 and Z = �sWB + cWW 3 one finds
0

B@
f�
fZ
f�Z

1

CA =

0

B@
c2W s2W 2cW sW
s2W c2W �2cW sW

�cW sW cW sW c2W � s2W

1

CA

0

B@
fB
fW 3

fBW

1

CA . (2.5)

Finally, one needs to include PDFs for the scalar bosons. One writes

fH(x) =

Z
dy

2⇡
e�i 2xn̄·p y ⌦p

���(y)�(�y)
��p
↵
,

(2.6)

and PDFs for each of the 4 Higgs fields H0, H̄0, H+ and H� are included.

In summary, there are a total of 52 parton distrbution functions that need to be

considered.
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Parton distribution functions are matrix elements of collinear 
operators of field separated along the light-cone

Once full SM evolution is considered, need pdf for every 
particle (including Higgs)

fi fV



Besides	these	“standard”	forward	pdf’s,	one	also	needs	to	
consider	non-forward,	mixed	pdf’s
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This pdf is required to describe mixed processes with Z or 
gamma in initial state
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W3 BfBW



DGLAP	equa6ons	are	simply	renormaliza6on	group	equa6ons	
of	these	operators
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As for any operator in field theory depend on renormalization 
scale, and RGE is derived from divergent structure of loops

Virtual contributions have loop stay on same side of operator

Real contributions have loop go from one side to other



For	usual	QCD	evolu6on	of	PDF’s	solu6on	to	DGLAP	is	only	
single	logarithmic
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Consider evolution of quark pdf:

Virtual Real

Combination

Logarithmic singularity as z→1 vanishes

t

d

dt
fu(x, t) =

↵CF

⇡

P

V
q (t)fu(x, t)

P

V
q (t) = �

Z z
max

(t)

0
dz Pqq(z)

t

d

dt
f

q

(x, t) =
↵C

F

⇡

Z
z

max

(t)

x

dz P
qq

(z)f
q

(x/z, t)

t

d

dt
fq(x, t) =

↵CF

⇡

Z z
max

(t)

0
dz Pqq(z) [fq(x/z, t)� fq(x, t)] + . . .



Since	charged	W	bosons	can	change	the	flavor	of	the	
fermions,	cancella6on	between	virtual	and	real	broken
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Consider evolution of an up-type pdf:

Virtual Real

t

d

dt
fu(x, t) =

↵CF

⇡

P

V
q (t)fu(x, t)

Since fu ≠ fd (the proton is not SU(2) singlet), real and virtual 
contributions do not cancel

Double logarithmic terms remain

t

d

dt
fu(x, t) =

↵CF

⇡

Z z
max

(t)

0
dz Pqq(z)

⇥

2

3
fd(x/z, t) +

1

3
fu(x/z, t)

�



By	studying	the	equa6ons	more	carefully,	one	finds	that	the	
double	logarithms	restore	electroweak	symmetry	breaking
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By switching from a flavor basis to an isospin basis

f

0(x, t) =
fu(x, t) + fd(x, t)

2
f

1(x, t) =
fu(x, t)� fd(x, t)

2

f

I
(x, t) ⇠ exp


�I(I + 1)

2

↵2

⇡

ln

2 t

mV

�

States with I ≠ 0 go double 
logarithmically to zero
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Before	I	show	results,	let	me	give	the	complete	evolu6on	of	
quark	pdf	as	an	example
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The possible diagrams one can draw are

q d/dq f = P ⊗ f

q d/dq f = P ⊗ V

q d/dq f = P ⊗ H



Before	I	show	results,	let	me	give	the	complete	evolu6on	of	
quark	pdf	as	an	example
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2.5 I = 3: SU(3) interactions

We start by considering the well known case of SU(3) interactions. The relevant degrees

of freedom are the gluon, as well as left and right-handed quarks. The coupling constants

are

Cqq,3 = Cgq,3 = CF , Cqg,3 = TR , Cgg,3 = CA . (2.34)

This gives for the evolution of a quark or gluon4


�q,3 q

@

@q

fq
�q,3

�

3

=
↵
3

⇡

⇥
CFP

R
ff,G ⌦ fq + TRP

R
fV,G ⌦ fg

⇤
, (2.35)


�g,3 q

@

@q

fg
�g,3

�

3

=
↵
3

⇡

2

4CAP
R
V V,G ⌦ fg +

X

f

CFP
R
V f,G ⌦ fq

3

5 . (2.36)

The Sudakov factor can be obtained from Eq. (2.13) using the coupling constants in

Eq. (2.34). This gives

P V
q,3(q) = �CF

Z
1

0

z dz
⇥
PR
ff,G(z) + PR

V f,G(z)
⇤

P V
g,3(q) = �

Z
1

0

z dz
⇥
CA PR

V V,G(z) + 8ng TR PR
fV,G(z)

⇤
, (2.37)

where we have used in the last line that there are 8 chiral quarks plus antiquarks per

generation.

Since the gluon is massless, the upper limit in all the z integration is equal to 1 [see

Eq. (3.13)]. This imples that the convolutions PR
ff,G⌦fq and PR

V V,G⌦fg in Eqs. (2.35) and

(2.36) are both divergent. However, at the same time the virtual splitting functions that

enters the Sudakov factors �q,3(q) and �g,3(q) defined in Eq. (3.9) are also divergent, such

that the divergences cancel in the evolution of the actual PDFs. Using +-distributions, as

explained in Section 3, one obtains evolution equations that are free of any divergences, and

which can be implemented numerically. Alternatively, for parton shower implementation,

one can impose a cuto↵ of the form Eq. (3.13) with mV replaced by a small parameter

mg > ⇤
QCD

.

2.6 I = 1: U(1) interactions

For U(1) the relevant degrees of freedom are left and right-handed fermions (denoted by

the label f), as well as the U(1) gauge boson B. The couplings involving fermions and

gauge bosons are

Cff,1 = CBf,1 = Y 2

f , CfB,1 = Nf Y
2

f , CBB,1 = 0 (2.38)

where the hypercharges of the di↵erent fermions are given by

YqL =
1

6
, YuR =

2

3
, YdR = �1

3
, Y`L = �1

2
, YeR = �1 , (2.39)

4From now on we omit the arguments of functions for brevity.
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and the color factor Nf is equal to 3 for quarks and 1 for leptons. The couplings involving

the Higgs bosons are

Chh,1 = CBh,1 = ChB,1 =
1

4
, (2.40)

where h here stands for any of the 4 Higgs bosons.

Plugging this into the general evolution equation gives

�f,1 q

@

@q

ff
�f,1

�

1

=
↵
1

⇡
Y 2

i

⇥
PR
ff,G ⌦ ff +NfP

R
fV,G ⌦ fB

⇤
, (2.41)


�B,1 q

@

@q

fB
�B,1

�

1

=
↵
1

⇡

2

4
X

f

Y 2

f P
R
V f,G ⌦ ff +

1

4

X

h

PR
VH,G ⌦ fh

3

5 , (2.42)


�H,1 q

@

@q

fh
�h,1

�

1

=
↵
1

⇡

1

4

⇥
PR
HH,G ⌦ fh + PR

HV,G ⌦ fB
⇤
. (2.43)

The virtual splitting functions, required for the Sudakov factor are given by

P V
f,1(q) = �Y 2

f

"Z
1�mV

q

0

z dz PR
ff,G(z) +

Z
1

0

z dz PR
V f,G(z)

#

P V
B,1(q) = �ng

✓
11

9
NC + 3

◆Z
1

0

z dz PR
fV,G(z)�

Z
1

0

z dz PR
HV,G(z)

P V
H,1(q) = �1

4

"Z
1�mV

q

0

z dz PR
HH,G(z) +

Z
1

0

z dz PR
VH,G(z)

#
, (2.44)

where we have used in the second line that for each generation there are 4 left-handed quarks

(one needs to count particles and antiparticles separately), 2 right-handed up-type quarks,

2 right-handed down-type quarks, 4 left-handed leptons and 2 right-handed electrons, and

that there are a total of 4 Higgs bosons.

2.7 I = 2: SU(2) interactions

The SU(2) interactions are more complicated, since the emission of W± bosons changes

the flavor of the emitting particle. This, combined with the SU(2) breaking in the input

hadron PDFs, leads to double logarithmic dependence in the DGLAP evolution, rather

than only single logarithmic dependence as in the evolution based on U(1) and SU(3).

The relevant coupling constants are (where u and d denote any up- and down-type

fermion, and Wi any of the SU(2) gauge bosons)

Cud,2 = Cdu,2 = CW±f,2 =
1

2
,

Cuu,2 = CW 3u,2 = Cdd,2 = CW 3d,2 =
1

4
,

CfW±,2 = Nf
1

2
,

CuW 3,2 = CdW 3,2 = Nf
1

4
,

CWiWj ,2 = 1 , (2.45)
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where as before the color factor Nf = 3 for quarks, 1 for leptons. The couplings of the W 3

state to the Higgs are given by

Chuhu,2 = CW 3hu,2 = ChuW 3,2 = Chdhd,2 = CW 3hd,2 = �ChdW 3,2 =
1

4
, (2.46)

while those of the charged W states to the Higgs are given by

CH+H0,2 = CH0H+,2 = CH+W+,2 = CH�
¯H0,2 = C

¯H0H�,2 = CH�W�,2 =
1

2
(2.47)

This gives for the evolution of the fermions

�fL,2 q

@

@q

fuL

�fL,2

�

2

=
↵
2

⇡

⇢
PR
ff,G ⌦


fdL
2

+
fuL

4

�

+NfPfV,G ⌦

fW+

2
+

fW 3

4

��
(2.48)


�fL,2 q

@

@q

fdL
�fL,2

�

2

=
↵
2

⇡

⇢
PR
ff,G ⌦


fuL

2
+

fdL
4

�

+NfPfV,G ⌦

fW�

2
+

fW 3

4

��
, (2.49)

where uL and dL stand for left-handed up and down-type fermions and as always Nf = 3

for quarks and 1 for leptons.

For the W+ and W 3 bosons we have

�W,2 q

@

@q

fW+

�W,2

�

2

=
↵
2

⇡

⇢
PR
V V,G ⌦ [fW+ + fW 3 ] +

1

2
PR
VH,G ⌦ [fH+ + f

¯H0 ]

+
X

gen

1

2
PfV,G ⌦ ⇥

fuL + f
¯dL

+ f⌫L + f
¯`L

⇤�
(2.50)


�W,2 q

@

@q

fW 3

�W,2

�

2

=
↵
2

⇡

⇢
PR
V V,G ⌦ [fW+ + fW� ] +

1

4
PR
VH,G ⌦

X

h

fh

+
1

4

X

fL

PR
fV,G ⌦ ffL

�
, (2.51)

and the equation for the W� can be obtained from that of the W+ by taking anti-particles

everywhere. The sum over j in the last line is over all left-handed fermions.

Finally, for the Higgs boson we have

�hu,2 q

@

@q

fhu

�h,2

�

2

=
↵
2

⇡

⇢
PR
HH,G ⌦


fhd

2
+

fhu

4

�

+PHV,G ⌦

fW+

2
+

fW 3

4

��
(2.52)


�hd,2 q

@

@q

fH0

�H0,2

�

2

=
↵
2

⇡

⇢
PR
HH,G ⌦


fhu

2
+

fhd

4

�

+PHV,G ⌦

fW�

2
+

fW 3

4

��
. (2.53)

– 11 –

The virtual splitting functions are

P V
f,2(q) = �3

4

"Z
1�mV

q

0

z dz PR
ff,G(z) +

Z
1

0

z dz PR
V f,G(z)

#

P V
W,2(q) = �2

Z
1�mV

q

0

z dz PR
V V,G(z)� ng(NC + 1)

Z
1

0

z dz PR
fV,G(z)�

Z
1

0

z dz PR
HV,G(z)

P V
H,2(q) = �3

4

"Z
1�mV

q

0

z dz PR
HH,G(z) +

Z
1

0

z dz PR
VH,G(z)

#
, (2.54)

from which the Sudakov factor can be constructed using Eq. (3.9).

An important aspect of the SU(2) evolution equations is that, contrary to the other

gauge groups, the dependence on the ratio mV /q does not cancel between the real and

virtual splitting functions. As an example, consider the evolution equation for an up-type

fermion, given on the first line of Eq. (2.48), with the virtual contribution given by the

first line of Eq. (2.54). The sum of the contributions of real and virtual splitting functions

is given by

↵
2

⇡

Z
1�mV

q

0

dz
1

4
PR
ff,G(z) [2 fdL(x/z) + fuL(x/z)� 3 fuL(x)] . (2.55)

Thus, the SU(2) breaking in the proton, which renders fu(z) 6= fd(z), gives rise to a

logarithmic dependence on mv/q, which leads to a double logarithmic dependence upon

the integration over q. As we will see later, the e↵ect of this double logaritmic dependence

is to double logarithmically suppress the SU(2) breaking e↵ects at large energies.

2.8 I = Y : Yukawa interactions

The interaction of Higgs particles with fermions is described by the Yukawa interactions.

In this work we only keep the top Yukawa coupling, setting all others to zero. This gives

the following couplings

Cq3LtR,Y = CH0tR,Y = CH+tR,Y = CtRq3L,T
= C

¯H0tL,Y
= CH�bL,Y = 1 , (2.56)

where q3L denotes either the left-handed top or bottom quark. We furthermore need

CtRH0,Y = CtRH+,Y = CtL ¯H0,Y = CbLH�,Y = NC . (2.57)

This gives contributions to the top quark PDF, as well as the left-handed bottom PDF

"
�q3L,Y

q
@

@q

ftL
�q3L,Y

#

Y

=
↵Y

⇡

⇢
PR
ff,Y ⌦ ftR +NCPfH,Y ⌦ f

¯H0

�


�tR,Y q

@

@q

ftR
�tR,Y

�

Y

=
↵Y

⇡

⇢
PR
ff,Y ⌦ [ftL + fbL ] +NCPfH ⌦ [fH0 + fH+ ]

�

"
�q3L,Y

q
@

@q

fbL
�q3L,Y

#

Y

=
↵Y

⇡

⇢
PR
ff,Y ⌦ ftR +NCPfH,Y ⌦ fH�

�
(2.58)
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It also contributes to the evolution of the Higgs bosons

�H,Y q

@

@q

fH+

�H,Y

�

Y

=
↵Y

⇡
PR
Hf,Y ⌦ ⇥

ftR + f
¯bL

⇤


�H,Y q

@

@q

fH0

�H0,Y

�

Y

=
↵Y

⇡
PR
Hf,Y ⌦ ⇥

ftR + f
¯tL

⇤
. (2.59)

The Sudakov factors can be obtained using Eq. (3.9) with

P V
q3L,Y

(q) =
1

2
P V
tR,Y (q) = �

Z
1

0

z dz PR
ff,Y (z)�

Z
1

0

z dz PR
Hf,Y (z)

P V
H,Y (q) = �2NC

Z
1

0

z dz PR
fH,Y (z) . (2.60)

2.9 I = M : Mixed B �W
3

interactions

Finally, we need to consider the evolution involving the mixed BW boson. The non-

vanishing couplings are

CBWfu,M = �CBWfd,M =
Yf
2

,

CfuBW,M = �CfdBW,M = Nf
Yf
2

. (2.61)

The diagonal coe�cients Cfufu,M and Cfdfd,M are zero because there is no vector boson

with both U(1) and SU(2) interactions. For the same reason, there are no Sudakov factors

associated with the mixed interaction. The couplings involving the Higgs bosons are

CBWhu,M = ChuBW,M = �CBWhd,M = �ChdBW,M =
1

4
. (2.62)

Plugging these into the general evolution equation gives the equations

q
@

@q
ffu

�

M

=
↵M

⇡

Yf
2
NfP

R
fV,G ⌦ fBW , (2.63)


q
@

@q
ffd

�

M

= �↵M

⇡

Yf
2
NfP

R
fV,G ⌦ fBW , (2.64)


�BW q

@

@q

fBW

�BW

�

M

=
↵M

⇡

⇥X

fu

Yf
2
PR
V f,G ⌦ ffu �

X

fd

Yf
2
PR
V f,G ⌦ ffd

+
1

4

X

hu

PR
VH,G ⌦ fhu � 1

4

X

hd

PR
VH,G ⌦ fhd

⇤
, (2.65)


q
@

@q
fhu

�

M

=
↵M

⇡

1

4
PR
HV,G ⌦ fBW , (2.66)


q
@

@q
fhd

�

M

= �↵M

⇡

1

4
PR
HV,G ⌦ fBW , (2.67)

where fu are the up-type left-handed fermions and antifermions, that is uL, ⌫L, ūL, ⌫̄L
for all generations, fd are the down-type left-handed fermions and antifermions, that is
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Quark	pdf’s	are	modified	from	their	value	obtained	with	only	
QCD	evolu6on	included
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Figure 1: Quark PDFs in the full unbroken SM, divided by their values assuming pure QCD
evolution only. Left- and right-handed chiralities are solid and dashed, respectively. Curves are at
scales q = 104 (red), 106 (blue) and 108 (green) GeV.
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Figure 1: Quark PDFs in the full unbroken SM, divided by their values assuming pure QCD
evolution only. Left- and right-handed chiralities are solid and dashed, respectively. Curves are at
scales q = 104 (red), 106 (blue) and 108 (green) GeV.
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The	isospin	asymmetry	is	driven	to	zero,	as	predicted	earlier
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Figure 2: Asymmetry between up-isospin and down-isospin left-handed Quark PDFs, defined in
Eq. (4.1), in the full unbroken SM, normalized to the result when only QCD evolutoin is included.

Figure 3: Electroweak bosons PDF normalized by the gluon PDF.
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this, we plot in Fig. 2 the asymmetry

AqL =
uL � dL
uL + dL

(4.1)

normalized to the result if only QCD evolution were turned on OR SHOULD WE

SHOW THE RESULT NORMALIZED TO ITS VALUE AT 100GEV AS WE

DID BEFORE? THE PLOTS LOOK QUALITATIVELY THE SAME.. This

asymmetry ratio is shown in Figure 2 for the 3 generation of quarks as a function of q, for

various values of x. For all generations the asymetry decreseases as q gets larger, driving

the pdf’s of the di↵erent isospin states towards each other. The fact that the results look

quite similar is due to the fact that the evolution behaves as

AqL(x, q) ⇠ F 1

i (q)A
qL(x,mV ) (4.2)

where F 1

i (q) is given in Eq. (3.13).

For the first generation, the asymmetry at low values of q is large, since the input at

100 GeV has the up quark roughtly twice as large as the down quark. This asymetry is

reduced faster at low x than at large x. At 100 TeV, it is reduced to 71% for x = 0.1 and

92% for x = 0.9. The result are essentially identical for the third generation even though

the asymmetry in inverted (which can not be seen from the plot due to the normalization),

that is the bottom PDF is larger than the top PDF. For the second generation, the initial

asymmetry is much weaker, and thus other e↵ects dominate the evolution at low value of

x and q.

Next, we study the size of the PDFs of particles not charged under the strong interac-

tion. Since these PDFs are only generated by emissions due to the U(1), SU(2) or Yukawa

interactions, they are vanishing at all scales if on is including only SU(3) evolution. The

only exception is the photon, which has a non-vanishing initial condition at q = 100 GeV.

Figure 3 shows results on the electroweak bosons PDF normalized to the gluon PDF, both

evolved using the full standard model. One can see that the SU(2) gauge boson PDFs

become a significant fraction of the gluon PDF, especially at large values of x. The PDF

for the W+ boson is largest, which can be understodd from the fact that it is generated

through emissions from the up-quark. The W� boson is smaller, since it comes predomi-

nantly from emissions from the down-quark, whose PDF is smaller. The Z boson is smaller

since the coupling to quarks is smaller than that of the W bosons.

We also show the PDFs for the Higgs bosons and the leptons. The Higgs boson PDFs

are shown in Fig. 4, and the leptons are shown in Fig. 5, both normalized to the gluon.

Both are expected to be much smaller than the vector boson PDFs. For the Higgs, this is

because they are only generated via emissions from the top and bottom quark, which are

much smaller than the up and down quark, which generate the vector bosons. Leptons are

only generated via a second order e↵ect via emissions from the vector bosons.

As a final result, we study several parton luminosities, choosing a future 100TeV pp

collider as a reference. While the energy scales that can be reached at such a collider are

not quite large enough to get O(1) e↵ects, the e↵ects of the full standard model evolution

still give numerically relevant e↵ects. In Figure 6 we show the qLq̄L luminosities for for
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The	probability	of	finding	a	vector	boson	in	the	proton	
becomes	comparable	to	that	to	find	a	gluon

22

Figure 2: Asymmetry between up-isospin and down-isospin left-handed Quark PDFs, defined in
Eq. (4.1), in the full unbroken SM, normalized to the result when only QCD evolutoin is included.
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Figure 3: Electroweak bosons PDF normalized by the gluon PDF.
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Even	have	probability	of	finding	a	Higgs	bosons	in	proton,	but		
much	smaller	than	gluon
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Figure 4: Higgs bosons PDF normalized by the gluon PDF.
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Luminosi6es	at	a	100TeV	collider	are	changed	no6ceably	from	
the	values	including	only	QCD	running
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Figure 5: Lepton PDFs normalized by the gluon PDF.
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Figure 6: Quark antiquark luminosity in the full unbroken SM, divided by their values assuming
pure QCD evolution only.
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Luminosi6es	including	vector	bosons	become	a	significant	
frac6on	of	more	standard	luminosi6es
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Figure 7: V q and Hq luminosity in the full unbroken SM, divided by the corresonding qq̄ lumi-
nosity.
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In	conclusion,	including	all	SM	interac6ons	can	significantly	
alter	DGLAP	evolu6on
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Questions?

• “Regular” pdfs are affected significantly 
• New luminosities are required  
• DGLAP evolution is basis for ISR shower


