Monte-Carlo Top Quark Mass Calibrations: Update

Moritz Preisser

(University of Vienna / MIT)

Collaborators:

M. Butenschön, B. Dehnadi, A. Hoang, V. Mateu, I. Stewart

partially based on PRL 117 (2016) 232001

SCET Workshop 2017 March 14, 2017

◆□> ◆□> ◆三> ◆三> 三三 のへで

Outline

Motivation & Introduction

- Strategy & Observable
- S Calibrating PYTHIAs Top Mass Parameter using 2-Jettiness

Summary & Outlook

< □ > < □ > < □ > < □ > < □ >

Motivation

• Top quark is the heaviest particle in the standard model

• Precise knowledge of top quark mass very important:

- Electroweak precision tests of the SM
- Stability of the SM vacuum
- Top production important as background for BSM searches

▶ ..

[GFitter, Phys. J. C (2014) 74]

[Degrassi et.al. 2012]

イロト イヨト イヨト イヨト

Top Mass Determinations

- Different methods available $(t\bar{t} \text{ production at hadron colliders})$
 - \blacktriangleright total cross-section measurements $m_t^{\rm pole} = 176.7^{+4.0}_{-3.4}~{\rm GeV}~{\rm [K.A.Olive~et.al.~(PDG)~2014]}$
 - Ieptonic observables [Frixione, Mitov 2014; Kawabata 2016]
 - direct reconstruction measurements
 - alternative techniques [CMS 2016]
 - ..

· Direct reconstruction: standard technique

- \blacktriangleright many individual measurements with uncertainty below 1 GeV \rightarrow CMS combination reaches <500 MeV
- → PDG quotes an uncertainty of ~ 900 MeV

 $m_{\rm t} = 173.21 \pm 0.51 ({\rm stat}) \pm 0.71 ({\rm sys}) \,{\rm GeV}$

 relies on Monte Carlo (MC) generators e.g. PYTHIA to determine mass

Question: How should one interpret the "measured" top mass? What is m_t^{MC} ?

イロト イヨト イヨト イヨト

2017-03-14 2 / 19

Top Mass Determinations: MC Top Quark Mass

- Historically: all-order identification with m_t^{pole}
 - $\mathcal{O}(\Lambda_{QCD})$ renormalon ambiguity
 - Convergence issues when extracting the pole mass

- Steps in the MC:
 - ▶ Hard ME $t\bar{t}$ production
 - \blacktriangleright Parton shower evolution down to the shower cutoff $\Lambda_{cut} \sim 1 {\rm GeV}$
 - Hadronization model dependent

$$m_t^{\rm MC}: m_t^{\rm MSR}(R\simeq 1 {\rm GeV})$$

[Hoang, Stewart '08, Hoang '14]

[original picture D. Zeppenfeld]

< □ > < □ > < □ > < □ > < □ >

Strategy

- Strategy: compare quark mass-sensitive hadron level QCD calculations with sample data from some MC
 - look into observables with strong kinematic mass sensitivity
 - get accurate hadron level QCD predictions (
 NLO/NNLL) with full control over quark mass scheme dependence
 - fit QCD masses to different values of m^{MC}_t

 $m_t^{\rm MC} = m_t^{\rm MSR}(R \simeq 1 {\rm GeV}) + \Delta_{\rm t,MC}^{\rm MSR}({\rm R} \simeq 1 {\rm GeV})$

$$m_t^{\rm MC} = m_t^{\rm pole} + \Delta_{t,{\rm MC}}^{\rm pole} \qquad \Delta_{t,{\rm MC}} \simeq \mathcal{O}(1{\rm GeV})$$

Uncertainties we address in our e^+e^- study

 perturbative uncertainty

- \triangleright strong coupling α_s
- non-perturbative parameters
- scale uncertainties
- electroweak effects

Additional pp systematics

- \triangleright PS + UE
- ▷ color reconnection
- ▷ intrinsic uncertainty

イロト イヨト イヨト イヨト

Kinematic Situation & Massive Event Shapes

- Simplification 1: Look into **boosted tops** (c.o.m. energy $Q \gg m_t \sim \text{high } p_T$)
- Simplification 2: Consider $e^+e^- \rightarrow t\bar{t} \rightarrow$ hadrons for progress on pp theory, see Aditya's talk
- Observables: (stable case) $\hat{m} = m/Q$

First: focus on 2-jettiness

< □ > < □ > < □ > < □ > < □ >

Theory Description - EFT treatment

Boosted top jets: bHQET + SCET

[Fleming, Hoang, Mantry, Stewart 2007]

$$n_f = n_l + 1$$

< □ > < 同 > < 回 > < 回 >

Theory Description - EFT treatment

• Developments:

 VFNS for final state jets (with massive quarks) [Gritschacher, Hoang, Jemos, Mateu, Pietrulewicz '13 '14]

MSR mass & R-evolution

[Hoang, Jain, Scimemi, Stewart 2010]

 Non-perturbative power-corrections are included via a shape function

[Korchemsky, Sterman 1999] [Hoang, Stewart 2007] [Ligeti, Stewart, Tackmann 2008]

Gap-scheme

イロト イヨト イヨト イヨト

Convergence, Mass Sensitivity

• $\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = f(m_t^{\mathrm{MSR}}, \alpha_s(m_Z), \Omega_1, \Omega_2, \dots, \mu_H, \mu_J, \mu_S, \mu_M, R, \Gamma_t)$ any scheme non-perturbative renorm. scales finite lifetime

- Good convergence
- Reduction of scale uncertainty (NLL to NNLL)
- Control over whole distribution
- Higher mass sensitivity for lower Q
- Finite lifetime effects included
- Dependence on non-perturbative parameters

Preparing the Fits

- $\frac{d\sigma}{d\tau} = f(m_t^{MSR}, \alpha_s(m_Z), \Omega_1, \Omega_2, \dots, \mu_H, \mu_J, \mu_S, \mu_M, R, \Gamma_t)$ any scheme non-perturbative renorm. scales finite lifetime
- Generating PYTHIA 8.205 Samples: at different energies: Q = 600, 700, 800, ..., 1400 GeV
 - masses: $m_t^{MC} = 170, 171, 172, 173, 174, 175 \text{ GeV}$
 - width: $\Gamma_t = 1.4 \text{ GeV}$
 - tune: 7 (Monash)
 - Statistics: 10⁷ events for each set of parameters
- Feed MC data into Fitting Procedure: all ingredients are there Fit parameters: m_t^{MSR}, α_s(m_Z), Ω₁, Ω₂, ...
 - \blacktriangleright standard fit based on χ^2 minimization
 - analysis with 500 sets of profiles (au_2 dependent renorm. scales) for the each MC sample
 - different Q-sets: 7 sets with energies between 600 1400 GeV different n-sets: 3 choices for fitranges - (xx/yy)% of maximum peak height

イロン イヨン イヨン イヨン 三日

Fit Results: Pythia vs. Theory

- Good agreement of PYTHIA 8.205 with ${\rm N}^2{\rm LL} + {\rm NLO} \mbox{ QCD description in peak region}$

• Perturbative uncertainties on theory side estimated via scale variations (profiles)

• MC incompatibility uncertainty

estimate intrinsic difference between MC & theory via difference between different Q- & n-sets

イロト イポト イヨト イヨー

Convergence & Stability: MSR vs Pole Mass

500 profiles; $\alpha_s = .118$; $\Gamma_t = 1.4$ GeV; tune 7; Q = 700, 1000, 1400 GeV; peak(60/80)%

Input: $m_t^{MC} = 173 \text{ GeV}$

fit to find $m_t^{MSR}(1 \text{GeV})$ or m_t^{pole}

• Good convergence and stability for $m_t^{MSR}(1 \text{GeV})$

• $m_t^{
m MSR}(1{
m GeV})$ numerically close to $m_t^{
m MC}$

- Pole mass numerically not at all close to $m_t^{\rm MC}$
- $\sim 1100/700$ MeV difference at NLL/NNLL!

• $m_t^{\text{pole}} \neq m_t^{\text{pythia 8.2}}$

Similar findings from the other 20 data sets

Final Results for m_t^{MSR}

- All investigated MC top mass values show consistent picture
- MC top quark mass is indeed closely related to MSR mass

within uncertainties:

 $m_t^{\rm MC} \simeq m_t^{\rm MSR} (1 {\rm GeV})$

$m_t^{\rm MC} = 173 {\rm GeV} \left({\tau_2^e}^+ e^- \right)$										
mass	order	$\operatorname{central}$	perturb.	${\rm incompatibility}$	total					
$m_{t,1\text{GeV}}^{\text{MSR}}$	NLL	172.80	0.26	0.14	0.29					
$m_{t,1\mathrm{GeV}}^{\mathrm{MSR}}$	$\rm N^2LL$	172.82	0.19	0.11	0.22					
m_t^{pole}	NLL	172.10	0.34	0.16	0.38					
$m_t^{ m pole}$	$\rm N^2LL$	172.43	0.18	0.22	0.28					

Pole Mass Determinations

1 Pole mass implemented in code

 $m_t^{\text{pole}} < m_t^{\text{MSR}}(1 \text{GeV}) < m_t^{\text{MC}}$

	$m_t^{MC} = 173 \text{GeV} \left(\tau_2^{e^+ e^-}\right)$									
	mass	order	$\operatorname{central}$	perturb.	${\rm incompatibility}$	total				
ſ	$m_{t,1{ m GeV}}^{ m MSR}$	NLL	172.80	0.26	0.14	0.29				
	$m_{t,1{ m GeV}}^{ m MSR}$	$\rm N^2 LL$	172.82	0.19	0.11	0.22				
ſ	m_t^{pole}	NLL	172.10	0.34	0.16	0.38				
	$m_t^{ m pole}$	$\rm N^2 LL$	172.43	0.18	0.22	0.28				

Pole mass determined from MSR mass

$$m_t^{\text{pole}} - m_t^{\text{MSR}}(1\text{GeV}) = \left[0.173 + 0.138 + 0.159 + 0.230 + \mathcal{O}(\alpha_s^5) \right] \text{GeV}$$

$$\alpha_s(M_z) = 0.118; \ n_f = 5;$$

 $m_t^{\text{MSR}}(1\text{GeV}) < m_t^{\text{pole}}$

• Calibration in terms of pole mass involves large higher-order perturbative corrections \rightarrow additional uncertainties for pole mass extraction (for $m_t^{MC} = 173 \text{ GeV}$) $(m_t^{\text{pole}})_{\text{NLL}} = 172.45 \pm 0.52 \text{ GeV}$ $(m_t^{\text{pole}})_{\text{NNLL}} = 172.72 \pm 0.40 \text{ GeV}$

イロン イヨン イヨン イヨン 三日

Top Quark Decay & C-Jettiness / massive C-Parameter

メロト メタト メヨト メヨト

C-Jettiness / massive C-Parameter

Second: consistency checks: look into different observables

• C-Jettiness is defined as:

$$C_{\rm J} = \frac{3}{2} \left[2 - \frac{1}{Q^2} \sum_{i \neq j} \frac{(p_i \cdot p_j)^2}{p_i^0 p_j^0} \right]$$

- coincides with the C-parameter for the massless case
- basically a mass-sensitive version of C-Parameter & very useful in the context of massive particles NLO FO with massive gluon [Gardi, Magnea 2003]; NLO FO with massive quarks [Hoang, Mateu, MP not published yet]
- · Highly mass sensitive: at parton level we have

$$\begin{split} C_{\rm J}^{\rm peak, stable} &= 12\,\hat{m}^2(1-\hat{m}^2)\\ C_{\rm J}^{\rm peak, unstable} &\simeq 12\,\hat{m}^2(1-4\hat{m}^2) \end{split} \tag{for t to massless particles} \end{split}$$

even at high enough boost: big peak-shift!

Top quark case: highly decay sensitive!

イロト イボト イヨト イヨト

Top Quark Decay: 2-Jettiness vs. C-Jettiness

 Inclusive treatment essentially means dressing the distribution with a Breit-Wigner

- 2-jettiness peak:
 - same position
 - new features below peak
 - Inclusive setup is sufficient for peak position in unstable case!
- Q=700 (2-jettiness to partonic) 140 stable 120 unstable 100 1 dσ 80 $\sigma_0 d\tau_2$ 60 40 20 0.10 0.12 0 14 0.16 0.18 0.20 τ_2 Q=700 (2-jettiness C - partonic) 30 stable 25 unstable 20 $\frac{1}{\sigma_0} \frac{d\sigma}{dC}$ 15 10 5 8.2 0.4 0.6 0.8 0.7 С 2017-03-14

- C-jettiness peak:
 - displaced
 - distorted

Inclusive setup is not sufficient for unstable case!

Top Quark Decay: Tree-level Kinematics

- Find compromise between:
 - mass sensitivity
 - high enough boost
- At finite boost:

also hemisphere violating decays

Simplifications & Decay Factorization

- To treat this we use some simplifications:
 - Top width small & $\Gamma_W \to 0$
 - Neglect spin correlations between top and decay products
 - Treat top decay at leading order in QCD

Interpretation: Top lives very long. All radiation happens before decay of the top.

< □ > < 同 > < 回 > < 回 >

• With this we rewrite the differential QCD cross section for an event-shape e as:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}e} = \int \frac{\mathrm{d}\cos\hat{\theta}_1}{2} \frac{\mathrm{d}\hat{\phi}_1}{2\pi} \int \frac{\mathrm{d}\cos\hat{\theta}_2}{2} \frac{\mathrm{d}\hat{\phi}_2}{2\pi} \int \frac{\mathrm{d}\cos\hat{\theta}_3}{2} \frac{\mathrm{d}\hat{\phi}_3}{2\pi} \int \frac{\mathrm{d}\cos\hat{\theta}_4}{2} \frac{\mathrm{d}\hat{\phi}_4}{2\pi}$$

$$\sum_{n=0}^{\mathrm{order}} \int \mathrm{d}\Pi_{n+2} S_n^{\mathrm{incl}}(m_t,\Gamma_t,X_n) \,\delta(e - e^{\mathrm{unstable}}(X_n,\hat{\phi}_i,\hat{\theta}_i))$$

Singular Piece: Treating the decay in bHQET+SCET

- Usual bHQET+SCET setup involves the following momenta/scalings (top version): $\Delta \sim \Gamma_t$
 - $k_{\rm uc} \sim \Delta(\frac{m_t}{Q}, \frac{Q}{m_t}, 1)$ ultra-collinear gluon interaction
 - $k_{\rm us} \sim \lambda^2 Q(1,1,1)$ ultra-soft gluon interaction with $Q^2 \lambda^2 \stackrel{?}{\sim} m_t^2$

top quark momentum: $p_t = m_t(\frac{m_t}{Q}, \frac{Q}{m_t}, 1) + k + \mathcal{O}(\frac{m_t^4}{Q^4}, \frac{m_t^3 \Delta}{Q^4}, \lambda^4)$

$$e^{\mathrm{part}} = \overline{e}^{\mathrm{stable}} + \mathcal{O}(rac{m_t^4}{Q^4}, rac{m_t^3\Delta}{Q^4}, rac{\Delta^2}{Q^2}, \lambda^4)$$

- Let's do a numerical comparison: (e.g. $m_t = 171$ GeV, Q = 700 GeV, $\Gamma_t = 1.4$ GeV) $\frac{m^2}{Q^2} = 0.0597$ $\frac{m^4}{Q^4} = 0.0036$ $\frac{m^6}{Q^6} = 0.0002$ $\frac{m\Gamma_t}{Q^2} = 0.0005$ $\frac{m^3\Gamma_t}{Q^4} = 0.00003$ $\frac{\Gamma_t^2}{Q^2} = 0.00004$
- In the peak region $Q^2\lambda^2 \lesssim m_t\Gamma_t$ anyways holds for mentioned observables. Include full $\frac{m_t}{Q}$ dependence \rightarrow full Boost-factors:

$$e^{\text{part}} = \overline{e}^{\text{stable}} + e^{(4)} + \mathcal{O}(\frac{m_t^3 \Delta}{Q^4}, \frac{\Delta^2}{Q^2}, \lambda^4)$$

with
$$e^{(4)} \equiv e^{(4)}(\hat{\theta}_i, \hat{\phi}_i) \sim \mathcal{O}(\frac{m_t^4}{Q^4})$$

イロン イヨン イヨン イヨン 三日

Final Setup & Next Steps

• Final result:

$$\frac{\mathrm{d}\sigma^{\mathrm{sing}}}{\mathrm{d}e} = \int \mathrm{d}\hat{e} \ \frac{\mathrm{d}\sigma^{\mathrm{sing,incl}}}{\mathrm{d}e} (e-\hat{e}) \ F^{\mathrm{decay}}(\hat{e})$$

 $F^{\text{decay}}(\hat{e}) = \int \frac{\mathrm{d}\cos\hat{\theta}_1}{2} \frac{\mathrm{d}\hat{\phi}_1}{2\pi} \int \frac{\mathrm{d}\cos\hat{\theta}_2}{2\pi} \frac{\mathrm{d}\hat{\phi}_2}{2\pi} \int \frac{\mathrm{d}\cos\hat{\theta}_3}{2} \frac{\mathrm{d}\hat{\phi}_3}{2\pi} \int \frac{\mathrm{d}\cos\hat{\theta}_4}{2\pi} \frac{\mathrm{d}\hat{\phi}_4}{2\pi} \delta(\hat{e} - e^{(4)}(\hat{\theta}_i, \hat{\phi}_i))$

easy to calculate using some MC code.

- Next Steps
 - 1 Finish Theory implementation

Include Top Decay: certain approximations needed ✓
Profile functions for unstable C-Jettiness (work in progress)

Ø MC Top Quark Mass Calibration using C-Jettiness

PYTHIA sample incl. binning & ranges 🗸

 \rightarrow can be done as soon as theory implementation is finished.

イロト イボト イヨト イヨト

Conclusion & Outlook

• First precise MC top quark mass calibration based on e^+e^- 2-jettiness PRL 117 (2016) 232001 (arXiv: 1608.01318 [hep-ph])

QCD calculations at $\rm NNLL + \rm NLO$ based on an extension of the SCET approach to include massive quark effects

- Top mass calibration for PYTHIA 8.205 in terms of Pole and MSR mass. For $m_t^{\rm MC}=173~{\rm GeV}$ at $\rm NNLL:$
 - $m_t^{\text{pole}} = 172.72 \pm 0.40 \text{ GeV}$
 - $m_t^{\text{MSR}}(1\text{GeV}) = 172.82 \pm 0.22 \text{ GeV}$
- · Implementation of the top quark decay for more decay sensitive observables
 - \rightarrow future cross-check with C-jettiness

Outlook:

- Consistency, CALIPER & $(N^3LL + N^2LO)$
- soft-drop for pp jet-mass at $\rm N^2LL$ & calibration

イロト 不得 トイヨト イヨト 二日