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1) motivations: e-p, ν-N, 

2) some details on the Rydberg puzzle (aka proton rad. puzzle)

3) NLO analysis of radiative corrections 

Overview

4) illustrative results
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FAQ: - aren’t QED corrections tiny? 
No.  In typical experimental configurations, large log 
enhancements: log(Q2/me2) ~ 15,  RC ≳ 30%

- weren’t these computed in ancient times? 
Not really.  Experimental implementations are based on old 
theory papers, often not addressing essential issues

- isn’t this too easy?  isn’t this too hard?
Not the right question.   Compute what is computable, measure 
what is not.  And nobody said that probing the GUT scale was 
easy. 



86 4 Neutrino Mixing, Mass Hierarchy, and CP Violation

baseline, there is no degeneracy between matter and CP asymmetries at the first oscillation node
where the LBNE neutrino beam spectrum peaks. The wide coverage of the oscillation patterns
enables the search for physics beyond the three-flavor model because new physics effects may
interfere with the standard oscillations and induce a distortion in the oscillation patterns. As a
next-generation neutrino oscillation experiment, LBNE aims to study in detail the spectral shape
of neutrino mixing over the range of energies where the mixing effects are largest. This is crucial
for advancing the science beyond the current generation of experiments, which depend primarily
on rate asymmetries.
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Figure 4.1: The simulated unoscillated spectrum of ‹µ events from the LBNE beam (black histogram)
overlaid with the ‹µ æ ‹e oscillation probabilities (colored curves) for different values of ”CP and normal
hierarchy.

The LBNE reconfiguration study [25] determined that the far detector location at the Sanford
Underground Research Facility provides an optimal baseline for precision measurement of neutrino
oscillations using a conventional neutrino beam from Fermilab. The 1,300≠km baseline optimizes
sensitivity to CP violation and is long enough to resolve the MH with a high level of confidence,
as shown in Figure 2.7.

Table 4.1 lists the beam neutrino interaction rates for all three known species of neutrinos as ex-
pected at the LBNE far detector. This table shows only the raw interaction rates using the neutrino
flux from the Geant4 simulations of the LBNE beamline and the default interaction cross sections
included in the GLoBeS package [130] with no detector effects included. A tunable LBNE beam
spectrum, obtained by varying the distance between the target and the first focusing horn (Horn 1),
is assumed. The higher-energy tunes are chosen to enhance the ‹· appearance signal and improve
the oscillation fits to the three-flavor paradigm. To estimate the NC event rates based on visible
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Every neutrino-nucleus cross section prediction relies on nucleon-

- ν-N scattering: radiative corrections impact all cross 
sections, including critical νe/νμ ratios for long baseline 
program

De Rujula, Petronzio & Savoy-Navarro, NPB 154, 394 (1979)

- LL analysis of total inclusive cross section (but need exclusive, and beyond LL)
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globally describes the transition between these processes or
how they should be combined. Moreover, the full extent to
which nuclear effects impact this region is a topic that has
only recently been appreciated. Therefore, in this section, we
focus on what is currently known, both experimentally and
theoretically, about each of the exclusive final-state processes
that participate in this region.

To start, Fig. 9 summarizes the existing measurements of
CC neutrino and antineutrino cross sections across this inter-
mediate energy range

!"N ! "!X; (54)

!!"N ! "þX: (55)

These results have been accumulated over many decades
using a variety of neutrino targets and detector technologies.
We immediately notice three things from this figure. First, the
total cross sections approaches a linear dependence on neu-
trino energy. This scaling behavior is a prediction of the quark
parton model (Feynman, 1969), a topic we return to later, and
is expected if pointlike scattering off quarks dominates the
scattering mechanism, for example, in the case of deep
inelastic scattering. Such assumptions break down, of course,
at lower neutrino energies (i.e., lower momentum transfers).
Second, the neutrino cross sections at the lower energy end of
this region are not typically as well measured as their high-
energy counterparts. This is generally due to the lack of high
statistics data historically available in this energy range and
the challenges that arise when trying to describe all of the
various underlying physical processes that can participate in
this region. Third, antineutrino cross sections are typically
less well measured than their neutrino counterparts. This is
generally due to lower statistics and larger background con-
tamination present in that case.

Most of our knowledge of neutrino cross sections in
this intermediate energy range comes from early experiments
that collected relatively small data samples (tens-to-a-few-
thousand events). These measurements were conducted in

the 1970s and 1980s using either bubble chamber or spark
chamber detectors and represent a large fraction of the data
presented in the summary plots we show. Over the years,
interest in this energy region waned as efforts migrated to
higher energies to yield larger event samples and the focus
centered on measurement of electroweak parameters (sin2#W)
and structure functions in the deep inelastic scattering region.
With the discovery of neutrino oscillations and the advent of
higher intensity neutrino beams, however, this situation has
been rapidly changing. The processes discussed here are im-
portant because they form some of the dominant signal and
background channels for experiments searching for neutrino
oscillations. This is especially true for experiments that use
atmospheric or accelerator-based sources of neutrinos. With a
view to better understanding these neutrino cross sections,
new experiments such as Argon Neutrino Test (ArgoNeuT),
KEK to Kamioka (K2K), Mini Booster Neutrino Experiment
(MiniBooNE),Main INjector ExpeRiment: nu-A (MINER!A),
Main Injector Neutrino Oscillation Search (MINOS), Neutrino
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FIG. 8. Predicted processes to the total CC inclusive scattering
cross section at intermediate energies. The underlying quasielastic,
resonance, and deep inelastic scattering contributions can produce a
variety of possible final states including the emission of nucleons,
single pions, multipions, kaons, as well as other mesons (not
shown). Combined, the inclusive cross section exhibits a linear
dependence on neutrino energy as the neutrino energy increases.

 (GeV)E

-110 1 10 210
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 (GeV)E

-110 1 10 2

 / 
G

eV
)

2
 c

m
-3

8
 (1

0
 c

ro
ss

 s
ec

tio
n 

/ E

0

0.2

0.4

0.6

0.8

1

1.2

1.4

TOTAL

QE

DIS

RES

 (GeV)E

-110 1 10 210

 / 
G

eV
)

2
 c

m
-3

8
 (1

0
 c

ro
ss

 s
ec

tio
n 

/ E

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 (GeV)E

-110 1 10 2

 / 
G

eV
)

2
 c

m
-3

8
 (1

0
 c

ro
ss

 s
ec

tio
n 

/ E

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 TOTAL

QE
DIS

RES

FIG. 9. Total neutrino and antineutrino per nucleon CC cross
sections (for an isoscalar target) divided by neutrino energy and
plotted as a function of energy. Data are the same as in Figs. 28, 11,
and 12, with the inclusion of additional lower energy CC inclusive
data from m (Baker et al., 1982), # (Baranov et al., 1979), j
(Ciampolillo et al., 1979), and ? (Nakajima et al., 2011). Also
shown are the various contributing processes that will be inves-
tigated in the remaining sections of this review. These contributions
include quasielastic scattering (dashed), resonance production (dot-
dashed), and deep inelastic scattering (dotted). Example predictions
for each are provided by the NUANCE generator (Casper, 2002).
Note that the quasielastic scattering data and predictions have been
averaged over neutron and proton targets and hence have been
divided by a factor of 2 for the purposes of this plot.
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q2 = 0 is essentially the only relevant shape parameter for current data at Q2 ! 1GeV2, and
introduce the formalism to systematically account for the impact of other poorly constrained
shape parameters on the determination of mA. A related study of the vector form factors of
the nucleon was presented in [9].

The paper is structured as follows. In Section 2 we discuss the application of analyticity and
dispersion relations to the axial-vector form factor of the nucleon. Section 3 presents results
for the extraction of the axial-vector form factor slope from MiniBooNE data. We illustrate
constraints imposed by our analysis on nuclear models, by determining the binding energy
parameter in the Relativistic Fermi Gas (RFG) model of Smith and Moniz [16]. Section 4 gives
an illustrative analysis of constraints on the axial mass parameter from pion electroproduction
data. Section 5 discusses the implications of our results. For completeness, Appendix A collects
formulas for the RFG nuclear model.

2 Analyticity constraints

This section provides form factor definitions and details of the model-independent parameter-
ization based on analyticity.

2.1 Form factor definitions

The nucleon matrix element of the Standard Model weak charged current is

⟨p(p′)|J+µ
W |n(p)⟩ ∝ ū(p)(p′)

{

γµF1(q
2) +

i

2mN
σµνqνF2(q

2)

+ γµγ5FA(q
2) +

1

mN
qµγ5FP (q

2)

}

u(n)(p) , (3)

where qµ = p′µ − pµ, and we have enforced time-reversal invariance and neglected isospin-
violating effects as discussed in Appendix A. The vector form factors F1(q2) and F2(q2) can be
related via isospin symmetry to the electromagnetic form factors measured in electron-nucleon
scattering. At low energy, the form factors are normalized as F1(0) = 1, F2(0) = µp − µn − 1.
For definiteness we take a common nucleon mass, mN ≡ (mp + mn)/2. Parameter values
used in the numerical analysis are listed in Table 2. In applications to quasielastic electron- or
muon-neutrino scattering, the impact of FP is suppressed by powers of the small lepton-nucleon
mass ratio. For our purposes, the pion pole approximation is sufficient,2

FP (q
2) ≈ 2m2

N

m2
π − q2

FA(q
2) . (4)

The axial-vector form factor is normalized at q2 = 0 by neutron beta decay (see Table 2).
Our main focus is on determining the q2 dependence of FA(q2) in the physical region of

2 Here and throughout, mπ = 140MeV denotes the pion mass.
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Figure 6: The B → π form factor F+ plotted in terms of the q2 variable (left) and z variable
(right). Data are from [60]. Plots are reproduced from [61].
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Figure 7: The proton form factor GE plotted in terms of the Q2 variable (left) and the z
variable (right). Data are from [62]. Plots are reproduced from [43].

• Comparison to the complete range of hydrogen and muonic hydrogen observables.

• Possible extension to parity-violating atomic observables. The effective theory analysis
systematizes “Coulomb subtractions” that may appear ad hoc in more phenomenological
treatments [72].

2.2.4 Precision measurements: impact and relation to previous work

The PI’s research has contributed to the improved determination of several fundamental
parameters. These include:

• rp
E, the mean-square charge radius of the proton, using isospin decomposition and analyt-

icity of electron-nucleon scattering amplitudes [43].
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11

FA  linear in “z” variable

+

- muon capture μp→νn from muonic hydrogen: potential for 
best determination of nucleon axial radius, but radiative 
corrections need to be controlled at 0.1% level

Sirlin, Phys.Rev. 164, 1767 (1967)
- factorization analysis for neutron beta decay (but mμ≫me , bound state corr.)
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e-p scattering: probable(?) ~7 σ shift in Rydberg constant.  
Large contributor: radiative corrections in electron-proton 
scattering

Yennie, Frautschi & Suura, Annals Phys. 13, 379 (1961)
- exponentiation/cancellation of IR divergences (but need subleading logs) 21
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FIG. 9: Illustrative fit with modified radiative corrections
given by Eq. (41) using �E = 10MeV. Lower and upper
dashed blue lines correspond to the plus sign and minus sign
in Eq. (41), respectively. Fits are for the 657 point rebinned
A1 MAMI dataset with 0.3–0.4% uncorrelated systematic un-
certainties using the z expansion with t

0

= 0, Gaussian priors
with |ak|max

= |bk|max

/µp = 5, k
max

= 12. Black solid lines
reproduce the curves in Fig. 6. For orientation, the dash-
dotted red line indicates the muonic hydrogen value for rE .

are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
following expressions:

(1 + �) !

1 ±

✓
� +

↵

⇡

log2

Q

2

m

2

e

◆�±1

⇥ exp

✓
�↵

⇡

log2

Q

2

m

2

e

◆
. (41)

These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.

Fig. 9 illustrates the impact of applying the correction
on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.
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/µp = 5, k
max

= 12.

A global analysis combining Mainz and other world
data will artificially favor the Mainz data, as the un-
certainties associated with each cross section measure-
ment include only a small part of the total uncertainty.
Thus, we provide best fit values separately for our anal-
yses of Mainz and world data. To determine an opti-
mal Q

2
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, Fig. 10 illustrates the statistical uncertainty
on rE and rM found using our default fit both to the
1422 point Mainz dataset and to the world dataset. For
the Mainz data, the uncertainty is minimized by tak-
ing Q

2
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& 0.5 GeV2, with negligible improvement be-
yond this point. In order to maximize the statistical
power of the data, while minimizing potential system-
atic e↵ects in higher Q

2 data, we take for definiteness
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are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
following expressions:
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These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.

Fig. 9 illustrates the impact of applying the correction
on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.
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data will artificially favor the Mainz data, as the un-
certainties associated with each cross section measure-
ment include only a small part of the total uncertainty.
Thus, we provide best fit values separately for our anal-
yses of Mainz and world data. To determine an opti-
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, Fig. 10 illustrates the statistical uncertainty
on rE and rM found using our default fit both to the
1422 point Mainz dataset and to the world dataset. For
the Mainz data, the uncertainty is minimized by tak-
ing Q
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& 0.5 GeV2, with negligible improvement be-
yond this point. In order to maximize the statistical
power of the data, while minimizing potential system-
atic e↵ects in higher Q

2 data, we take for definiteness
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the Rydberg or proton radius puzzle
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atoms formed. Themeasurement times varied between 3 and 13 h per
laser wavelength. The 75-ns-long laser time window, in which the
laser induced Ka events are expected, is indicated in Fig. 4. We have
recorded a rate of 7 events per hour in the laser timewindowwhen on
resonance. The background of about 1 event per hour originates
mainly from falsely identified muon-decay electrons and effects
related to delayed muon transfer to target walls.

Figure 5 shows the measured 2S–2P resonance curve. It is obtained
by plotting the number of Ka events recorded in the laser timewindow,
normalized to thenumber of events in thepromptpeak, as a functionof
the laser frequency. In total, we have measured 550 events in the res-
onance, where we expect 155 background events. The fit to the data is a
Lorentzian resonance line on top of a flat background. All four para-
meters (Lorentzian amplitude, position and width, as well as back-
ground amplitude) were varied freely. A maximum likelihood fit
using CERN’s ROOT analysis tool accounted for the statistics at each
laser wavelength. Our statistical uncertainties are the 1s confidence
intervals.

Weobtain a centroid position of 49,881.88(70)GHz, and awidth of
18.0(2.2)GHz, where the given uncertainties are the 1 s.d. statistical
uncertainties. The width compares well with the value of 20(1)GHz
expected from the laser bandwidth and Doppler- and power-broad-
ening of the natural line width of 18.6GHz. The resulting background
amplitude agrees with the one obtained by a fit to data recorded
without laser (not shown). We obtain a value of x25 28.1 for 28
degrees of freedom (d.f.). A fit of a flat line, assuming no resonance,
gives x25 283 for 31 d.f., making this resonance line 16s significant.

The systematic uncertainty of our measurement is 300MHz. It
originates exclusively from our laser wavelength calibration proced-
ure. We have calibrated our line position in 21 measurements of 5
different water vapour absorption lines in the rangel5 5.49–6.01mm.
The positions of these water lines are known28 to an absolute precision
of 1MHz and are tabulated in the HITRAN database29. The measured
relative spacingbetween the 5 lines agreeswith thepublishedones.One
suchmeasurement of awater vapour absorption line is shown in Fig. 5.
Our quoted uncertainty of 300MHz comes from pulse to pulse fluc-
tuations and a broadening effect occurring in the Raman process. The
FSRof the reference Fabry–Perot cavity does not contribute, as the FSR
is known better than 3 kHz and the whole scanned range is within 70
FSR of thewater line. Other systematic correctionswe have considered
are Zeeman shift in the 5T field (,30MHz), a.c. and d.c. Stark shifts
(,1MHz), Doppler shift (,1MHz) and pressure shift (,2MHz).
Molecular effects do not influence our resonance position because
the formed muonic molecules ppm1 are known to de-excite quickly30

and do not contribute to our observed signal. Also, the width of our
resonance line agrees with the expectedwidth, whereasmolecular lines
would be wider.

The centroid position of the 2SF~1
1=2 {2PF~2

3=2 transition is
49,881.88(76)GHz, where the uncertainty is the quadratic sum of
the statistical (0.70GHz) and the systematic (0.30GHz) uncertainties.
This frequency corresponds to an energy of DẼ5 206.2949(32)meV.
From equation (1), we deduce an r.m.s. proton charge radius of
rp5 0.84184(36)(56) fm, where the first and second uncertainties ori-
ginate respectively from the experimental uncertainty of 0.76GHzand
the uncertainty in the first term in equation (1). Theory, and here
mainly the proton polarizability term, gives the dominant contri-
bution to our total relative uncertainty of 83 1024. Our experimental
precision would suffice to deduce rp to 43 1024.

This new value of the proton radius rp5 0.84184(67) fm is 10 times
more precise, but 5.0s smaller, than the previous world average3,
which is mainly inferred from H spectroscopy. It is 26 times more
accurate, but 3.1s smaller, than the accepted hydrogen-independent
value extracted from electron–proton scattering1,2. The origin of this
large discrepancy is not known.

If we assume some QED contributions in mp (equation (1)) were
wrong or missing, an additional term as large as 0.31meV would be
required to match our measurement with the CODATA value of rp.
We note that 0.31meV is 64 times the claimed uncertainty of equation
(1).

TheCODATAdeterminationof rp canbe seen in a simplifiedpicture
as adjusting the input parameters rp and R‘ (the Rydberg constant) to
match theQED calculations8 to themeasured transition frequencies4–7

in H: 1S–2S on the one hand, and 2S{n‘ n‘~2P,4,6,8S=D,12Dð Þ on
the other.

The 1S–2S transition in H has been measured3–5 to 34Hz, that is,
1.43 10214 relative accuracy. Only an error of about 1,700 times the
quoted experimental uncertainty could account for our observed dis-
crepancy. The 2S{n‘ transitions have been measured to accuracies
between 1/100 (2S–8D) (refs 6, 7) and 1/10,000 (2S1/2–2P1/2 Lamb
shift31) of the respective line widths. In principle, such an accuracy
couldmake these data subject to unknown systematic shifts.We note,
however, that all of the (2S{n‘) measurements (for a list, see, for
example, table XII in ref. 3) suggest a larger proton charge radius.
Finally, the origin of the discrepancy with the H data could originate
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laser induced Ka events are expected, is indicated in Fig. 4. We have
recorded a rate of 7 events per hour in the laser timewindowwhen on
resonance. The background of about 1 event per hour originates
mainly from falsely identified muon-decay electrons and effects
related to delayed muon transfer to target walls.

Figure 5 shows the measured 2S–2P resonance curve. It is obtained
by plotting the number of Ka events recorded in the laser timewindow,
normalized to thenumber of events in thepromptpeak, as a functionof
the laser frequency. In total, we have measured 550 events in the res-
onance, where we expect 155 background events. The fit to the data is a
Lorentzian resonance line on top of a flat background. All four para-
meters (Lorentzian amplitude, position and width, as well as back-
ground amplitude) were varied freely. A maximum likelihood fit
using CERN’s ROOT analysis tool accounted for the statistics at each
laser wavelength. Our statistical uncertainties are the 1s confidence
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Weobtain a centroid position of 49,881.88(70)GHz, and awidth of
18.0(2.2)GHz, where the given uncertainties are the 1 s.d. statistical
uncertainties. The width compares well with the value of 20(1)GHz
expected from the laser bandwidth and Doppler- and power-broad-
ening of the natural line width of 18.6GHz. The resulting background
amplitude agrees with the one obtained by a fit to data recorded
without laser (not shown). We obtain a value of x25 28.1 for 28
degrees of freedom (d.f.). A fit of a flat line, assuming no resonance,
gives x25 283 for 31 d.f., making this resonance line 16s significant.

The systematic uncertainty of our measurement is 300MHz. It
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ure. We have calibrated our line position in 21 measurements of 5
different water vapour absorption lines in the rangel5 5.49–6.01mm.
The positions of these water lines are known28 to an absolute precision
of 1MHz and are tabulated in the HITRAN database29. The measured
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tuations and a broadening effect occurring in the Raman process. The
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is known better than 3 kHz and the whole scanned range is within 70
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are Zeeman shift in the 5T field (,30MHz), a.c. and d.c. Stark shifts
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Molecular effects do not influence our resonance position because
the formed muonic molecules ppm1 are known to de-excite quickly30
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would be wider.

The centroid position of the 2SF~1
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3=2 transition is
49,881.88(76)GHz, where the uncertainty is the quadratic sum of
the statistical (0.70GHz) and the systematic (0.30GHz) uncertainties.
This frequency corresponds to an energy of DẼ5 206.2949(32)meV.
From equation (1), we deduce an r.m.s. proton charge radius of
rp5 0.84184(36)(56) fm, where the first and second uncertainties ori-
ginate respectively from the experimental uncertainty of 0.76GHzand
the uncertainty in the first term in equation (1). Theory, and here
mainly the proton polarizability term, gives the dominant contri-
bution to our total relative uncertainty of 83 1024. Our experimental
precision would suffice to deduce rp to 43 1024.

This new value of the proton radius rp5 0.84184(67) fm is 10 times
more precise, but 5.0s smaller, than the previous world average3,
which is mainly inferred from H spectroscopy. It is 26 times more
accurate, but 3.1s smaller, than the accepted hydrogen-independent
value extracted from electron–proton scattering1,2. The origin of this
large discrepancy is not known.

If we assume some QED contributions in mp (equation (1)) were
wrong or missing, an additional term as large as 0.31meV would be
required to match our measurement with the CODATA value of rp.
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(1).
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match theQED calculations8 to themeasured transition frequencies4–7
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the other.

The 1S–2S transition in H has been measured3–5 to 34Hz, that is,
1.43 10214 relative accuracy. Only an error of about 1,700 times the
quoted experimental uncertainty could account for our observed dis-
crepancy. The 2S{n‘ transitions have been measured to accuracies
between 1/100 (2S–8D) (refs 6, 7) and 1/10,000 (2S1/2–2P1/2 Lamb
shift31) of the respective line widths. In principle, such an accuracy
couldmake these data subject to unknown systematic shifts.We note,
however, that all of the (2S{n‘) measurements (for a list, see, for
example, table XII in ref. 3) suggest a larger proton charge radius.
Finally, the origin of the discrepancy with the H data could originate
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data points, top left). Our result is also shown (‘our value’). All error bars are
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proton radius[fm]

summary of electron- and muon- based measurements, circa 2010

} hydrogen 
spectroscopy

electron-proton
scattering

electron combination

muonic 
hydrogen

2S � 2P 1
2

2S � 2P 1
2

2S � 2P 3
2

2S � 4S 1
2

2S � 4D 5
2

2S � 4P 1
2

2S � 4P 3
2

2S � 6S 1
2

2S � 6D 5
2

2S � 8S 1
2

2S � 8D 3
2

2S � 8D 5
2

2S � 12D 3
2

2S � 12D 5
2

1S � 3S 1
2

Mainz data
other world data

CODATA
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form factor nonlinearities



12

electron-proton scattering: theory issues

radius is defined as slope of form factor

i) what are the constraints on nonlinearities?

ii) are radiative corrections controlled at the sub percent level?

radiative corrections impact radius extraction and can be 
large (~30%)



recall scattering from extended classical charge distribution: 

Figure3:DiagramscontributingtomatchingforchargedWIMPs.Wavylinesarephotons,zigzag

linesareW
±bosons,andtheinclusionofdiagramswhereinternalphotonlinesarereplacedbyZ

0

bosonlinesisimplied.

chargedWIMPannihilation,theprocesshasatreelevelcontribution.Includingthetreevertexwith

counterterms,togetherwiththeloopdiagramsofFig.3,
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13 (up to radiative corrections)

i) what are the constraints on nonlinearities?
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coefficients in rapidly 
convergent expansion encode 
nonperturbative QCD

tcut

F (q2) =
X

k

ak[z(q
2)]k

experimental 
kinematic region

That’s ok: underlying QCD tells us that Taylor expansion of form 
factor in appropriate variable is convergent

q2

particle thresholds

z

5

where ni is the number of events in the i-th bin, and µi is
the theory prediction (7) for the bin. Errors correspond
to changes of 1.0 in the -2LL function.

Because we do not use an unbinned likelihood fit, we
do not expect precise agreement even when the original
choices of constants in Table I are used. Comparing the
first two columns of Table II, the size of the resulting sta-
tistical uncertainties are approximately equal, and there
are similar sized discrepancies in the central values. A
similar exercise was performed in Refs. [64, 73, 74], and
similar results were obtained. Having reproduced the
original analyses to the extent possible, we will proceed
with the updated constants as in the final column of Ta-
ble I.

III. z EXPANSION ANALYSIS

The dipole assumption (9) on the axial form factor
shape represents an unquantified systematic error. We
now remove this assumption, enforcing only the known
analytic structure that the form factor inherits from
QCD. We investigate the constraints from deuterium
data in this more general framework. A similar analysis
may be performed using future lattice QCD calculations
in place of deuterium data.

A. z expansion formalism

The axial form factor obeys the dispersion relation,

FA(q
2) =

1

⇡

Z
1

t
cut

dt0
ImFA(t0 + i0)

t0 � q2
, (11)

where t
cut

= 9m2

⇡ represents the leading three-pion
threshold for states that can be produced by the axial
current. The presence of singularities along the posi-
tive real axis implies that a simple Taylor expansion of
the form factor in the variable q2 does not converge for
|q2| � 9m2

⇡ ⇡ 0.18GeV2. Consider the new variable ob-
tained by mapping the domain of analyticity onto the
unit circle [30],

z(q2, t
cut

, t
0

) =

p
t
cut

� q2 �
p
t
cut

� t
0p

t
cut

� q2 +
p
t
cut

� t
0

, (12)

where t
0

, with �1 < t
0

< t
cut

, is an arbitrary number
that may be chosen for convenience. In terms of the new
variable we may write a convergent expansion,

FA(q
2) =

k
maxX

k=0

akz(q
2)k , (13)

where the expansion coe�cients ak are dimensionless
numbers encoding nucleon structure information.

TABLE III. Maximum value of |z| for di↵erent Q2 ranges
and choices of t

0

. toptimal

0

is defined in Eq. (14).

Q2

max

[GeV2] t
0

|z|
max

1.0 0 0.44

3.0 0 0.62

1.0 toptimal

0

(1.0GeV2) = �0.28GeV2 0.23

3.0 toptimal

0

(1.0GeV2) = �0.28GeV2 0.45

3.0 toptimal

0

(3.0GeV2) = �0.57GeV2 0.35

In any given experiment, the finite range of Q2 implies
a maximal range for |z| that is less than unity. We denote
by toptimal

0

(Q2

max

) the choice which minimizes the maxi-
mum size of |z| in the range �Q2

max

 q2  0. Explicitly,

toptimal

0

(Q2) = t
cut

(1�
p

1 +Q2

max

/t
cut

) . (14)

Table III displays |z|
max

for several choices of Q2

max

and
t
0

.
The choice of t

0

can be optimized for various applica-
tions. We have in mind applications with data concen-
trated below Q2 = 1GeV2, and therefore take as default
choice,

t̄
0

= toptimal

0

(1GeV2) ⇡ �0.28GeV2 , (15)

minimizing the number of parameters that are necessary
to describe data in this region. Inspection of Table III
shows that the form factor expressed as FA(z) becomes
approximately linear. For example, taking |z|

max

= 0.23
implies that quadratic, cubic, and quartic terms enter at
the level of ⇠ 5%, 1% and 0.3%.
The asymptotic scaling prediction from perturbative

QCD [75], FA ⇠ Q�4, implies the series of four sum
rules [34]

1X

k=n

k(k � 1) · · · (k � n+ 1)ak = 0 , n = 0, 1, 2, 3 .

(16)

We enforce the sum rules (16) on the coe�cients, en-
suring that the form factor falls smoothly to zero at
large Q2. Together with the Q2 = 0 constraint, this
leaves Na = k

max

� 4 free parameters in Eq. (13). From
Eq. (16), it can be shown [34] that the coe�cients behave
as ak ⇠ k�4 at large k. We remark that the dipole ansatz
(9) implies the coe�cient scaling law |ak| ⇠ k at large k,
in conflict with perturbative QCD.
In addition to the sum rules, an examination of explicit

spectral functions and scattering data [30] motivates the
bound of

|ak/a0|  5. (17)

As noted above, from Eq. (16), the coe�cients behave as
ak ⇠ k�4 at large k. We invoke a fall-o↵ of the coe�cients
at higher order in k,

|ak/a0|  25/k , k > 5. (18)

RJH, G. Paz (2010)

…

…
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Reanalysis of scattering data reveals strong influence of shape 
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FIG. 9: Illustrative fit with modified radiative corrections
given by Eq. (41) using �E = 10MeV. Lower and upper
dashed blue lines correspond to the plus sign and minus sign
in Eq. (41), respectively. Fits are for the 657 point rebinned
A1 MAMI dataset with 0.3–0.4% uncorrelated systematic un-
certainties using the z expansion with t

0

= 0, Gaussian priors
with |ak|max

= |bk|max

/µp = 5, k
max

= 12. Black solid lines
reproduce the curves in Fig. 6. For orientation, the dash-
dotted red line indicates the muonic hydrogen value for rE .

are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
following expressions:

(1 + �) !

1 ±

✓
� +

↵

⇡

log2

Q

2

m

2

e

◆�±1

⇥ exp

✓
�↵

⇡

log2

Q

2

m

2

e

◆
. (41)

These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.

Fig. 9 illustrates the impact of applying the correction
on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.

D. Final radius extractions
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FIG. 10: Statistical error on rE (bottom, red squares) and rM

(top, blue circles) as a function of Q2
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. Solid symbols are
for the 1422 point A1 MAMI dataset, and open symbols are
for the world cross section and polarization dataset. Fits use
the z expansion with t

0

= 0, Gaussian priors with |ak|max

=
|bk|max

/µp = 5, k
max

= 12.

A global analysis combining Mainz and other world
data will artificially favor the Mainz data, as the un-
certainties associated with each cross section measure-
ment include only a small part of the total uncertainty.
Thus, we provide best fit values separately for our anal-
yses of Mainz and world data. To determine an opti-
mal Q

2

max

, Fig. 10 illustrates the statistical uncertainty
on rE and rM found using our default fit both to the
1422 point Mainz dataset and to the world dataset. For
the Mainz data, the uncertainty is minimized by tak-
ing Q

2

max

& 0.5 GeV2, with negligible improvement be-
yond this point. In order to maximize the statistical
power of the data, while minimizing potential system-
atic e↵ects in higher Q

2 data, we take for definiteness
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/µp = 5, k
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dotted red line indicates the muonic hydrogen value for rE .

are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
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These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.

Fig. 9 illustrates the impact of applying the correction
on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.
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A global analysis combining Mainz and other world
data will artificially favor the Mainz data, as the un-
certainties associated with each cross section measure-
ment include only a small part of the total uncertainty.
Thus, we provide best fit values separately for our anal-
yses of Mainz and world data. To determine an opti-
mal Q

2

max

, Fig. 10 illustrates the statistical uncertainty
on rE and rM found using our default fit both to the
1422 point Mainz dataset and to the world dataset. For
the Mainz data, the uncertainty is minimized by tak-
ing Q

2

max

& 0.5 GeV2, with negligible improvement be-
yond this point. In order to maximize the statistical
power of the data, while minimizing potential system-
atic e↵ects in higher Q

2 data, we take for definiteness

1σ

Reanalysis of scattering data also reveals potential dependence of 
radius on chosen Q2 range

These options would avoid, but not resolve, the radius puzzle from electron 
scattering.  Is there an unaccounted systematic effect impacting especially 
large Q2 data?  

Revisit radiative corrections, which are enhanced at large Q2

Belushkin, Hammer, Meissner (2007)

To reconcile e-p scattering with muonic hydrogen, could: 
• consider only small Q2 data (less data ⇒ larger error)

• overrule scattering data with other data or assumptions, e.g. 
spectral function model

Lorenz, Meissner, Hammer, Dong (2015)
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are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
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As indicated in the figure, the shifts in the radii under
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lowed in Table IX, which considered corrections vary-
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are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
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lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
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of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.
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ment include only a small part of the total uncertainty.
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yses of Mainz and world data. To determine an opti-
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, Fig. 10 illustrates the statistical uncertainty
on rE and rM found using our default fit both to the
1422 point Mainz dataset and to the world dataset. For
the Mainz data, the uncertainty is minimized by tak-
ing Q
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& 0.5 GeV2, with negligible improvement be-
yond this point. In order to maximize the statistical
power of the data, while minimizing potential system-
atic e↵ects in higher Q

2 data, we take for definiteness

} discrepancy with 
muonic hydrogen

1σ

Reanalysis of scattering data also reveals potential dependence of 
radius on chosen Q2 range

These options would avoid, but not resolve, the radius puzzle from electron 
scattering.  Is there an unaccounted systematic effect impacting especially 
large Q2 data?  

Revisit radiative corrections, which are enhanced at large Q2

Belushkin, Hammer, Meissner (2007)

To reconcile e-p scattering with muonic hydrogen, could: 
• consider only small Q2 data (less data ⇒ larger error)

• overrule scattering data with other data or assumptions, e.g. 
spectral function model

Lorenz, Meissner, Hammer, Dong (2015)
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• eikonal coupling 

• factorization of soft region
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FIG. 1: Scattering of proton from electromagnetic source.

At the same time, we introduce formalism and notation that will carry over to the more

complicated case of relativistic electron scattering (i.e., Q2 � m2) considered later.

A. E↵ective theory

For the process depicted in Fig. 1, introduce timelike unit vectors vµ and v0µ via

pµ = Mvµ , p0µ = Mv0µ . (1)

At factorization scale µ ⇠ M , hard momentum modes are integrated out, leaving a low

energy e↵ective theory consisting of heavy particle source fields interacting with soft photons.

The QED current is matched to an expansion in e↵ective operators,

Jµ =  ̄�µ !
X

i

ci(µ, v · v0)h̄v0�
µ
i hv , (2)

where hv, hv0 denote heavy fermion fields satisfying v/ hv = hv.2 The heavy fermion fields

interact with soft photons, as described by the e↵ective theory Lagrangian

Le↵. = �1

4
(F µ⌫)2 + h̄v(iv · @ + Zev · A)hv + h̄v0(iv

0 · @ + Zev0 · A)hv0 +O(1/M) , (3)

where Z = +1 for the proton, Aµ is the electromagnetic field and Fµ⌫ = @µA⌫ � @⌫Aµ.

B. One loop matching

An explicit basis of operator structures in Eq. (2) respecting the discrete symmetries of

the electromagnetic current is

�µ
1 = �µ, �µ

2 = vµ + v0µ . (4)

2 For reviews of heavy particle e↵ective theories in the context of QCD and heavy quarks, see Refs. [11, 12].

NRQED was introduced in Ref. [13]. For a discussion of general heavy particle e↵ective theories see

Ref. [14].
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• proof by induction

⇒ exponentiation of IR divergences, cancellation between real and virtual

+ . . .

Yennie, Frautschi, Suura (1961)

But exponentiation of IR divergences does not imply exponentiation of 
the entire first order correction



Large logarithms spoil QED perturbation theory when -q2=Q2~GeV2 

+

|F (q2)|2 ! |F (q2)|2
✓
1� ↵

⇡
log

Q2

m2
e

log

E2

(�E)

2
+ . . .

◆}
⇡ 0.5

Experimental ansatz sums exponentiates 1st order: 

|F (q2)|2
✓
1� ↵

⇡
log

Q2

m2
e

log

E2

(�E)

2
+ . . .

◆
! |F (q2)|2 exp


� ↵

⇡
log

Q2

m2
e

log

E2

(�E)

2

�

Captures leading logarithms when 
Q ⇠ E , �E ⇠ me

As consistency check, error budget should contain the difference from resumming:

log

2 Q2

m2
e

log

Q2

m2
e

log

E2

(�E)

2vs. 

Figure3:DiagramscontributingtomatchingforchargedWIMPs.Wavylinesarephotons,zigzag

linesareW
±bosons,andtheinclusionofdiagramswhereinternalphotonlinesarereplacedbyZ

0

bosonlinesisimplied.

chargedWIMPannihilation,theprocesshasatreelevelcontribution.Includingthetreevertexwith

counterterms,togetherwiththeloopdiagramsofFig.3,

M
+�!

��
�

�

(p
+p0)2

=

4M
2
±

=
Z
�
2

(Z
W
1

)
2

(Z
W
2

)
�
2

2e
2

+
e
2

g
2

2

(4⇡)
2

⇢

8⇡c
2

W
M

mZ

+
8⇡s

2

W
M

m�

+8
⇣

c
2

W
log

mZ

2M
+s

2

W
log

m�

2M

⌘

�16log
2

mW

2M

�16log
mW

2M

�8i⇡log
mW

2M

+
3⇡

2

2
�18

+
mW

M



�4⇡+
7⇡

3
cW

�

+
m
2

W

M
2



5log
2

mW

2M

�12log
mW

2M

�2log
mZ

2M

+5i⇡log
mW

2M

�12log2+
20

3
�
5⇡

2

4
�
7i⇡

4

�

+O(↵,m�,�/mW
,
p

�/M
,m

3

W
/M

3

)

�

.
(19)

TherenormalizationconstantZ
�
2

isinheritedfrom
theelectroweaksymmetricLagrangian(2)and

Z
W
1
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arefieldandcouplingrenormalizationfactorsfortheSU(2)gaugefield[77].
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FIG. 9: Illustrative fit with modified radiative corrections
given by Eq. (41) using �E = 10MeV. Lower and upper
dashed blue lines correspond to the plus sign and minus sign
in Eq. (41), respectively. Fits are for the 657 point rebinned
A1 MAMI dataset with 0.3–0.4% uncorrelated systematic un-
certainties using the z expansion with t

0

= 0, Gaussian priors
with |ak|max

= |bk|max

/µp = 5, k
max

= 12. Black solid lines
reproduce the curves in Fig. 6. For orientation, the dash-
dotted red line indicates the muonic hydrogen value for rE .

are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
following expressions:
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These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.

Fig. 9 illustrates the impact of applying the correction
on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.
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FIG. 10: Statistical error on rE (bottom, red squares) and rM

(top, blue circles) as a function of Q2

max

. Solid symbols are
for the 1422 point A1 MAMI dataset, and open symbols are
for the world cross section and polarization dataset. Fits use
the z expansion with t

0

= 0, Gaussian priors with |ak|max

=
|bk|max

/µp = 5, k
max

= 12.

A global analysis combining Mainz and other world
data will artificially favor the Mainz data, as the un-
certainties associated with each cross section measure-
ment include only a small part of the total uncertainty.
Thus, we provide best fit values separately for our anal-
yses of Mainz and world data. To determine an opti-
mal Q

2

max

, Fig. 10 illustrates the statistical uncertainty
on rE and rM found using our default fit both to the
1422 point Mainz dataset and to the world dataset. For
the Mainz data, the uncertainty is minimized by tak-
ing Q

2

max

& 0.5 GeV2, with negligible improvement be-
yond this point. In order to maximize the statistical
power of the data, while minimizing potential system-
atic e↵ects in higher Q

2 data, we take for definiteness
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A1 MAMI dataset with 0.3–0.4% uncorrelated systematic un-
certainties using the z expansion with t
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= 0, Gaussian priors
with |ak|max

= |bk|max

/µp = 5, k
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reproduce the curves in Fig. 6. For orientation, the dash-
dotted red line indicates the muonic hydrogen value for rE .

are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
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These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.

Fig. 9 illustrates the impact of applying the correction
on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.
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, Fig. 10 illustrates the statistical uncertainty
on rE and rM found using our default fit both to the
1422 point Mainz dataset and to the world dataset. For
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& 0.5 GeV2, with negligible improvement be-
yond this point. In order to maximize the statistical
power of the data, while minimizing potential system-
atic e↵ects in higher Q
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E = 1GeV, �E = 5MeV, computed at first (bottom, black,
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Logarithmically enhanced corrections beginning at or-
der ↵2L3 are not captured by a simple exponentiation
ansatz, � ! exp[(↵/⇡)�(1)]. Fig. 4 displays the total cor-
rection � at first and second order in perturbation theory,
for illustrative values E = 1GeV, �E = 5MeV.

B. E↵ective theory: matching

To understand the origin of the di↵erent contributions
in Eq. (30), and to systematically resum large logarithms
in perturbation theory, let us construct an e↵ective the-
ory to separate the physics at di↵erent energy scales. Let
us focus on the formal counting m ⇠ �E and Q2 � m2

(i.e., v · v0 � 1). Below, we consider an operator analysis
analogous to Eqs. (2) and (3). The resulting factorization
formula, valid up to O(m2/Q2) corrections, reads
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The explicit matching with QED is most easily per-
formed using dimensional regularization, where dimen-
sionfull but scaleless integrals vanish. The (bare, un-
renormalized) hard function is then
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Renormalizing in the MS scheme, we have (at nf = 1)
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The explicit renormalized hard function is
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FIG. 9: Illustrative fit with modified radiative corrections
given by Eq. (41) using �E = 10MeV. Lower and upper
dashed blue lines correspond to the plus sign and minus sign
in Eq. (41), respectively. Fits are for the 657 point rebinned
A1 MAMI dataset with 0.3–0.4% uncorrelated systematic un-
certainties using the z expansion with t

0

= 0, Gaussian priors
with |ak|max

= |bk|max

/µp = 5, k
max

= 12. Black solid lines
reproduce the curves in Fig. 6. For orientation, the dash-
dotted red line indicates the muonic hydrogen value for rE .

are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
following expressions:
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These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.

Fig. 9 illustrates the impact of applying the correction
on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.
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. Solid symbols are
for the 1422 point A1 MAMI dataset, and open symbols are
for the world cross section and polarization dataset. Fits use
the z expansion with t
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= 0, Gaussian priors with |ak|max

=
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/µp = 5, k
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= 12.

A global analysis combining Mainz and other world
data will artificially favor the Mainz data, as the un-
certainties associated with each cross section measure-
ment include only a small part of the total uncertainty.
Thus, we provide best fit values separately for our anal-
yses of Mainz and world data. To determine an opti-
mal Q

2

max

, Fig. 10 illustrates the statistical uncertainty
on rE and rM found using our default fit both to the
1422 point Mainz dataset and to the world dataset. For
the Mainz data, the uncertainty is minimized by tak-
ing Q

2

max

& 0.5 GeV2, with negligible improvement be-
yond this point. In order to maximize the statistical
power of the data, while minimizing potential system-
atic e↵ects in higher Q

2 data, we take for definiteness
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are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
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These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.
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on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.
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Logarithmically enhanced corrections beginning at or-
der ↵2L3 are not captured by a simple exponentiation
ansatz, � ! exp[(↵/⇡)�(1)]. Fig. 4 displays the total cor-
rection � at first and second order in perturbation theory,
for illustrative values E = 1GeV, �E = 5MeV.

B. E↵ective theory: matching

To understand the origin of the di↵erent contributions
in Eq. (30), and to systematically resum large logarithms
in perturbation theory, let us construct an e↵ective the-
ory to separate the physics at di↵erent energy scales. Let
us focus on the formal counting m ⇠ �E and Q2 � m2

(i.e., v · v0 � 1). Below, we consider an operator analysis
analogous to Eqs. (2) and (3). The resulting factorization
formula, valid up to O(m2/Q2) corrections, reads
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The explicit matching with QED is most easily per-
formed using dimensional regularization, where dimen-
sionfull but scaleless integrals vanish. The (bare, un-
renormalized) hard function is then

p
Hbare = F1(q

2, m2 = 0, �2 = 0)

= 1 +
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where results for F1(q2, 0, 0) through two-loop order are
given in Refs. [12, 13],
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Renormalizing in the MS scheme, we have (at nf = 1)

p
H(µ) = ZH

p
Hbare , (34)

with the renormalization constant,
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The explicit renormalized hard function is
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1st order in α

2nd order in α

- quoted systematics in A1 electron-proton 
scattering data are 0.2-0.5 % 

- need to systematically account for 
subleading logarithms, recoil, nuclear charge 
and structure

- leading order radiative corrections ~30%
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FIG. 9: Illustrative fit with modified radiative corrections
given by Eq. (41) using �E = 10MeV. Lower and upper
dashed blue lines correspond to the plus sign and minus sign
in Eq. (41), respectively. Fits are for the 657 point rebinned
A1 MAMI dataset with 0.3–0.4% uncorrelated systematic un-
certainties using the z expansion with t

0

= 0, Gaussian priors
with |ak|max

= |bk|max

/µp = 5, k
max

= 12. Black solid lines
reproduce the curves in Fig. 6. For orientation, the dash-
dotted red line indicates the muonic hydrogen value for rE .

are fixed by infrared divergences whose form is dictated
by soft photon theorems [75]. Equivalently, an e↵ective
theory renormalization analysis between hard (⇠ Q) and
soft (⇠ me) scales determines the relevant Sudakov form
factor. However, in practice �E can be large compared
to me, introducing another scale into the problem, and
associated large logarithms not captured by the naive ex-
ponentiation of one-loop corrections. A complete analy-
sis is outside the scope of the present paper, but to illus-
trate the potential impact, let us consider in place of the
ansatz that makes the replacement (31) in Eq. (29), the
following expressions:
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These expressions agree with the known corrections
through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.

Fig. 9 illustrates the impact of applying the correction
on the right hand side of Eq. (41) in place of the ansatz

(31). For definiteness, the plot takes �E = 10MeV.
As indicated in the figure, the shifts in the radii under
this correction are a factor ⇠ 2–3 larger than those al-
lowed in Table IX, which considered corrections vary-
ing by 0.5% over beam-energy/spectrometer combina-
tions. The variation of the correction (41) over beam-
energy/spectrometer combinations (i.e., the magnitude
of a in Eq. (35)) ranges between 0.9% and 2.6%, with an
average 1.5%.
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FIG. 10: Statistical error on rE (bottom, red squares) and rM

(top, blue circles) as a function of Q2

max

. Solid symbols are
for the 1422 point A1 MAMI dataset, and open symbols are
for the world cross section and polarization dataset. Fits use
the z expansion with t

0

= 0, Gaussian priors with |ak|max

=
|bk|max

/µp = 5, k
max

= 12.

A global analysis combining Mainz and other world
data will artificially favor the Mainz data, as the un-
certainties associated with each cross section measure-
ment include only a small part of the total uncertainty.
Thus, we provide best fit values separately for our anal-
yses of Mainz and world data. To determine an opti-
mal Q

2

max

, Fig. 10 illustrates the statistical uncertainty
on rE and rM found using our default fit both to the
1422 point Mainz dataset and to the world dataset. For
the Mainz data, the uncertainty is minimized by tak-
ing Q

2

max

& 0.5 GeV2, with negligible improvement be-
yond this point. In order to maximize the statistical
power of the data, while minimizing potential system-
atic e↵ects in higher Q

2 data, we take for definiteness
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through one-loop order, and resum the leading loga-
rithms to all orders in perturbation theory when there
is only one large ratio of scales.
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1422 point Mainz dataset and to the world dataset. For
the Mainz data, the uncertainty is minimized by tak-
ing Q

2

max

& 0.5 GeV2, with negligible improvement be-
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curve) and second (top, red, curve) in ↵.

⇥ ⇥
FIG. 5: E↵ective theory diagrams for soft and collinear re-
gions of photon loop momentum in the first diagram of Fig. 3.
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Logarithmically enhanced corrections beginning at or-
der ↵2L3 are not captured by a simple exponentiation
ansatz, � ! exp[(↵/⇡)�(1)]. Fig. 4 displays the total cor-
rection � at first and second order in perturbation theory,
for illustrative values E = 1GeV, �E = 5MeV.

B. E↵ective theory: matching

To understand the origin of the di↵erent contributions
in Eq. (30), and to systematically resum large logarithms
in perturbation theory, let us construct an e↵ective the-
ory to separate the physics at di↵erent energy scales. Let
us focus on the formal counting m ⇠ �E and Q2 � m2

(i.e., v · v0 � 1). Below, we consider an operator analysis
analogous to Eqs. (2) and (3). The resulting factorization
formula, valid up to O(m2/Q2) corrections, reads
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The explicit matching with QED is most easily per-
formed using dimensional regularization, where dimen-
sionfull but scaleless integrals vanish. The (bare, un-
renormalized) hard function is then
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where results for F1(q2, 0, 0) through two-loop order are
given in Refs. [12, 13],
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Renormalizing in the MS scheme, we have (at nf = 1)

p
H(µ) = ZH

p
Hbare , (34)

with the renormalization constant,
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The explicit renormalized hard function is
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1st order in α

2nd order in α

- quoted systematics in A1 electron-proton 
scattering data are 0.2-0.5 % 

- need to systematically account for 
subleading logarithms, recoil, nuclear charge 
and structure

- leading order radiative corrections ~30%
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FIG. 1: Scattering of proton from electromagnetic source.

At the same time, we introduce formalism and notation that will carry over to the more

complicated case of relativistic electron scattering (i.e., Q
2
� m

2
) considered later.

A. E↵ective theory

For the process depicted in Fig. 1, introduce timelike unit vectors v
µ
and v0µ via

p
µ
= Mv

µ
, p0µ = Mv0µ . (1)

At factorization scale µ ⇠ M , hard momentum modes are integrated out, leaving a low

energy e↵ective theory consisting of heavy particle source fields interacting with soft photons.

The QED current is matched to an expansion in e↵ective operators,

J
µ
=  ̄�

µ
 !

X

i

ci(µ, v · v0)h̄v0�
µ
i hv , (2)

where hv, hv0 denote heavy fermion fields satisfying v/ hv = hv.
2

The heavy fermion fields

interact with soft photons, as described by the e↵ective theory Lagrangian

Le↵. = �
1

4
(F

µ⌫
)
2
+ h̄v(iv · @ + Zev · A)hv + h̄v0(iv0 · @ + Zev0 · A)hv0 +O(1/M) , (3)

where Z = +1 for the proton, A
µ
is the electromagnetic field and Fµ⌫ = @µA⌫ � @⌫Aµ.

B. One loop matching

An explicit basis of operator structures in Eq. (2) respecting the discrete symmetries of

the electromagnetic current is

�
µ
1 = �

µ
, �

µ
2 = v

µ
+ v0µ . (4)

2 For reviews of heavy particle e↵ective theories in the context of QCD and heavy quarks, see Refs. [11, 12].

NRQED was introduced in Ref. [13]. For a discussion of general heavy particle e↵ective theories see

Ref. [14].
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FIG. 2: First order radiative corrections to electron scattering from static source.

III. RELATIVISTIC PARTICLE

When particle velocities satisfy v · v0 � 1, new large logarithms appear in perturbation

theory which are not resummed by the renormalization analysis in the heavy particle e↵ective

theory of the previous section. For example, ci(µ, v · v0) in Eq. (5) contains large logarithms,

log(v·v0), regardless of the choice for factorization scale µ. In order to isolate and resum these

additional large logarithms, we must extend the e↵ective theory to include collinear degrees

of freedom [18–25]. Before turning to the e↵ective theory description, let us examine the

explicit two-loop calculation for relativistic electron-proton scattering in the static source

limit. We will then perform the e↵ective theory analysis in this limit before including

arbitrary recoil corrections, and radiative corrections involving the proton.

A. Two loop corrections in static limit

To isolate the essential points, let us consider the problem of relativistic unpolarized

electron-proton scattering in the static-source limit of large proton mass: m ⌧ E ⌧ M ,

where m and M denote the electron and proton masses and E is the electron energy. Ne-

glecting power corrections in m/E, and working to first order in nuclear charge (i.e., single

photon exchange), the cross section may be written

d� =
(d�)Mott

[1� ⇧̂(q2)]2
(1 + �e + �e� + �e�� + . . . ) , (26)

where (d�/d⌦)Mott = ↵
2
cos

2
(✓/2)/[4E

2
sin

4
(✓/2)] is the tree-level, Mott, cross section, and

⇧̂(q
2
) is the photon vacuum polarization function. Each term �X in Eq. (26) corresponds to

di↵erent numbers of final state photons and is expanded according to �X =
P1

n=0

� ↵
4⇡

�n
�
(n)
X .

Consider radiative corrections at first order in ↵, cf. Fig. 2. Regulating infrared diver-

gences with an infinitesimal photon mass �, corrections with just an electron in the final

state are

1 + �e = [F1(q
2
,m

2
,�

2
)]
2
, F1 = 1 +

1X

n=1

⇣ ↵

4⇡

⌘n

F
(n)
1 , (27)
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complicated case of relativistic electron scattering (i.e., Q2 � m2) considered later.

A. E↵ective theory

For the process depicted in Fig. 1, introduce timelike unit vectors vµ and v0µ via

pµ = Mvµ , p0µ = Mv0µ . (1)

At factorization scale µ ⇠ M , hard momentum modes are integrated out, leaving a low

energy e↵ective theory consisting of heavy particle source fields interacting with soft photons.

The QED current is matched to an expansion in e↵ective operators,

Jµ =  ̄�µ !
X

i

ci(µ, v · v0)h̄v0�
µ
i hv , (2)

where hv, hv0 denote heavy fermion fields satisfying v/ hv = hv.2 The heavy fermion fields

interact with soft photons, as described by the e↵ective theory Lagrangian

Le↵. = �1

4
(F µ⌫)2 + h̄v(iv · @ + Zev · A)hv + h̄v0(iv

0 · @ + Zev0 · A)hv0 +O(1/M) , (3)

where Z = +1 for the proton, Aµ is the electromagnetic field and Fµ⌫ = @µA⌫ � @⌫Aµ.

B. One loop matching

An explicit basis of operator structures in Eq. (2) respecting the discrete symmetries of

the electromagnetic current is

�µ
1 = �µ, �µ

2 = vµ + v0µ . (4)

2 For reviews of heavy particle e↵ective theories in the context of QCD and heavy quarks, see Refs. [11, 12].

NRQED was introduced in Ref. [13]. For a discussion of general heavy particle e↵ective theories see

Ref. [14].
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FIG. 4: Radiative correction � in static source limit for E = 1GeV, �E = 5MeV, computed at

first (bottom, blue, curve) and second (top, red, curve) in ↵.

Fig. 4 displays the total correction � at first and second order in perturbation theory,

for illustrative values E = 1GeV, �E = 5MeV. Logarithmically enhanced corrections

beginning at order ↵2L3 are not captured by a simple exponentiation ansatz, � ! exp[ ↵
4⇡
�(1)].

In the next section we derive the e↵ective theory that allows identification and resummation

of large logarithms.

B. E↵ective theory: matching

To determine the origin of the di↵erent contributions in Eq. (32), and to systematically

resum large logarithms in perturbation theory, let us construct an e↵ective theory to separate

the physics at di↵erent energy scales. We focus on the formal counting m2 ⇠ (�E)2 and

Q2 � m2 (i.e., v · v0 � 1). Appendix E outlines an e↵ective operator analysis analogous to

Eqs. (2) and (3). In place of Eq. (13), the new factorization formula, valid up to O(m2/Q2)

corrections and verified explicitly through two-loop order (cf. Appendices D and E), reads

d� / H

✓
Q2

µ2

◆
J

✓
m2

µ2

◆
R

✓
m2

µ2
,
p · p0
m2

◆
S

✓
�E

µ
,
p · p0
m2

,
E

m
,
E 0

m

◆
. (33)

The explicit matching with QED is most easily performed using dimensional regulariza-
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FIG. 8: Expansion in momentum regions of amplitudes for electron scattering in the static source

limit. Diagram on the left hand side is in the full theory (QED), diagrams on the right hand side

are in the e↵ective theory. Soft and collinear photons are represented by curly lines, and curly lines

superimposed on solid lines, respectively.

averaging and summing over initial and final electron spins, the squared matrix element,

divided by the tree level squared matrix element without radiation, can be expanded in

terms of the following basic integrals (and the integrals related by p $ p0, k $ �k),
Z
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,

Z
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Z
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[1, Lµ] , (D9)

where integration is over
R
=

R
ddL, and the denominators are

D1(�) = L2 � �2 , D1 = L2 , D2 = L2 + 2L · p , D3 = L2 + 2L · p0 ,
D4 = L2 + 2L · (p0 + k) + 2p0 · k . (D10)

We evaluated these integrals using dimensional regularization for ultraviolet divergences and

photon mass � for infrared divergences. After mass, coupling and wavefunction renormal-

ization, and expressing the result in terms of the onshell coupling, we obtain expressions of

the form (D3), which may be expanded according to Eqs. (D5), (D7) and (D8). Neglect-

ing contributions that are power suppressed after photon phase space integration, the final

result reads

X
|M1|2 =

X
|M0|2e2


2p · p0

p · `p0 · ` �
m2

(p · `)2 � m2

(p0 · `)2
�⇢

1 +
↵

4⇡


� 2 log2

Q2

m2

+ 8 log
�

m

✓
log

Q2

m2
� 1

◆
+ 6 log

Q2

m2
+

2⇡2

3
� 8

��
. (D11)

Appendix E: Two loop mixed real-virtual correction: e↵ective theory

Here we outline the evaluation of the mixed real-virtual corrections using a decomposition

into soft and collinear momentum regions, formalized as soft-collinear e↵ective theory [18–
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p · `p0 · ` �
m2

(p · `)2 � m2

(p0 · `)2
�⇢

1 +
↵

4⇡


� 2 log2

Q2

m2

+ 8 log
�

m

✓
log

Q2

m2
� 1

◆
+ 6 log

Q2

m2
+

2⇡2

3
� 8

��
. (D11)

Appendix E: Two loop mixed real-virtual correction: e↵ective theory

Here we outline the evaluation of the mixed real-virtual corrections using a decomposition

into soft and collinear momentum regions, formalized as soft-collinear e↵ective theory [18–

30

Sudakov form factor at one loop: 

(two-loop matching, real+virtual see 1605.02613)



25

Two photon exchange

• Nuclear charge corrections introduce new spin structures 
(helicity counting: 3 amplitudes at leading power in me/Q)

FH(µ)�µ ⌦ �µ !
3X

i=1

ci(µ)�
(e)
i ⌦ �(p)

i

• In principle, can use e+ and e- data to separately determine 
1-photon exchange and 2-photon exchange contributions to ci 

• However, with available data, measure combination of 1-
photon and 2-photon contributions.   

• Regardless of treatment of hard coefficients, remaining 
radiative corrections are universal 
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H. Two photon exchange

The complete result at first order in nuclear charge is simplified by the factorization

theorem which implies that recoil e↵ects are confined to soft function contributions involving

real emission. Beyond first order in the nuclear charge, radiative corrections introduce new

operators at the hard scale, and sensitivity to nuclear structure beyond form factors. Let us

briefly discuss the inclusion of such corrections in the formalism.

The factorization formula including second (and higher) order corrections in nuclear

charge takes the same form as Eq. (33). The function J(µ) is unchanged. The function

R(µ) may be taken as unity at the relevant order [recall R ⇠ ↵2L = O(↵3/2) in our counting

↵L2 = O(1)] . Let us focus on the hard and soft functions. In particular, let us consider

the extraction of proton structure information from scattering data. Our goal is to isolate

H(µ = M), which is built from conventionally defined Born form factors, as in Eq. (12),

and analogous hard coe�cient functions arising from two-photon exchange. In the absence

of su�cient data [38] to simultaneously extract the Born form factors and the two-photon

exchange contributions to H(µ = M), hadronic models are employed for the latter [39, 40].

The soft function (as well as the remainder function R and jet function J) is universal to

all of the underlying amplitudes. In place of the static-source limit of Eq. (9), we have now

p
S(µ,�E = 0) = Z

(e)
h Z

(p)
h

������
+ + +

+ + +

������

= 1� ↵

2⇡
Re

⇢⇥
u · u0f(u · u0)� 1

⇤
+ Z2

⇥
v · v0f(v · v0)� 1

⇤

+ Z
⇥
u · vf(�u · v � i0) + u0 · v0f(�u0 · v0 � i0) + u · v0f(u · v0)

+ u0 · vf(u0 · v)⇤
�
log

µ2

�2
, (62)

where uµ, u0µ are timelike vectors proportional to initial and final electron momentum,

and vµ, v0µ similarly correspond to the momenta of the initial and final state proton. The

function f(w) was introduced for w � 1 in Eq. (6), and the explicit evaluation of the

20

want to extract this

}
correct data by this factor

- J: refers to collinear region, same as before

- S: include nuclear charge for general soft function (computed through 2-
loop order)

- H(μ)/H(M): must now account for large logs in this factor

d� = H(M)⇥ H(µ)

H(M)
⇥ J(µ)⇥ S(µ)
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• resummation

Feynman integrals yields

f(�w � i0) = �f(w) +
i⇡p

w2 � 1
. (63)

The kinematic constraints,

v0 · u = v · u0 , v0 · u0 = v · u , (64)

may be used to reduce the number of terms appearing in Eq. (62).

In order to extract the hard function at scale µ = M , we write the process as

d� / H(M)⇥ H(µ)

H(M)
⇥ (JRS)(µ) , (65)

evaluating JRS at the soft scale, and thus requiring the ratio H(µ)/H(M), with control

over large logarithms in perturbation theory. The renormalization of the hard function is

now governed by (cf. Appendix A)

d logH

d log µ
= 2


�cusp(↵̄) log

Q2

µ2
+ �cusp(v · v0, ↵̄) + 2�cusp(↵̄) log

v · p0
�v · p� i0

+ �(↵̄)

�
. (66)

The cusp function �cusp(↵̄) has been introduced above in Eq. (50), �cusp(w, ↵̄) is given in

Eq. (A7), and the regular anomalous dimension �(↵̄) is

� =
1X

n=0

⇣ ↵̄

4⇡

⌘n+1

�n , �0 = �10 . (67)

The solution to Eq. (66), analogous to Eq. (53), is

log
H(µL)

H(µH)
= � 1

�0


�0 +

✓
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◆
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0
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log r
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4⇡
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1
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◆
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2�0

log2 r + . . .

�
.

(68)

Expressed in terms of onshell coupling,

log
H(µL)
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H

µ2
L
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+


� 10 + 4wf(w) + 8 log

E 0
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� log
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log2
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�
. (69)

where terms through ↵1 are retained, in the counting ↵ log2(Q2/m2) ⇠ 1. The impact of

successive terms in the resummed perturbative expansion is displayed in Fig. 6.
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proton : Mvµ
electron : pµ

universal functions

log

H(µL)

H(µH)

= � ↵

2⇡
log

2 µ2
H

µ2
L

+ . . .

¯

hiv ·Dh ! ¯

h

(0)
S

†
viv ·DSvh

(0)
=

¯

h

(0)
iv · @h(0)

, Sv(x) = P exp


i

Z 0

�1
dsv ·As(x+ sv)

�

v v0

governed by Wilson loops with cusps:

renormalization of hard function of interest: 

solution, summing large logarithms:
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FIG. 6: Same as Fig. 5, but including recoil and nuclear charge corrections (i.e., two photon

exchange and proton vertex corrections).

IV. DISCUSSION

The precision of electron-proton scattering experiments has reached a level demanding

systematic analysis of subleading radiative corrections at two loop order and beyond. We

have presented the general framework that separates physical scales in the scattering process,

allowing a systematic merger of fixed order perturbation theory with large log resummation.

The quantum field theory analysis reveals implicit conventions and assumptions that

often di↵er between applications, such as between scattering and bound state problems.

The definition of the proton charge and magnetic radii in the presence of electromagnetic

radiative corrections is naturally defined in Eq. (12). A comparison to other definitions in

the literature is presented in Appendix B. The separation of soft and hard scales in two

photon exchange is similarly ambiguous in standard treatments. The common Maximon-

Tjon convention [37] implicitly takes momentum-dependent factorization scale µ2 = Q2 for

two-photon exchange, in conflict with the Q2-independent choice µ2 = M2 that is closest to

the implicit convention for vertex corrections.

The exponentiation and cancellation of infrared singularities [10] in physical processes

has often been used to motivate a simple exponentiation of first order corrections in order
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LL

NLL

NLO
}d� = H(M)⇥ H(µ)

H(M)
⇥ J(µ)⇥ S(µ)

total radiative 
correction

numerically: ↵L2
= ↵ log

2 Q2

m2
⇠ 1 ↵L ⇠ ↵

1
2⇒ , etc. 

O(1)

O(↵
1
2 )

O(↵)

correct 
through:

�E = 5MeVelectron energy loss cut:
E = 1GeVelectron energy:
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Comparison to previous implementations of radiative corrections, e.g. 
in A1 analysis of electron-proton scattering data

)2 (GeV2Q
0 0.2 0.4 0.6 0.8 1

δ

0.25−

0.24−

0.23−

0.22−

0.21−

0.2−

FIG. 7: Comparison of complete next to leading order resummed correction (soled black band) to

naive exponentiations using di↵erent factorization scales for the two photon exchange correction:

µ2 = M2 (dotted red line) and µ2 = Q2 (dashed blue line). See text for details.

to resum logarithmically enhanced radiative corrections at second- and higher-order in per-

turbation theory [7, 41]. This procedure fails to capture subleading logarithms, beginning

at order ↵2L3 = O(↵
1
2 ), in our counting ↵L2 = O(1), cf. Eq. (32). These large logarithms

are automatically generated in the renormalization analysis that the e↵ective theory makes

possible. The convergence of resummed perturbation theory is illustrated, for the complete

problem including proton structure and recoil, in Fig. 6. A comparison of the resummed

prediction to the naive exponentiation ansatz is displayed in Fig. 7.

Also shown in Fig. 7 is the variation due to di↵erent scale choices implicit in di↵erent two-

photon exchange corrections.8 These ansaztes di↵er at the percent level in the considered

kinematic range, and fall well outside the error band represented by the complete next-to-

leading order resummed prediction.

Special attention has been paid to the e↵ects of real emission beyond tree level. Soft-

8 For example, the so-called McKinley-Feshbach correction [42] represents the large-M limit of the hard-

coe�cient contribution to two-photon exchange, and is independent of factorization scale µ. Using this

correction [7] results in an irreducible factorization-scale uncertainty, uncanceled between matrix element

and coe�cient.
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resummed EFT result

naive exponentiation of 1-loop, 
(μ2=Q2 in two-photon piece)

naive exponentiation of 1-loop, 
(μ2=M2 in two-photon piece)

- complete analysis: account for floating normalizations, correlated 
shape variations when fitting together with backgrounds 

- discrepancies at 0.5-1% compared to currently applied radiative 
correction models (cf. 0.2-0.5% systematic error budget of A1 experiment)

- conflicting implicit scheme choices for 1PE and 2PE 
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E = 1GeV
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EFT analysis clarifies several issues involving conflicting and/or implicit 
conventions and scheme choices 

1) Scheme choice and definition of radius and “Born” form factors

2) Scheme dependence of two-photon exchange

3) Limitations of naive exponentiation
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1) Scheme choice and definition of radius and “Born” form factors

The complete (onshell, renormalized) amplitude for the process in Fig. 1 is conventionally

expressed as

hJµi = ūv0


F̃1�

µ + F̃2
i

2
�µ⌫(v0⌫ � v⌫)

�
uv , (10)

where uv = u(p) is a Dirac spinor and the onshell Dirac and Pauli form factors are

F̃1(q
2) = [c1(w, µ) + 2c2(w, µ)]FS(w, µ) ,

F̃2(q
2) = �2c2(w, µ)FS(w, µ) , (11)

with q2 = �2M2(w � 1). For a strongly interacting composite particle like the proton,

perturbative matching is not possible. In this case, the Wilson coe�cients ci(w, µ) in Eq. (11)

are identified as infrared finite “Born” form factors, to be extracted experimentally:

Fi(q
2)Born ⌘ F̃i(q

2)F�1
S (w, µ = M) , (12)

where the choice µ = M is part of the Born convention. For a discussion of Born form factor

extraction from experimental data, see Ref. [6]. A comparison to other conventions in the

literature for Born form factors is given in Appendix B.

C. Resummation

To define an infrared finite observable, consider the process depicted in Fig. 1: scat-

tering of a proton from an electromagnetic source, allowing radiation of energy �E ⌧ M .

Suppressing a kinematic prefactor, the cross section is governed by the factorization formula,

d� / H

✓
M

µ
, v · v0

◆
S

✓
�E

µ
, v · v0, v0, v00

◆
. (13)

The hard function is

H =
X

i,j

ci(µ)c
⇤
j(µ)Tr

✓
�i
1 + v/

2
�j

1 + v/ 0

2

◆
. (14)

The soft function may be expanded according to photon number,

S = S0� + S1� + S2� + . . . , (15)

and for each contribution we may expand as a series in ↵,

Sn� =
1X

i=n

⇣ ↵̄

4⇡

⌘i

S(i)
n� . (16)
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hard coefficient soft function

F̃i = FHFS

Multiple conventions in the literature.  Different “Born” form factors, 
different radii (differences typically below current precision)

FH(q2, µ = M) ⌘

Massive particle form factor (e.g. for proton): 
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2) Scheme dependence of two-photon exchange

As for form factors, define hadronic functions in the 
general 2→2 scattering process as the hard component 
in the factorization formula at factorization scale μ=M

Prevailing conventions have 
used conflicting μ=M for 1 
photon exchange, μ=Q for 
2 photon exchange 

)2 (GeV2Q
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FIG. 7: Comparison of complete next to leading order resummed correction (soled black band) to

naive exponentiations using di↵erent factorization scales for the two photon exchange correction:

µ2 = M2 (dotted red line) and µ2 = Q2 (dashed blue line). See text for details.

to resum logarithmically enhanced radiative corrections at second- and higher-order in per-

turbation theory [7, 41]. This procedure fails to capture subleading logarithms, beginning

at order ↵2L3 = O(↵
1
2 ), in our counting ↵L2 = O(1), cf. Eq. (32). These large logarithms

are automatically generated in the renormalization analysis that the e↵ective theory makes

possible. The convergence of resummed perturbation theory is illustrated, for the complete

problem including proton structure and recoil, in Fig. 6. A comparison of the resummed

prediction to the naive exponentiation ansatz is displayed in Fig. 7.

Also shown in Fig. 7 is the variation due to di↵erent scale choices implicit in di↵erent two-

photon exchange corrections.8 These ansaztes di↵er at the percent level in the considered

kinematic range, and fall well outside the error band represented by the complete next-to-

leading order resummed prediction.

Special attention has been paid to the e↵ects of real emission beyond tree level. Soft-

8 For example, the so-called McKinley-Feshbach correction [42] represents the large-M limit of the hard-

coe�cient contribution to two-photon exchange, and is independent of factorization scale µ. Using this

correction [7] results in an irreducible factorization-scale uncertainty, uncanceled between matrix element

and coe�cient.
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A scale-variation estimate of 
uncertainty in the 2 photon 
exchange subtraction
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3) Limitations of naive exponentiation

⇒ New terms at order α2 L3, α2 L2, α3 L4, …

S(2) =
1

2!
[S(1)]2 � 16⇡2

3
(L� 1)2 . (49)

F. E↵ective theory: resummation

After renormalization in the MS scheme at scale µ, the hard function is free of large

logarithms provided that the matching scale satisfies µH ⇠ Q. Evolution to low scales

µL ⇠ m is governed by (cf. Appendix A)

d logH

d log µ
= 2


�cusp(↵) log

Q2

µ2
+ �(↵)

�
. (50)

The cusp anomalous dimension for massless QED (nf = 1) reads

�cusp =
1X

n=0

⇣ ↵̄

4⇡

⌘n+1

�cusp
n , �cusp

0 = 4 , �cusp
1 = �80

9
, (51)

The regular anomalous dimension � may be similarly expanded,

� =
1X

n=0

⇣ ↵̄

4⇡

⌘n+1

�n , �0 = �6 . (52)

Using these expansions, the solution of Eq. (50) to any order is straightforward. Expressed

in terms of the running coupling,

log

✓
H(µL)

H(µH)

◆
= ��0

�0

⇢
log r + . . .

�
� �cusp

0
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log r +
1
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1

r
� 1 + log r
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1

�cusp
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� �1

�0

◆
(� log r + r � 1)� �1

2�0

log2 r

�
+ . . .

�
, (53)

where r = ↵(µL)/↵(µH), and the first and second curly braces correspond to the terms �(↵)

and �cusp(↵) in Eq. (50), respectively.

We are interested in applications involving large logarithms such that ↵ log2(µ2
H/µ

2
L) ⇠ 1.

In this power counting, terms involving �0 scale as ↵1/2, and neglected terms involving �(↵)

scale as ↵3/2. The leading terms involving the cusp anomalous dimension scale as ↵0, terms

involving �cusp
1 and �1 scale as ↵1, and the remaining neglected terms scale as ↵2. When

combined with one-loop matching computations, the terms retained in Eq. (53) are thus

su�cient to ensure accuracy through order ↵1, accounting for logarithmic enhancements.

The result (53) may be readily expressed in terms of the onshell coupling. Retaining terms

through O(↵) in the above counting,

log

✓
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↵
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� 2 log2
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H
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L

� 4 log
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L

log
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+ 6 log
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H
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L
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⇒ New terms at order α2 L2

• Total versus individual real photon energy below ΔE : 

log

H(µL)

H(µH)

= � ↵

2⇡
log

2 µ2
H

µ2
L

+ . . .

• Renormalization analysis for subleading logs :

complete analysis: account for floating normalizations, correlated shape 
variations when fitting together with backgrounds.  stay tuned 

S =
X

n

⇣ ↵

4⇡

⌘n
S(n)
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Summary
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• lepton-nucleon scattering: new arena for SCET

• exponentiation Ansatz a la Yennie et al. fails at the level of current 
experimental precision

• complete calculation of soft+collinear factors: leaves 2-3 sigma radius 
tension between e-p and μH extractions

• SCET does not determine the hard matching coefficients 
(nonperturbative inputs), accessible from e+/e- ratios

• systematic error from missing soft+collinear radiative corrections 
potential explanation for proton radius puzzle

• formalism applies to critical neutrino applications.  stay tuned (and hop 
aboard). 


