Messaging at CERN

Lionel Cons — CERN IT/CM




In the Beginning...

 messaging started at CERN ~10 years ago

« goal was to simplify grid middleware

 Initiator was the Operations Automation Team
(OAT) of the Enabling Grids for E-Science In
Europe (EGEE) project

« driving force has been the European Middleware
Initiative (EMI) project

 w "Using ActiveMQ at CERN for the Large Hadron
Collider” (FUSE day, 2010)

 messaging proved to be useful so its use grew...



https://en.wikipedia.org/wiki/European_Grid_Infrastructure#EGEE
https://en.wikipedia.org/wiki/European_Middleware_Initiative
http://cern.ch/mig/pub/FUSE London 2010 - Using ActiveMQ at CERN for the LHC.pdf
http://cern.ch/mig/pub/FUSE London 2010 - Using ActiveMQ at CERN for the LHC.pdf
http://cern.ch/mig/pub/FUSE London 2010 - Using ActiveMQ at CERN for the LHC.pdf
http://cern.ch/mig/pub/FUSE London 2010 - Using ActiveMQ at CERN for the LHC.pdf

Main Use Case

 messaging Is used to decouple information

producers from consumers

* using different software stacks

 managed by different teams

e only sharing the “schema” of the JSON payload

* published to topic, consumed from virtual queues
 much more WAN than LAN

« code change could take months to get deployed

* mostly STOMP with very few OpenWire or AMQP
« frequent use of X.509 authentication (grid)




STOMP

 CERN pushed for standardization (STOMP 1.2)

« advantages
e supported by most brokers
« decent client libraries available for all languages
« lightweight (e.g. can publish from PL/SQL)
« drawbacks
* none for us?




Other Use Case

* messaging is used inside an application
e control on which messaging solution is used
(and how!) is very limited

« applications used at CERN:
Celery with RabbitMQ
MCollective with ActiveMQ
OpenStack with RabbitMQ




MCollective Use Case

MCollective needs a network of brokers

initial requirements are challenging:
e 2 data centers 1000 km apart

« 30k concurrent connections

« 300k subscriptions

« worked with Puppet Labs to reduce the number of
subscriptions: now only 150k

« works fine (except an abnormally large number of
connection timeout warnings)

* must scale with the growth of nodes we manage



https://docs.puppet.com/mcollective/

IT Managed Messaging Services

« 17 different clusters (test and production)

* 44 brokers

e 267 applications

e average message rates: ~1k Hz in and ~5kHz out
« ~6k destinations (topics and queues)

« ~25k concurrent connections

« ~120k subscriptions

« all run Red Hat A-MQ 6




Messaging Monitoring

all log files analyzed

103 different metrics collected

 messaging metrics collected through Jolokia
1350 checks every minute

e e.g. perclient messages received per second too low/high
expert system named Metis using Esper

« time aggregations like min/max/average

« other aggregations like “all brokers in a cluster”

* hysteresis

* patterns



https://jolokia.org/
http://cern.ch/mig/monitoring/metis.html
http://www.espertech.com/esper/

Accelerators Controls (1/2)

transport data from middle tier servers to GUIs
and storage system but also log messages,
Infrastructure monitoring & audit information
broad usage pattern in message size & frequency
criticality service: No JMS, No Beam

w “Large Scale Messaging with ActiveMQ for Particle
Accelerators at CERN" (CamelOne 2012)

courtesy of Felix Ehm (BE/CO)



http://cern.ch/mig/pub/CamelOne 2012 Felix Ehm - Large-Scale Messaging with ActiveMQ for Particle Accelerators at CERN.pdf

Accelerators Controls (2/2)

25 brokers organized in dedicated services:

5 HA clusters and 15 single instances

running on physical machines

up to: >270GB per day, 8k messages per second
currently: Apache ActiveMQ 5.12.2

middleware team reviewing the usage of JMS:
the idea is to simplify the environment and extend
the use of GMQ which Is already being used for
Remote Device Access (RDA)

courtesy of Felix Ehm (BE/CO)




Pushing the Limits

« creative network of brokers topology (MCollective)

« peaks of several thousands of messages per
second (from a single client)

* some large messages, up to 100MB

« sometimes huge backlogs (several days) while
some consumers are down

* tens of new connections per second

« X.509 authentication (JAAS) with ~70k entries




Possible Evolutions (1/2)

 Red Hat A-MQ 6.X:
« end of full support: Jan 2018

* Apache ActiveMQ 5.x:
« will be supported as long as it is widely used

 Red Hat A-MQ 7.x:

« only one alpha and one beta released so far
* Dbetal based on Artemis 1.3.0

« Apache ActiveMQ 6.x (aka Artemis):
« latest versionis 1.5.1
* major changes coming with 2.0.0
« ~50 unresolved bugs in Jira important for our use cases



https://access.redhat.com/support/policy/updates/jboss_notes

Possible Evolutions (2/2)

« PMQ: speed and low latency
« already used in accelerators controls
« CERN is even quoted in @MQ’s “Learn the Basics”

« Kafka: high volumes and scalability

* Dbig overlap with traditional messaging
e seen more as complement rather than replacement

« RabbitMQ: another widely used messaging broker



http://zeromq.org/
http://zeromq.org/intro:read-the-manual
https://kafka.apache.org/
https://www.rabbitmq.com/

Summary

 messaging started at CERN ~10 years ago

* one use was the simplification of grid middleware

* messaging was also used in accelerators controls

It also spread to several very different areas

 messaging still is widely used at CERN

* SOome use cases are quite challenging

* some overlapping technologies are appearing

 messaging at CERN will evolve to adapt to
changes both in requirements and solutions




