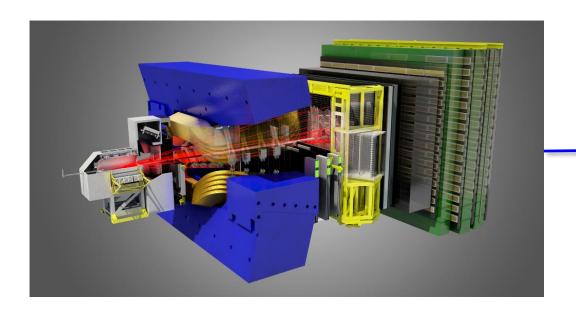
LHCb 2016 performance and highlights & Status of MoEDAL

Yiming Li (*LAL*, *Orsay*)
On behalf of the LHCb and
MoEDAL collaborations

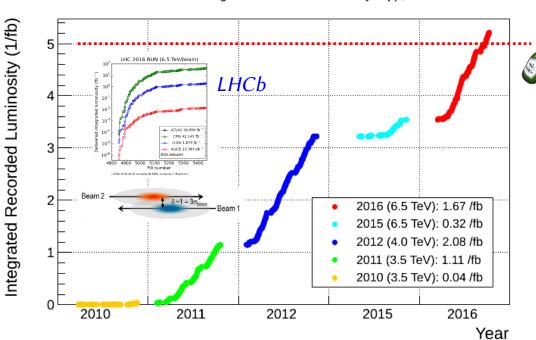

Open session of CERN council, 16/12/2016

Content

- LHCb
 - 2016 operation
 - Physics highlights
 - Upgrade
- MoEDAL

LHCb

- - Why heavy flavour?
- At high energy new particles can be produced directly
- In the quantum loop of heavy flavour (b/c)decays we can indirectly probe effects of new physics at much higher energy scale 3


- A precision experiment for heavy flavour physics
- Core physics programme: Study of the matterantimatter asymmetry in beauty and charm decays
- General purpose detector in the forward region: spectroscopy, QCD, heavy ion physics ...
- 1151 members, 69 institutes, 16 countries

16/12/2016

2016: a year of harvest

LHCb Cumulative Integrated Recorded Luminosity in pp. 2010-2016

Shift: Data

Pleader manage/UK+

Piquets

ullet Successful pp data-taking

- 1.7 fb⁻¹ recorded with $\sim 96\%$ operation efficiency
- A cumulative of 5 fb⁻¹ reached since LHC start!

Data-taking with high levels of automation, in the new control room

NB: Beams not colliding head-to-head to maintain an optimal interaction rate

Many thanks to excellent performance of LHC and the accelerator experts!

A clearer way of data-taking

Run I

Run II

40 MHz bunch crossing rate

Hardware trigger 40 MHz → 1 MHz

1st software trigger 1 MHz \rightarrow 100 kHz

2nd software trigger 100 kHz → 5 kHz

Reconstruction
Align. + Calib

Analysis

LHCb is pioneering a flexible & efficient online system, which

- allows real-time calibration and alignment
- maximises the usage of computing resources
- and delivers physics data of good quality at a high rate

40 MHz bunch crossing rate

Hardware trigger 40 MHz → 1 MHz

 1^{st} software trigger 1 MHz \rightarrow 100 kHz

Disk buffer Real-time align calib

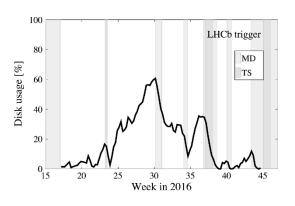
2nd software trigger $100 \text{ kHz} \rightarrow 12 \text{ kHz}$

Analysis

To prove the point ...

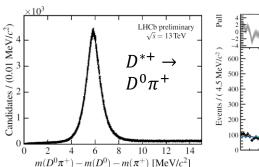
"Online" near detector

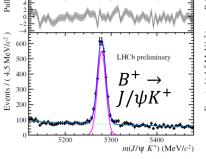
Efficient use of resources & better physics!

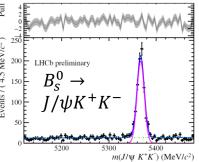

Hardware trigger 40 MHz → 1 MHz

1st software trigger
1 MHz → 100 kHz

Disk buffer
Real-time align calib

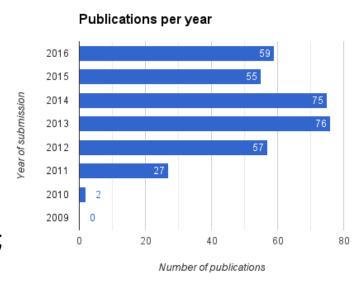

2nd software trigger 100 kHz → 12 kHz

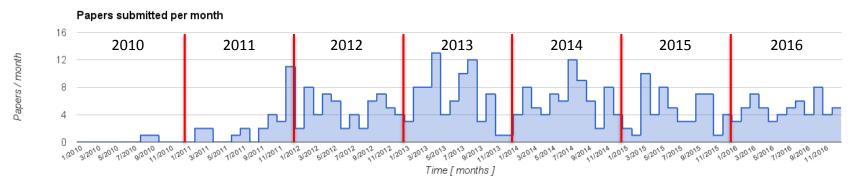

Analysis



When there is no beam for physics, data stored on disk are processed → online farm always busy!

- Full event reconstruction, real-time alignment & calibration ⇒ improved resolution & lower background in 2nd software trigger
- Even better, the trigger output can be directly streamed out for physics analysis





A year of harvest ... in physics

- 351 papers submitted, 59 this year
- 16 with Editorial Board
- 17 CONF notes
- 40 analyses under review
- Still many interesting results out of Run I; while Run II are being used

A wide range of physics topics

CP violation

 $B \rightarrow f$ not the same rate as $\overline{B} \rightarrow \overline{f}$? Could the matter – antimatter asymmetry reveal effects beyond the Standard Model?

Spectroscopy

Meson = $(q\bar{q})$, Baryon = (qqq) or $(\bar{q}\bar{q}\bar{q})$ *How are quarks combined to form bound states? *Any possibilities other than $q\bar{q}$ or qqq?

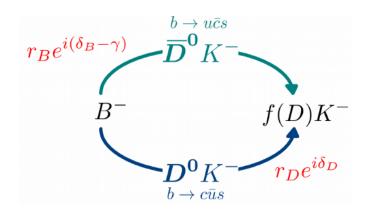
Rare decays

Some decays predicted to occur very rarely in the SM, if a higher must come into play

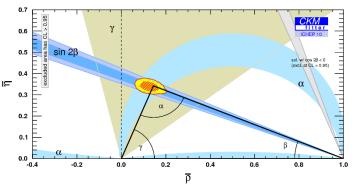
QCD

How & how much beauty & charm produced in *pp* collisions? Basis of understanding any signals at the LHC

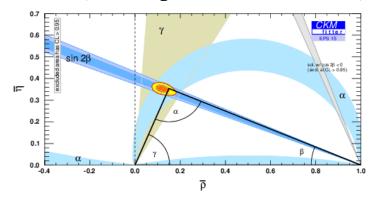
lon & fix-target


While pursuing the core physics programme, LHCb is becoming a general purpose detector

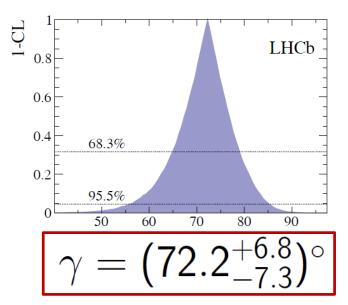
The γ angle



- The CKM unitary triangle contains information on how quarks change flavour in weak interactions, and the source of CP violation
- \blacksquare The γ angle is the least well known
- \blacksquare It can be measured in B decays

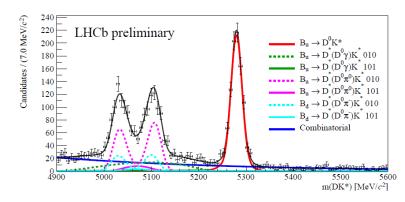

LHCb has been already making impact

World average Before LHCb (2010)


2015 (including LHCb measurements)

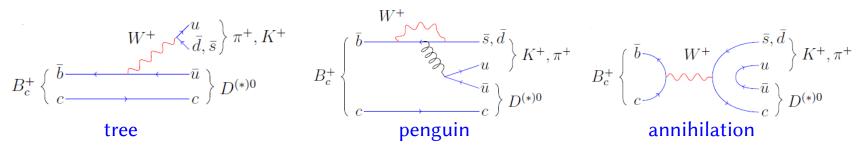
CKMfitter collaboration

All roads lead to γ

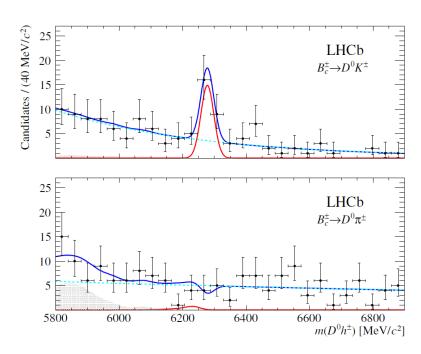


- Combination of numerous $B \to DK$ decay results from Run I continues to improve the γ precision
- Result significantly more precise than from the ensemble of all previous experiments!

arXiv: 1611.03076

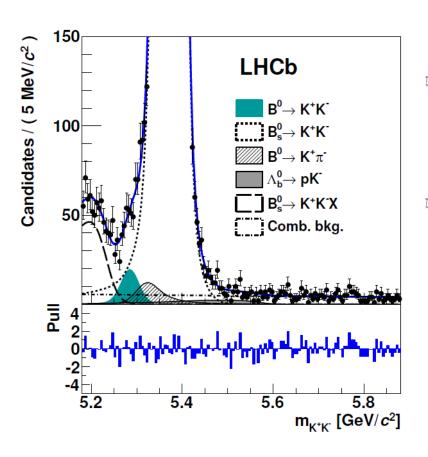

- $B^{\pm} \rightarrow DK^{*\pm}$
 - 3 fb⁻¹ Run I + 1 fb⁻¹ Run II
- A bright prospect for Run II to further reducing γ uncertainty

LHCb-CONF-2016-014


An unexpected B_c^+ decay

(Almost all known B_c decays so far)

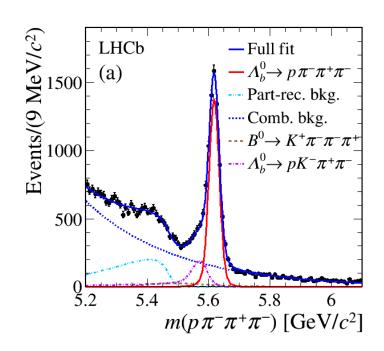
- $^{\blacksquare}$ B_c is very difficult to produce thus much less studied, most of its experimental knowledge from LHCb
 - For every $\sim 200 B^+$ only $1 B_c^+$
- $B_c^+ \to D^0 \pi^+$ is favoured decay, so is expected to appear first ...
- ... but it is not seen. In contrast the suppressed $B_c^+ \to D^0 K^+$ shows a very clean signal $(5.1\sigma)!$



LHCb-PAPER-2016-058, in prep.

An intriguing result that requires theoretical explanation!

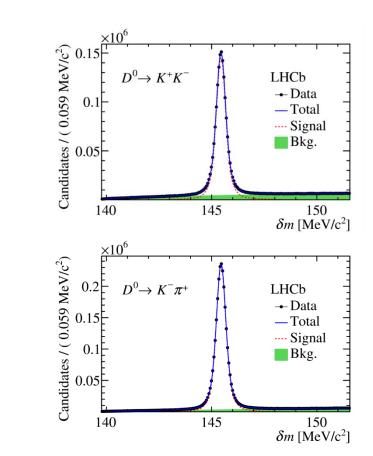
A very rare decay of $B^0 \rightarrow K^+K^-$



- B^0 → K^+K^- observed (5.8 σ) after years' search
 - The rarest B meson decay into fully hadronic final states
 - Only 1 in ~12 million

arXiv: 1610.08288

CP violation with baryons


- Evidence (3.3 σ) for CP violation in $\Lambda_b^0 \to p \pi^+ \pi^- \pi^+$ decay found
- First evidence of CP violation in baryon sector!

 arXiv:1609.05216
- A new gate opens for studying CP violation in baryons, since LHCb records large amount of Λ_b and other beauty baryons

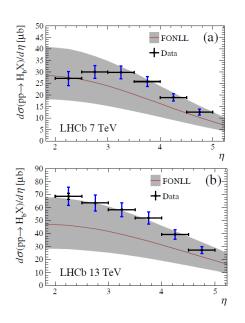
Chin.Phys.C 40, 1 (2016) 011001

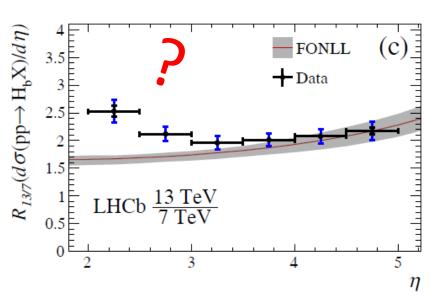
CP violation in charm

LHCb not only for beauty! Huge yield of charm mesons, with very clean background

$$\leftarrow \sim 6 \text{ million } D^0 \rightarrow K^+K^- \text{ candidates}$$

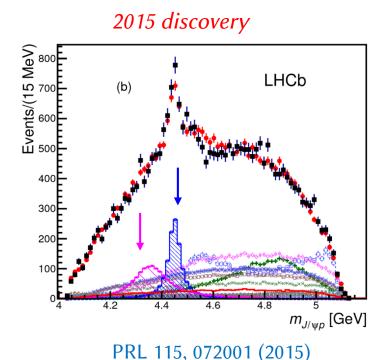
 $\leftarrow \sim 32 \text{ million } D^0 \rightarrow K^+\pi^- \text{ candidates}$

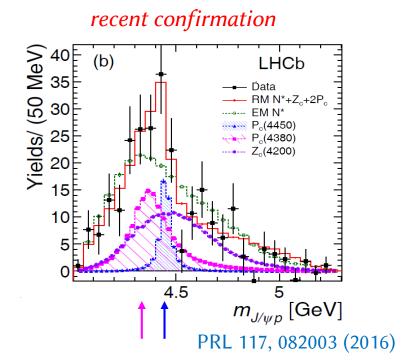

Sensitivity for CP violation reaches 0.1% in a single D decay, pushing towards the level predicted in the Standard Model


arXiv: 1610.09476

b quark production cross-section

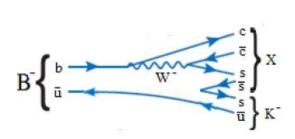
- Many searches for new physics at LHC reply on a good understanding of the b quark background
- Results comparing 13 TeV and 7 TeV are in tension with prediction by a widely used model → will surely attract a lot theorists' attention

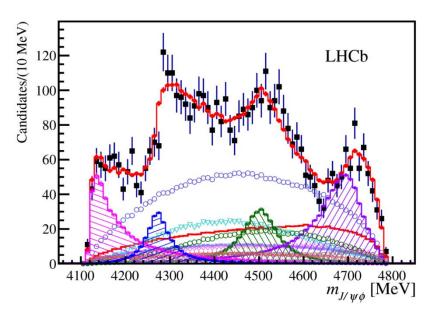

arXiv: 1612.05140


Pentaquark

- LHCD
- In the limelight 2015: observation of 2 pentaquark states in the $\Lambda_h^0 \to J/\psi p K^-$ decay
- Search in a similar yet rarer decay $\Lambda_b^0 \to J/\psi p \pi^+$ confirms these two states $(>3\sigma)!$

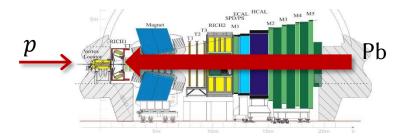
Truly extending our view on how quarks form bound states

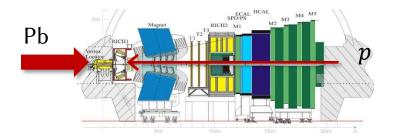


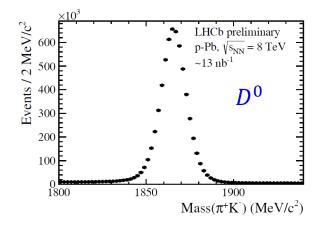

Tetraquark-like states

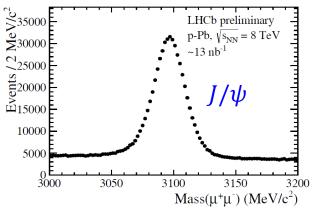
- In $B^+ \to J/\psi \phi K^+$ decay
- Some experiments saw narrow X(4140), some didn't
- With large yield of the signal, and sophisticated analysis technique, LHCb find there are 4 such tetraquark-like states → controversy settled
- The quantum numbers are measured, a significant step towards understanding their nature

arXiv: 1606.07895 arXiv: 1606.07898

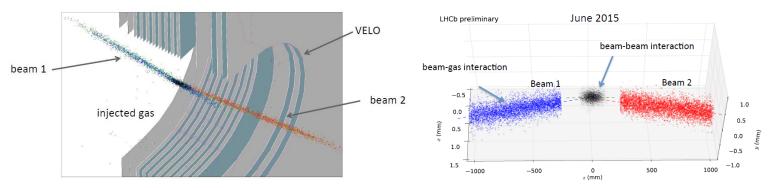



Not only pp!




- Data taking in pPb/Pbp
- \sim 30 nb⁻¹ collected
 - 5, 8 TeV *p*Pb
 - 8 TeV Pb*p*

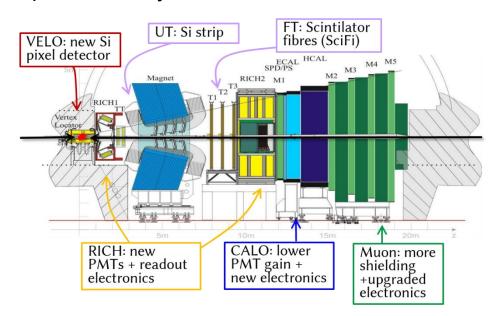
Thanks again to LHC for accepting our requests, and providing a lot of luminosity

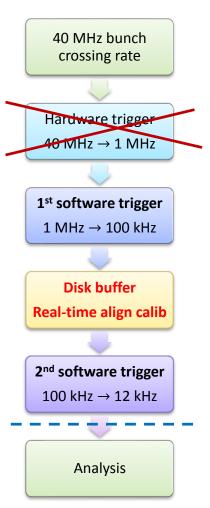

Already set off for physics in this years' data

Fixed target data-taking

- Nobel gas injected in the beampipe, initially for beam imaging
 - Beam profiles pictured in the silicon vertex detector, giving precise luminosity measurement → unique in LHCb!

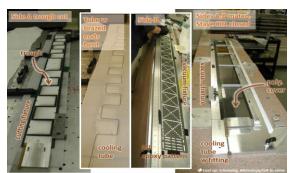
 JINST 9 P12005

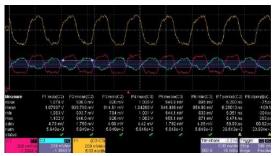

- The gas can serve as a fixed target!
 - Bridging the energy gap between SPS and LHC
 - Beam-beam and beam-gas collisions for physics at the same time



Upgrade

- After the next LHC long shutdown, LHCb will be upgraded for more physics!
 - 50 fb⁻¹ luminosity in ~10 years time
 - More efficient trigger for hadronic final states
- This requires
 - Removing the hardware trigger ⇒ 40 MHz readout!
 - Improved sub-systems

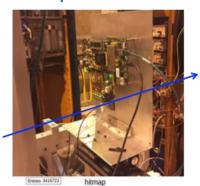



Upgrade progress

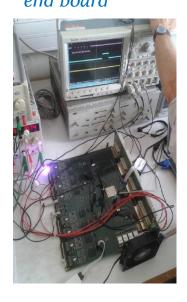
- Generally good progress
 - Construction phase started
- Current long technical stop is fully exploited
 - Eg. Installation of CO₂ transfer lines for upgrade cooling

UT stave construction

Test on MUON electronics



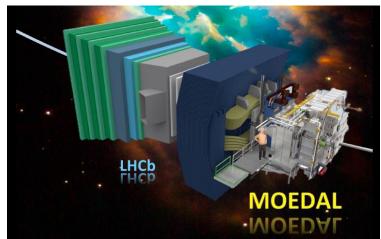
RICH digital board



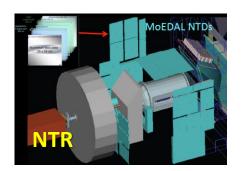
VELO readout chip in testbeam

CALO Frontend board

SciFi module

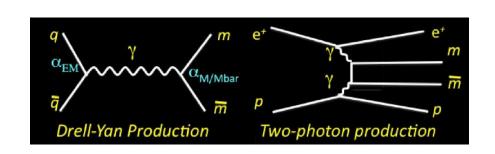

16/12/2016

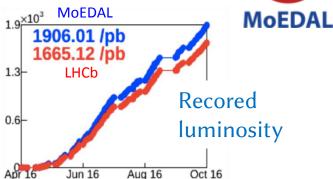
Y. Li @ CERN council open session

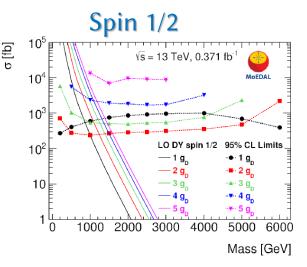

Monopole & Exotics Detector At the LHC

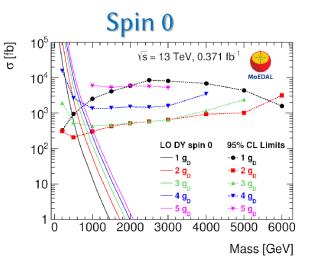
- Searching for the passage of highly ionizing particles as messengers of new physics, eg. magnetic monopole
- Ionization increases with magnetic charge $g = ng_d$, decreases with velocity
 - → a unique signature

- A detector system mainly passive:
 - Nuclear track detector (NTR): plastic array
 - Trapping detector: a tonne of Alumnium
 - Timepix array: real time radiation monitoring



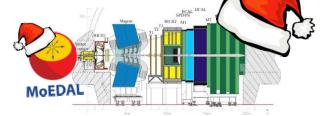



Search for magnetic monopole



8 TeV result: JHEP 1608 (2016) 067; 13 TeV result: arXiv: 1611.06817, submitted to PRL

mass limits [GeV]	$1g_{\mathrm{D}}$	$2g_{\mathrm{D}}$	$3g_{\rm D}$	$4g_{\rm D}$
MoEDAL 13 TeV				
(this result)				
DY spin- $1/2$	890	1250	1260	1100
DY spin-0	460	760	800	650
MoEDAL 8 TeV				
DY spin- $1/2$	700	920	840	_
DY spin-0	420	600	560	_
ATLAS 8 TeV				
DY spin- $1/2$	1340	_	_	_
DY spin-0	1050	_	_	_


Cross-section upper limit @ 95% C.L. for Drell-Yan monopole production in 13 TeV *pp* collisions.

Monopole lower mass limit set for charge up to $4g_D$

Dirac charge: $g_D = \frac{1}{2\alpha_{em}} \sim 68.5$

Summary

- A great year for LHCb:
 - Successful data-taking for pp and pPb
 - Plenty of interesting physics results in a wide scope,
 with both Run I and Run II
 - Upgrade preparation well on track

- Also an excellent year for MoEDAL
 - Search for magnetic monopole with 8 and 13 TeV data
- A big thank you to the LHC, CERN, funding agencies, and all who support and help
- Wish you a nice xmas break, and look forward to an exciting 2017!