Identification of Jets Containing b-Hadrons with Recurrent Neural Networks at the ATLAS Experiment

ATL-PHYS-PUB-2017-003

Dan Guest
For the ATLAS Collaboration

UC Irvine

March 21, 2017
Background: b-tagging

- b-hadrons decay through cascade
- $\beta\gamma c\tau \approx 6.4\text{ mm for } B \text{ with } p_T = 70\text{ GeV}$
- But many decay distances are $O(\text{detector resolution})$
Reconstructing Secondary Vertices

The ATLAS approaches

- Many discriminants come from vertices, combine them with ML
The problem with SV tagging

- Sometimes we don’t find a vertex
- Requires cutting on track-vertex compatibility
 - This is also a good thing
- Tuned “by hand”
- Experiment-specific

- There is no FASTJET for vertex reconstruction
Impact parameter (IP) tagging

- Take all tracks in a jet
- Apply some selection
- Extrapolate to perigee
- Per-track discriminants:
 - \(S_{d_0} \equiv d_0/\sigma_{d_0} \)
 - \(S_{z_0} \equiv z_0/\sigma_{z_0} \)
 - track “quality”

- Compute per-track likelihood \(L_f(\text{track}) \) with \(f \in \{b, c, \text{light}\} \)
- Per-jet likelihood \(p_f = \prod_{\text{trk}} L_f(\text{track variables}) \)
- IP based tagging is the problem we solve with RNNs
 - More on this later
Putting it all together

Low-Level

- **IP**: track-based variables
- **Likelihood**: gives p_b, p_c, p_{light}
- **SV**: gives vertex variables
- **JetFitter**: similar to SVx

High-level

- **MV2**: combine with BDT

- It’s easy to focus on the high-level tagger (MV2), but upstream is important too
IP3D: ATLAS’s IP Tagger

- Need to define $L_f(\text{track})$
 - $L_f(S_{d_0}, S_{z_0}, \text{category})$
 - S_{d_0} shown right
- Use histograms from simulation
- 3D binning scheme:
 - 35 bins in S_{d_0}
 - 20 bins in S_{z_0}
 - 14 track categories
- Track category represents quality of track

![Graph showing track signed d_0 significance]

ATLAS Simulation Preliminary
\(\sqrt{s} = 13 \text{ TeV}, \bar{t}t \)}
Improving Upstream Taggers: What IP3D misses

- Relations among tracks:
 - relation to neighbor bins
 - relation to neighbor tracks
- These are important (see right)
- New (SV inspired) track variables:
 - $p_T^{\text{frac}} \equiv \frac{p_T^{\text{track}}}{p_T^{\text{jet}}}$
 - $\Delta R(\text{track}, \text{jet})$

Curse of Dimensionality

- Already 29,400 bins
- New variable $\rightarrow \sim 10 \times$ bins (and events to “train”)
Recurrent Neural Networks (RNNs)

- RNNs can process an arbitrarily length sequence
- Output is a fixed dimensional vector for each jet
RNN b-tagging

Unrolled RNN

Fully Connected + SoftMax

Jet

ordered by |Sdo|

Track 1 Track 2 Track 3 Track 4 ... Track N

ΔR

S_{do}

S_{zo}

p_{T}^{frac}

category

Embed

2D unit vector

Jet
ROC Curves for a Multi-Background Discriminant

- Eventually: feed all four outputs to a high-level discriminant
- Conventional HEP discriminants are binary
 - Train against a mix of backgrounds (i.e. MV2 is 7% c-jets)
- We use 4 outputs:
 - \(p_b \): bottom jet
 - \(p_c \): charm jet
 - \(p_{\text{light}} \): “light” jet (u, d, s, g)
 - \(p_{\tau} \): \(\tau \) jet
- Combine everything for the sake of plots

\[
D_{\text{RNN}} = \ln \frac{p_b}{f_c p_c + f_{\tau} p_{\tau} + (1 - f_c - f_{\tau}) p_{\text{light}}}
\] (1)

- The \(f \) weighting parameters can be adjusted post-training
- For this talk: \(f_c = 0.07, f_{\tau} = 0 \)
RNN Performance (compared to IP3D)

- Lowest line is IP3D
- Next up: RNN with IP3D inputs
- Each new variable adds discrimination
- At 70% working point:
 - RNN with IP3D inputs improves light rejection by 1.7
 - With $\Delta R(\text{track}, \text{jet})$ and p_T^{frac}, improves light rejection by 2.5
RNN Performance (compared to high-level tagger)

MV2 using IP3D still rejects more background for $\varepsilon_b < 0.9$

But this uses JetFitter and SV \rightarrow much more information

RNN as input for MV2 is outside the scope of this talk
 But we can imagine replacing IP3D with the RNN
Cut on the discriminant such that $\varepsilon_b = 0.7$ in each p_T bin.

- Same trend as previous slide: rejection for IP3D < RNN < MV2

- RNN tagger is no more p_T dependent than other taggers.
RNN output correlation with input: S_{d0} and S_{z0}

- D_{RNN} output is highly correlated with jet S_{d0} for “early” tracks in $|S_{d0}|$ ordering
 - Interesting, but maybe not surprising: b hadrons have ~ 5 tracks
- Effect is less pronounced for S_{z0}
RNN output correlation with input: ΔR and p_T^{frac}

Much less correlation between D_{RNN} and $\Delta R(\text{track, jet})$ or p_T^{frac}

But these are useful discriminants nonetheless
Notes on Software
Since we always talk about software in IML

- We train with **Keras**
 - Use 3.2 million jets from simulated $t\bar{t}$
 - Use **Theano** backend
 - Training time: with a CPU, a few days on a (busy) cluster
 - We only train on first 15 tracks (0.5% of jets 15+ tracks)

- Within our reconstruction, we evaluate with **LWTNN**
 - Used in ATLAS for top and W tagging (see tomorrow)
 - Also used by CMS for DeepFlavour (see next talks)
Conclusions

- RNNs are a promising tool for flavor tagging
 - Use relatively low-level variables
 - Can augment vertex-based approaches
- We’ve successfully integrated an RNN-based tagger into the ATLAS reconstruction framework
- Many interesting questions:
 - What other low-level variables could we include?
 - How do we mitigate modeling issues?
 - Can we “understand” (visualize) what we’ve learned?
 - How does this complement a high-level tagger (e.g. MV2, DeepFlavour)?
- Thanks for listening, ideas are welcome!
BACKUP
Thanks

- Michela Paganini and Jonathan Shlomi for the graphics
- Zihao Jiang, Michael Kagan, Michela, and the rest of the RNN team for training lots of networks
- The ATLAS flavor tagging group for a good problem
- ATLAS for all the simulation
IP3D Categories

<table>
<thead>
<tr>
<th>#</th>
<th>Category</th>
<th>Fractional contribution [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>b-jets</td>
</tr>
<tr>
<td>0</td>
<td>No hits in first two layers; expected hit in IBL and b-layer</td>
<td>1.9</td>
</tr>
<tr>
<td>1</td>
<td>No hits in first two layers; expected hit in IBL and no expected hit in b-layer</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>No hits in first two layers; no expected hit in IBL and expected hit in b-layer</td>
<td>0.04</td>
</tr>
<tr>
<td>3</td>
<td>No hits in first two layers; no expected hit in IBL and b-layer</td>
<td>0.03</td>
</tr>
<tr>
<td>4</td>
<td>No hit in IBL; expected hit in IBL</td>
<td>2.4</td>
</tr>
<tr>
<td>5</td>
<td>No hit in IBL; no expected hit in IBL</td>
<td>1.0</td>
</tr>
<tr>
<td>6</td>
<td>No hit in b-layer; expected hit in b-layer</td>
<td>0.5</td>
</tr>
<tr>
<td>7</td>
<td>No hit in b-layer; no expected hit in b-layer</td>
<td>2.4</td>
</tr>
<tr>
<td>8</td>
<td>Shared hit in both IBL and b-layer</td>
<td>0.01</td>
</tr>
<tr>
<td>9</td>
<td>At least one shared pixel hits</td>
<td>2.0</td>
</tr>
<tr>
<td>10</td>
<td>Two or more shared SCT hits</td>
<td>3.2</td>
</tr>
<tr>
<td>11</td>
<td>Split hits in both IBL and b-layer</td>
<td>1.0</td>
</tr>
<tr>
<td>12</td>
<td>Split pixel hit</td>
<td>1.8</td>
</tr>
<tr>
<td>13</td>
<td>Good</td>
<td>83.6</td>
</tr>
</tbody>
</table>

- Fractions are based on simulated $t\bar{t}$
Track Selection

- Jet Algorithm: Anti-k_t, $R = 0.4$
- Track $p_T > 1$ GeV
- $|d_0| < 1$ mm, $|z_0 \sin \theta| < 1.5$ mm
- $n_{\text{Si hits}} \geq 7$, $n_{\text{Si holes}} \leq 2$, $n_{\text{pixel holes}} \leq 1$