Exploring neural networks to improve b-jet tagging with the ALICE detector

Rüdiger Haake (CERN) for the ALICE collaboration

(21.03.2017)
1st IML Machine Learning Workshop, CERN
Talk outline

- Motivation: b-jets and their identification
- Model design
- Input features & data
- Results
- Summary & outlook
b-jets with the ALICE detector

• Conceptually, a jet is the final state of collimated hadrons that fragmented from a high-energy parton

• Jets can be used to shed light on the very early stage of a hadron collision

• The reconstructed jet observable is defined by the jet finding algorithm used to clusterize tracks into jets
 → “Charged jets”, charged part of a jet

• b-jets: jets arising from beauty quarks
Main interest of heavy-ion physics: **Quark-Gluon Plasma (QGP)**

- Hot and dense medium, strongly interacting with high-energy partons
- Modification of b-jets different to udsg-jets
 - Larger energy loss for gluons than quarks (color charge)
 - “Dead cone effect”: For massive quarks, gluon bremsstrahlung suppressed at smaller angles w.r.t. parton direction

→ **b-jets interesting probe for the QGP**

Goal: Understand better the influence of the medium on parton energy loss

- Here: Measurement in p-Pb collisions as first step towards Pb-Pb collisions
 - Useful to study cold nuclear matter effects
 - Reference measurement for Pb-Pb collisions
b-jet identification

- B-hadrons decay in the (sub-)millimeter range \((c\tau \sim 500 \mu m)\), → displaced from primary vertex

- Common discriminators:
 - Reconstructed secondary vertices
 - Track impact parameters

- Secondary vertex reconstruction:
 - Here: All three-track combinations considered (3-prong vertices)
 - Dispersion as vertex quality measure

"Conventional" approach:
Application of rectangular cuts on properties of most displaced vertices

[Diagram of b-jet tagging in ALICE]
b-jet identification

- In addition: fragmentation pattern should be different for b-jets
 - Jet shapes as discriminators?
 - Constituents as discriminators in deep learning?

Qualitative representation of the constituent distribution around the jet axis:

- u-quark jets
- b-quark jets

PYTHIA6, 7 TeV, particle level jets, \(p_T = 30-40 \text{ GeV}/c \)
For illustration purposes

Not yet directly exploited in the conventional method in ALICE
Model design I

- Binary classification problem: b-jet tagging
- General design: Multibranched, multilayered neural network
 - Multiple subnetworks on several features
 - Output is merged and fed to multilayered fully-connected network
- Training done for whole network
- Keras\(^1\) has been used for model creation & training
- Several different networks on different features has been tested:
 - LSTMs, 2D convolutional networks on jet images ...

\(^1\)F. Chollet et al., https://github.com/fchollet/keras
Model design II

- Promising designs have been further refined with a parameter grid search
- Note: Due to limited time and computing performance, only a small fraction of all possible configurations has been tested
- A parameter correlation analysis has been done to check the relevance of potential input features
Model design

Convolutional networks on fixed-length sequences of low-level parameters

b-jet tagging in ALICE

Rüdiger Haake
Model design

Fully-connected network on high-level jet shapes
Model design

Secondary vertices
- \((v_x, v_y, v_z), \sigma_{v_x}, \chi^2, L, L_{xy}, \sigma_{xy}\)
 - Convolution 1D
 - Dropout per layer: 0.1
 - 64
 - Max pooling
 - 128
 - Conv. kernel: 4
 - 256
 - Conv. kernel: 2

Jet constituents
- \(\eta, \varphi, r\)
 - Impact param., \(j_t\)
 - Convolution 1D
 - Dropout per layer: 0.1
 - Conv. kernel: 4
 - 128
 - Max pooling
 - 64
 - Conv. kernel: 2
 - 64
 - Conv. kernel: 2
 - Max pooling
 - Pool length: 2

High-level properties
- Jet shapes, jet \(p_T, N_{\text{const}}\)
 - Fully-connected
 - Dropout per layer: 0.1
 - 128
 - 128
 - 128
 - 128

Dropout: 0.1 for all layers & branches

Fully-connected
- Dropout per layer: 0.25
 - 128
 - 128
 - 128
 - 128

Sigmoid neuron for binary classification
Model design

Secondary vertices
$(v_z, v_y, v_x, \sigma_{vz}, \sigma_{vy}, \chi^2, L, L_{xy}, \sigma_{xy})$

- Convolution 1D
 - Dropout per layer: 0.1
 - 64
 - Max pooling
 - 128
 - Conv. kernel: 4
 - 256
 - Conv. kernel: 2

Jet constituents
- η, φ, r
- Impact param., j_r

- Convolution 1D
 - Dropout per layer: 0.1
 - 128
 - Conv. kernel: 4
 - Max pooling
 - 128
 - Pool length: 2
 - 64
 - Conv. kernel: 2
 - 64
 - Conv. kernel: 2
 - Max pooling
 - Pool length: 2

High-level properties
- Jet shapes, jet p_t, N_{const}

- Fully-connected
 - Dropout per layer: 0.1
 - 128
 - 128
 - 128
 - 128

- Fully-connected
 - Dropout per layer: 0.25
 - 128
 - 128
 - 128
 - 128

Merge (concatenation)

Sigmoid neuron
for binary classification

FC-network on top
Higher dropout here: 0.25
Model design

Secondary vertices

Jet constituents

High-level properties

Other model properties
- ADAM optimizer
- Loss: binary crossentropy
- Activation function: ReLU

Last neuron is sigmoid-activated
Input features

Basis
- FastJet anti-k_T jets, resolution parameter $R = 0.4$, tracks only
- Underlying event corrected
- Jets fully contained within detector acceptance

Features
- High level parameters: Jet mass, radial moment, momentum dispersion, LeSub, track count, jet p_T (see backup for definitions)
- Array of constituents: η, φ, r (relative to jet axis), impact parameter j_T
- Array of secondary vertices (3-prong, dispersion < 0.05)
 Each vertex:
 - (x, y, z) rel. to primary vertex
 - Transverse plane distance & uncertainty: L_{xy}, σ_{xy}
 - Vertex track dispersion σ_{vtx}, fit quality χ^2
 - In addition: L_{xy} / σ_{xy}, total decay length $L \to$ information is in there, but it makes it easier for the network to learn
Simulation dataset I

- p-Pb dataset PYTHIA6 Perugia 2011 + HIJING
- Enhanced b-/c-quark production, $\sqrt{s_{NN}} = 5.02$ TeV
- Sample truth (i.e. jet type) is set with geometrical matching and particle level information:
 - If a B-hadron is found within $R = 0.7$ of the jet, it is considered a b-jet.
 - If instead of a B-hadron, a C-hadron is found, the jet is considered a c-jet.
 - All other jets are tagged as light-flavor jets.
Simulation dataset II

- Strictly separated samples for training, validation, and testing
- 200’000 (training), 40’000 (validation) for each class
 - Signal class: 100% b-jets
 - Background class: 20% c-jets & 80% udsg-jets

 Note: This is for the network to adjust better to udsg-jets
 The impact of using different percentages is small

- Testing statistics is higher:
 ~1.2M udsg-jets, ~150k c-jets
Results
Observables

• Goal at this stage: **Performance evaluation & comparison to conventional, cut-based method**

• Indicator: b-jet tagging & c-/udsg-mistagging efficiencies
• The higher the b-jet efficiency, the higher the mistagging efficiencies
 → Need to find optimum working point

• Here: b-jet tagging efficiency directly set by cutting on score
 score/efficiency relation known in MC simulations
• In the following, the mistagging efficiencies will be shown for several working points

• Note: jet p_T from geometrical matching with particle-level jets
The present ML-assisted tagging method is very promising, compared to conventional method
– mistagging efficiency lower for c- and udsg-jets
– mistagging efficiencies rise less steep when considering higher b-jet tagging efficiency
Mistagging efficiencies vs. jet p_T

- Mistagging efficiency vs. jet p_T
- Solid symbols represent efficiencies with present ML-based method
- Open symbols show conventional, cut-based performance
- For the sake of comparison: Between 20-50 GeV/c b-jet efficiency set to values used in cut-based method

The present ML-assisted tagging method is very promising, performance better over whole jet p_T-range
Mistagging efficiencies vs. jet p_T

- Mistagging efficiency vs. jet p_T for higher b-jet efficiencies (ML-based method only)
- Solid symbols: c-efficiency
- Open symbols: udsg-efficiency

- As expected, higher b-jet efficiencies lead to much higher mistagging rates
- ML-based method expected to allow higher b-jet efficiencies than cut-based methods while showing same mistagging efficiencies
- A future analysis could compare several working points
Model shows slow learning up to roughly 250 epochs.
After 250 epochs, model remains stable.
Learning rate successively lowered: [0.001, 0.0005, 0.0002, 0.0001]
Strong loss differences due to regularization.
Accuracy shows slight overfitting, but AUC (see next slide) and loss still fine.
Training control plots

- **AUC = Area Under ROC Curve**
- AUC reveals slow, but constant learning up to 250 epochs
- Tests show that the performance cannot be improved by just learning more epochs
- Interesting: Learning onset between epochs 60-80

![Graph showing ROC curve and AUC](image)

ALICE Simulation
- PYTHIA + HIJING, p-Pb \(\sqrt{s_{NN}} = 5.02 \text{ TeV} \)
- FastJet, anti-\(k_T \), \(R = 0.4 \), \(|\eta_{\text{jet}}| < 0.5 \)
- \(15 \leq p_{T,\text{jet}}^{\text{gen}} \leq 120 \text{ GeV/c} \)
Summary

- ML-assisted tagging method has been developed
- Mixture of deep/shallow learning
 - Conventional FC networks on high-level parameters
 - Deep convolutional networks on low-level parameters
- Performance evaluated in p-Pb MC simulations and compared to cut-based method

Results are very promising
- Tagging method might allow higher b-jet efficiencies
- Lower mistagging rates
- Systematic uncertainties still to be assessed
- Data applicability to be checked → Better generalization with data from different generator/decayer?
Outlook

- Next step: Apply tagging method in p-Pb collisions and test performance on data
- Idea: Use both conventional and ML-assisted method and compare performance in a paper
 Strength of ALICE: reach down to low p_T

- On agenda: Train model with higher statistics at high p_T

- Tagging bias: All tagging methods (ML or cut-based) potentially bias the sample in an unwanted way
 → Careful examination of tagged sample

Thank you for your attention!
Backup
Jet shape definitions

Radial moment
“p_T-weighted width of jet”

$$g = \sum \frac{p_{T,\text{const}}}{p_{T,\text{jet}}} |\Delta R_{\text{const}}|$$

Momentum dispersion
Contains direct information about jet fragmentation

$$p_T D = \sqrt{\sum p_{T,\text{const}}^2 / \sum p_{T,\text{const}}}$$

LeSub
Difference between leading and subleading constituent

$$\text{LeSub} = p_{T,\text{lead.}} - p_{T,\text{sub.}}$$

Jet mass
Connected to virtually of initial parton that showered into jet

$$M = \sqrt{E^2 - p_T^2 - p_Z^2}$$