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Heavy Flavour Tagging Features

wikipedia

Key features:
• Displaced tracks from longer 

lifetimes of heavy flavour jets
• Secondary verticies
• Eventually leptons in jets from 

W* in b → W*c or c → W*s
• Slightly wider jets
• …

Several complementary taggers in CMS using the above 
features  
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Jet-Flavour Taggers at CMS
Jet probability (btag):
• Likelihoods of tracks to be from PV
Soft lepton tagger (electron&muon) (btag):
• Muon and electron information
• NN 
CSVv2 (btag):
• Combines information from secondary vertex and track information
• Combination of higher level features like masses of vertices and 

relatively raw information like significance of impact parameter per track.
• Shallow NNs + “likelihood method”
c-tagger:
• Uses CSV like variables and lepton information
• BDT
cMVAv2:
• BDT combines above b-taggers

PAS BTV-15-001 and BTV-15-002 
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New taggers “DeepFlavour”
DeepCSV: 
• Multiclassification
• Include all CSVv2 features
• Additionally to CVSv2 few more “relatively raw” information, e.g. not only 

2D impact parameter significance, but also it’s value, …
• More tracks than in CVSv2 used (up to 6).
• Deep Neural Network
• Lepton ID information not used to allow using them for validation in real 

data (thus DeepCSV)

DeepcMVA: 
• I.e. soft lepton and JP taggers added to DeepCSV input
• Trained, but not yet validated in data

New CMS DP-2017/005
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DeepCSV input features

['jet_pt', 'jet_eta','jetNSecondaryVertices', 'trackSumJetEtRatio', 
'trackSumJetDeltaR','vertexCategory', 
'trackSip2dValAboveCharm’,'trackSip2dSigAboveCharm', 
'trackSip3dValAboveCharm', 'trackSip3dSigAboveCharm', 
'jetNSelectedTracks','jetNTracksEtaRel']

Per jet (sample):

Per 1st 6 tracks (impact parameter sorted, pre-selected):
['trackJetDistVal','trackPtRel','trackDeltaR’,'trackPtRatio','track
Sip3dSig','trackSip2dSig','trackDecayLenVal’,'TagVarCSV_trackEtaRel
']

From 1st secondary vertex:
['vertexMass','vertexNTracks','vertexEnergyRatio','vertexJetDeltaR','fligh
tDistance2dVal','flightDistance2dSig','flightDistance3dVal','flightDistanc
e3dSig'],

• Red are on top of CSVv2
• All variables were set of b-tag commission before DeepCSV, 

i.e. tested/established features

(for detailed list of acronyms: BTV 15-001) 



Inspired by this we defined 5 exclusive categories:
• Exactly one b hadron in jet
• Exactly one c hadron, but no b-hadron in jet
• Two or more b hadrons in jet
• Two or more c hadrons, but no b-hadron in jet
• Light jets (udsg)
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Multiclassification
q = c or b
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Fig. 1. (Left) Fraction of b jets produced through di↵erent channels, and (middle) sub-division
of gluon splitting production fraction by number of b hadrons in a jet. (Right) Predicted fraction
of jet flavor pairs in dijet events as a function of leading jet pT .3

the production of heavy quarks in pQCD. The b quarks are included in proton
parton distribution functions (PDFs) only in the five-flavor number scheme (5FNS)
so W+b and Z+b provide a way to compare 5FNS to the four-flavor number scheme
(4FNS), in which b jets are primarily produced in pairs through gluon splitting.

The leading NLO pQCD predictions on the market are MCFM14 and
aMC@NLO,15 which implements both 4FNS and 5FNS, and leading multileg
leading-order (LO) Monte Carlo (MC) generators are MadGraph,16 Sherpa17 and
AlpGen,18 each interfaced with Pythia19 or Herwig.20 The various theoretical ap-
proaches and their benefits and drawbacks are reviewed e.g. by Maltoni et al.21

The b jets, and to a lesser extent c jets, are an important signature of decays of
massive particles such as t!Wb, H!bb̄, Z!bb̄ and W!cs̄. Of particular impor-
tance to the ongoing LHC physics program is the identification of a Higgs boson
decaying to two b jets. Because of the large strong interaction background of heavy
flavor jets, this is best achieved by looking at the associated production of a Higgs
boson with a vector boson (W, Z), or by tagging a highly boosted Higgs boson pro-
duced in association with two forward quark jets in the vector boson fusion (VBF)
channel. Important benchmarks for these channels are multiple b jets produced in
association with W7,8 and Z bosons,9–13 and b jets produced from boosted Z!bb̄
decays.22

The b jets produced in cascade decays of e.g. supersymmetric particles are an
important indicator of the presence of heavy particles with suitable properties, and
for this reason b tagging is often used to enhance new physics searches.

From an analysis perspective, the heavy flavor (b, c) jets are unique among jet
flavors in that they are experimentally identifiable with high e�ciency and purity.
The b jets in particular can be tagged with e�ciencies higher than 70% and with
light flavor mistag rates of the order of one percent.23–31 Typical heavy flavor tagging
methods rely on the identification of secondary vertices, track impact parameters
and soft leptons, or combinations thereof.

The fragmentation properties of b and c jets are in between those of light quarks
and gluons, owing to the high mass of the b and c hadrons. The neutrinos produced

QCD:

SUSY:
4 rather 
isotropic 
single bs

Often two b-hadron in a single 
AK4 jet for gluon splitting

Very boosted H 
or Z: Boson

b

b



QCD:
• very clean, e.g. no accidental overlap of lepton from and jet
• Good source of gluon splitting sample, flavour excitation, 

flavour creation
ttbar:
• Less  clean, i.e. includes accidental overlap of leptons
• bs from top decay and cs from W.

6

Training physics-process selection
Two aims:
• A generic tagger, use admixture of different processes that 

produce heavy flavour
• Robust tagger: train including realistic special cases, e.g. we do 

keep jets with accidental lepton overlap or alike

Use QCD and ttbar for training
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Training sample size 
Of course “more data” not always helps, 
but sometimes it can.
• CMS has >10 billion jets simulated for 2016 

conditions
• This is a massive number, i.e. in HEP we 

stand out by having relatively “cheap” data. 
• In DeepCSV we use about 50M jets, which 

is 25 x more sample/feature than e.g. 
arxiv:1607.08633

• Producing e.g. well 250M well labeled jets 
(e.g. 50M ttbar events) not a big deal!

• Used 0.5:1:2 ratio for c:b:udsg to have 
good statistics in each class

• Flattened PT/eta shape up to GeV and 
than used PT/eta shape of bs

1997), decision lists (Yarowsky, 1994), and a 
variety of Bayesian classifiers (Gale et al., 1993, 
Golding, 1995, Golding and Schabes, 1996).  In 
all of these approaches, the problem is 
formulated as follows:  Given a specific 
confusion set (e.g. {to,two,too}), all occurrences 
of confusion set members in the test set are 
replaced by a marker;  everywhere the system 
sees this marker, it must decide which member 
of the confusion set to choose.   
 Confusion set disambiguation is one of a 
class of natural language problems involving 
disambiguation from a relatively small set of 
alternatives based upon the string context in 
which the ambiguity site appears.  Other such 
problems include word sense disambiguation, 
part of speech tagging and some formulations of 
phrasal chunking.  One advantageous aspect of 
confusion set disambiguation, which allows us 
to study the effects of large data sets on 
performance, is that labeled training data is 
essentially free, since the correct answer is 
surface apparent in any collection of reasonably 
well-edited text.  
 

3 Learning Curve Expe riments 

This work was partially motivated by the desire 
to develop an improved grammar checker.  
Given a fixed amount of time, we considered 
what would be the most effective way to focus 
our efforts in order to attain the greatest 
performance improvement.  Some possibilities 
included modifying standard learning 
algorithms, exploring new learning techniques, 
and using more sophisticated features.  Before 
exploring these somewhat expensive paths, we 
decided to first see what happened if we simply 
trained an existing method with much more 
data.  This led to the exploration of learning 
curves for various machine learning algorithms : 
winnow1, perceptron, naïve Bayes, and a very 
simple memory-based learner.  For the first 
three learners, we used the standard collection of 
features employed for this problem: the set of 
words within a window of the target word, and 
collocations containing words and/or parts of 

                                                                 
1 Thanks to Dan Roth for making both Winnow and 
Perceptron available. 

speech.  The memory-based learner used only 
the word before and word after as features. 
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Figure 1. Learning Curves for Confusion Set 

Disambiguation 
 
 We collected a 1-billion-word training 
corpus from a variety of English texts, including 
news articles, scientific abstracts, government 
transcripts, literature and other varied forms of 
prose.  This training corpus is three orders of 
magnitude greater than the largest training 
corpus previously used for this problem.  We 
used 1 million words of Wall Street Journal text 
as our test set, and no data from the Wall Street 
Journal was used when constructing the training 
corpus. Each learner was trained at several 
cutoff points in the training corpus, i.e. the first 
one million words, the first five million words, 
and so on, until all one billion words were used 
for training. In order to avoid training biases that 
may result from merely concatenating the 
different data sources to form a larger training 
corpus, we constructed each consecutive 
training corpus by probabilistically sampling 
sentences from the different sources weighted 
by the size of each source. 
 In Figure 1, we show learning curves for 
each learner, up to one billion words of training 
data.  Each point in the graph is the average 
performance over ten confusion sets for that size 
training corpus.  Note that the curves appear to 
be log-linear even out to one billion words. 
 Of course for many problems, additional 
training data has a non-zero cost.  However, 

Banko and Brill [2001]  

Ø We are generally able to use huge sample training datasets
Ø For DeepCSV 50M were used
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DeepCVS Deep Neural Network

DNN details:
• 66 input features
• 4 hidden layers with 100 nodes each
• Relu activation
• Softmax activation for last layer
• Loss: x-entropy
• Learning rate 0.0003
• Adam optimizer
• 500 epochs
• dropout

Relatively simple DNN structure lead to good results

Arguments for DNN:
• Good classification performance
• Application speed (will be applied billions of times)
• Scalability for future studies
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ML tools used
• Compressed data-format “miniAOD” of CMS used
• Bare root-tupels from CMSSW converted to python 

(root_numpy)
• Preprocessing (zero-padding, mean subtraction, PT/eta 

flattening of classes, …) mostly python 
• Pure Tensorflow and Keras with Tensorflow as backend 

was used for training studies
• LWTNN (pure C++) used to implement DNN in CMSSW

ØSeparated training an application tools
Ø LWTNN presented at IML (from UCI).
ØUsed tools widely spread outside HEP
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Discriminators p(b)+p(bb)
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• We use the probability to have at least one b-hadron in the jet 
as discriminator for default b-tagging, i.e. p(b)+p(bb).

• Events without any pre-selected track are put first bin 
(underflow) for DeepCSV

• DeepCSV has a very smooth distribution
• CVSv2 and DeepCSV similar trends
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• DeepCSV 40% smaller fake (0.6%) rate at same b 
efficiency as medium WP CSVv2

• 20% relative (10% absolute) better efficiency for 
0.1% misid. probability.
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• Better performance than c-tagger
• Note, the c-tagger uses some lepton information
• DeepCSV more stringent in not accepting jets, 

thus less close to 1 (no track events).
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ROC c vs. light
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Slight improvement w.r.t. c-tagger



Performance in real data
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• Data/simulation 
agreement same 
within uncertainties

• Central values slightly 
better data/MC 
agreement for 
DeepCSV

Improvement by 
revisited ML strategy 
confirmed in real data 



Efficiency as function of PT
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• ttbar sample used for evaluation
• DeepCSV same trends as CSVv2
• Easiest region for tagging between 50-200 GeV
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• Note, Working points defined (e.g. 1% mistag
rate) in QCD sample with P 80-120, and not 
ttbar as shown

• DeepCSV same trends as CSVv2
• Increasing mistag rate at high PT
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Light-jet misid prob. as a function of pT
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• Slightly stronger trend of c-jet rejection degrading with 
PT

• For medium WP good c-jet rejection for DeepCSV



Application in physics analysis
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Comparison of the total background and signal yields in simulation for selections based on CSVv2 (left) and DeepCSV (right) in the context 
of the SUS-16-044 analysis. Two benchmark TChiHH points with Higgsino masses of 225 GeV and 700 GeV, and Goldstino mass of 1 GeV 
are shown. The yields for the three b-tag categories are shown for three cases: prior to any selection, after the baseline, and in the high-
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miss region where the sensitivity to high mass Higgsinos is enhanced. The background is dominated by events with 2 true b quarks, while 
the signal has 4 b quarks. Compared to CSVv2, the high b-tagging efficiency of the DeepCSV algorithm extends the expected exclusion 
limit by approximately 150 GeV in the Higgsino mass, corresponding to a cross-section that is 3 times smaller. This gain in mass reach is 
aided by the increasingly more favorable kinematics of the signal at higher Higgsino masses.
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1. Use the 4 jets with highest b-tag discriminant to construct 3 
possible H1H2 pairings

2. Select H1H2 pair minimizing mass difference:
3. Define ∆Rmax as the larger of the opening angle between the two 

b-quarks for H1 and H2

SUS-16-044: Analysis definitions

�m = |mH1 �mH2 |

Higgs reconstruction

Objects

2b ≡ Nb,T = 2, Nb,M = 2

3b ≡ Nb,T ≥ 2, Nb,M = 3, Nb,L = 3

4b ≡ Nb,T ≥ 2, Nb,M ≥ 3, Nb,L ≥ 4

b-tag categories

Search for Higgsinos in the context of GMSB in 
the HH+MET final state, where the Higgs bosons  
are reconstructed in their h→ bb decay.

Overview

• No veto leptons or tracks
• 4 or 5 jets, at least 2 tight b-tags
• pTmiss > 150 GeV
• ∆!1,2 > 0.5, ∆!3,4 > 0.3, where ∆!i ≡ ∆R(pTmiss, ith jet)
• ∆m < 40 GeV, ∆Rmax < 2.2 

Baseline event selection

P1

P2

χ̃0
1

χ̃0
1

h

G̃

G̃

h

Nominal search performed in 
Higgs boson mass window in 

the 3b and 4b categories 
defined based on DeepCSV

6 3 Object and variable definitions

to have pT > 10 GeV (pT > 20 GeV) and |h| < 2.5, and to satisfy identification criteria—98

corresponding the veto (medium) working point as defined by the EGAMMA POG—designed99

to minimize any misidentification of light-parton jets, photon conversions, and electrons from100

heavy flavor hadron decays as prompt electrons. Muons are reconstructed by associating tracks101

in the muon system with those found in the silicon tracker [13]. Veto (signal) muon candidates102

are required to satisfy pT > 10 GeV (pT > 20 GeV) and |h| < 2.4 and the medium working point103

as defined by the MUON POG.104

To preferentially select leptons that originate in the decay of W and Z bosons, leptons are re-105

quired to be isolated from other PF candidates. Isolation is quantified using an optimized ver-106

sion of the “mini-isolation” variable originally suggested in Ref. [14], in which the transverse107

energy of the particles within a cone in h-f space surrounding the lepton momentum vector108

is computed using a cone size that scales as 1/p`
T, where p`

T is the transverse momentum of109

the lepton. In this analysis, mini-isolation, Irel
mini = Imini/p`

T, is defined as the transverse energy110

Imini of particles in a cone of radius Rmini-iso around the lepton, divided by p`
T. The transverse111

energy Imini is computed as the scalar sum of the pT values of the charged hadrons from the PV,112

neutral hadrons, and photons. The last term is a correction that estimates the average amount113

of pileup energy near the leptons by taking the contribution from charged candidates not orig-114

inating from the primary vertex and multiplying by 1
2 to account for the average difference in115

neutral and charged contributions from pileup.116

The cone radius Rmini-iso varies with the p`
T according to

Rmini-iso =

8
>><

>>:

0.2, p`
T  50 GeV

10 GeV
p`

T
, p`

T 2 (50 GeV, 200 GeV)

0.05, p`
T � 200 GeV.

(1)

The 1/p`
T dependence is motivated by considering a two-body decay of a massive parent par-117

ticle with mass M and large pT, for which the angular separation of the daughter particles118

is roughly DRdaughters ⇡ 2M/pT. The pT-dependent cone size reduces the rate of accidental119

overlaps between the lepton and jets in high-multiplicity or highly Lorentz-boosted events,120

particularly overlaps between b jets and leptons originating from a boosted top quark. The121

cone remains large enough to contain b-hadron decay products for non-prompt leptons across122

a range of p`
T values. Muons (electrons) must satisfy Irel

mini < 0.2 (0.1). The combined efficiency123

for the signal electron reconstruction and isolation requirements is about 50% at a p`
T of 20 GeV,124

increasing to 65% at 50 GeV and reaching a plateau of 80% above 200 GeV. The combined recon-125

struction and isolation efficiencies for signal muons are about 70% at a p`
T of 20 GeV, increasing126

to 80% at 50 GeV and reaching a plateau of 95% at 200 GeV.127

As already noted in Section 1, the dominant background in the analysis arises from tt single-128

lepton events in which the lepton is a t decaying hadronically or is a light lepton that is not129

Table 2: Summary of object selection requirements.

Object pT [GeV] |h| Other
Jets 30 2.4 Anti-kt R=0.4, cleaned from leptons
Veto electrons 10 2.5 Cut-based Veto ID, Imini < 0.1
Veto muons 10 2.4 Medium ID, Imini < 0.2
Lepton tracks 5 2.4 Itk < 0.2, mT(tk, pmiss

T ) < 100 GeV
Hadronic tracks 10 2.4 Itk < 0.1, mT(tk, pmiss

T ) < 100 GeV

SUS-16-044:
Search for events with two h->bb and MET

1. Use the 4 jets with highest b-tag discriminant to construct 3 
possible H1H2 pairings

2. Select H1H2 pair minimizing mass difference:
3. Define ∆Rmax as the larger of the opening angle between the two 

b-quarks for H1 and H2

SUS-16-044: Analysis definitions

�m = |mH1 �mH2 |

Higgs reconstruction

Objects

2b ≡ Nb,T = 2, Nb,M = 2

3b ≡ Nb,T ≥ 2, Nb,M = 3, Nb,L = 3

4b ≡ Nb,T ≥ 2, Nb,M ≥ 3, Nb,L ≥ 4

b-tag categories

Search for Higgsinos in the context of GMSB in 
the HH+MET final state, where the Higgs bosons  
are reconstructed in their h→ bb decay.

Overview

• No veto leptons or tracks
• 4 or 5 jets, at least 2 tight b-tags
• pTmiss > 150 GeV
• ∆!1,2 > 0.5, ∆!3,4 > 0.3, where ∆!i ≡ ∆R(pTmiss, ith jet)
• ∆m < 40 GeV, ∆Rmax < 2.2 

Baseline event selection

P1

P2

χ̃0
1

χ̃0
1

h

G̃

G̃

h

Nominal search performed in 
Higgs boson mass window in 

the 3b and 4b categories 
defined based on DeepCSV

6 3 Object and variable definitions

to have pT > 10 GeV (pT > 20 GeV) and |h| < 2.5, and to satisfy identification criteria—98

corresponding the veto (medium) working point as defined by the EGAMMA POG—designed99

to minimize any misidentification of light-parton jets, photon conversions, and electrons from100

heavy flavor hadron decays as prompt electrons. Muons are reconstructed by associating tracks101

in the muon system with those found in the silicon tracker [13]. Veto (signal) muon candidates102

are required to satisfy pT > 10 GeV (pT > 20 GeV) and |h| < 2.4 and the medium working point103

as defined by the MUON POG.104

To preferentially select leptons that originate in the decay of W and Z bosons, leptons are re-105

quired to be isolated from other PF candidates. Isolation is quantified using an optimized ver-106

sion of the “mini-isolation” variable originally suggested in Ref. [14], in which the transverse107

energy of the particles within a cone in h-f space surrounding the lepton momentum vector108

is computed using a cone size that scales as 1/p`
T, where p`

T is the transverse momentum of109

the lepton. In this analysis, mini-isolation, Irel
mini = Imini/p`

T, is defined as the transverse energy110

Imini of particles in a cone of radius Rmini-iso around the lepton, divided by p`
T. The transverse111

energy Imini is computed as the scalar sum of the pT values of the charged hadrons from the PV,112

neutral hadrons, and photons. The last term is a correction that estimates the average amount113

of pileup energy near the leptons by taking the contribution from charged candidates not orig-114

inating from the primary vertex and multiplying by 1
2 to account for the average difference in115

neutral and charged contributions from pileup.116

The cone radius Rmini-iso varies with the p`
T according to

Rmini-iso =

8
>><

>>:
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10 GeV
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T
, p`

T 2 (50 GeV, 200 GeV)

0.05, p`
T � 200 GeV.

(1)

The 1/p`
T dependence is motivated by considering a two-body decay of a massive parent par-117

ticle with mass M and large pT, for which the angular separation of the daughter particles118

is roughly DRdaughters ⇡ 2M/pT. The pT-dependent cone size reduces the rate of accidental119

overlaps between the lepton and jets in high-multiplicity or highly Lorentz-boosted events,120

particularly overlaps between b jets and leptons originating from a boosted top quark. The121

cone remains large enough to contain b-hadron decay products for non-prompt leptons across122

a range of p`
T values. Muons (electrons) must satisfy Irel

mini < 0.2 (0.1). The combined efficiency123

for the signal electron reconstruction and isolation requirements is about 50% at a p`
T of 20 GeV,124

increasing to 65% at 50 GeV and reaching a plateau of 80% above 200 GeV. The combined recon-125

struction and isolation efficiencies for signal muons are about 70% at a p`
T of 20 GeV, increasing126

to 80% at 50 GeV and reaching a plateau of 95% at 200 GeV.127

As already noted in Section 1, the dominant background in the analysis arises from tt single-128

lepton events in which the lepton is a t decaying hadronically or is a light lepton that is not129

Table 2: Summary of object selection requirements.

Object pT [GeV] |h| Other
Jets 30 2.4 Anti-kt R=0.4, cleaned from leptons
Veto electrons 10 2.5 Cut-based Veto ID, Imini < 0.1
Veto muons 10 2.4 Medium ID, Imini < 0.2
Lepton tracks 5 2.4 Itk < 0.2, mT(tk, pmiss

T ) < 100 GeV
Hadronic tracks 10 2.4 Itk < 0.1, mT(tk, pmiss

T ) < 100 GeV

• E.g. last row, 15% more background and up to ~ 50% more signal
• Significantly improved limit (150 GeV in Higgsino mass)
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Conclusions
New tagger DeepCSV in CMS:

• More “relatively raw” input features used than before
• Adapted training strategy that includes large training 

dataset and two processes, ttbar and QCD
• Use Deep Neural Network for training.
• New tagger outperformed existing b and c-taggers
• Improvements confirmed in data
• First analysis used this tagger (more in the pipeline)
• Multiclassification (b,bb,c,cc,udsg) is lean to maintain 

and allows in future usage e.g. gluon->bb splitting 
tagging or similar applications

• Step towards exploring more deep-learning in CMS


