DeepFlavour in CMS

Markus Stoye12 for the CMS collaboration

CERN1, ITN aMVA4newphysics2
Heavy Flavour Tagging Features

Key features:
• Displaced tracks from longer lifetimes of heavy flavour jets
• Secondary vertices
• Eventually leptons in jets from W^* in $b \to W^*c$ or $c \to W^*s$
• Slightly wider jets
• …

Several complementary taggers in CMS using the above features
Jet-Flavour Taggers at CMS

Jet probability (btag):
• Likelihoods of tracks to be from PV

Soft lepton tagger (electron&muon) (btag):
• Muon and electron information
• NN

CSVv2 (btag):
• Combines information from secondary vertex and track information
• Combination of higher level features like masses of vertices and relatively raw information like significance of impact parameter per track.
• Shallow NNs + “likelihood method”

c-tagger:
• Uses CSV like variables and lepton information
• BDT

cMVAv2:
• BDT combines above b-taggers

PAS BTV-15-001 and BTV-15-002
New taggers “DeepFlavour”

DeepCSV:
• Multiclassification
• Include all CSVv2 features
• Additionally to CVSv2 few more “relatively raw” information, e.g. not only 2D impact parameter significance, but also it’s value, …
• More tracks than in CVSv2 used (up to 6).
• Deep Neural Network
• Lepton ID information not used to allow using them for validation in real data (thus DeepCSV)

DeepcMVA:
• I.e. soft lepton and JP taggers added to DeepCSV input
• Trained, but not yet validated in data

New CMS DP-2017/005
DeepCSV input features
(for detailed list of acronyms: BTV 15-001)

Per jet (sample):
['jet_pt', 'jet_eta', 'jetNSecondaryVertices', 'trackSumJetEtRatio', 'trackSumJetDeltaR', 'vertexCategory', 'trackSip2dValAboveCharm', 'trackSip2dSigAboveCharm', 'trackSip3dValAboveCharm', 'trackSip3dSigAboveCharm', 'jetNSelectedTracks', 'jetNTracksEtaRel']

Per 1st 6 tracks (impact parameter sorted, pre-selected):
['trackJetDistVal', 'trackPtRel', 'trackDeltaR', 'trackPtRatio', 'trackSip3dSig', 'trackSip2dSig', 'trackDecayLenVal', 'TagVarCSV_trackEtaRel']

From 1st secondary vertex:
['vertexMass', 'vertexNTracks', 'vertexEnergyRatio', 'vertexJetDeltaR', 'flightDistance2dVal', 'flightDistance2dSig', 'flightDistance3dVal', 'flightDistance3dSig']

- Red are on top of CSVv2
- All variables were set of b-tag commission \textbf{before} DeepCSV, i.e. tested/established features
Inspired by this we defined 5 exclusive categories:

- Exactly one b hadron in jet
- Exactly one c hadron, but no b-hadron in jet
- Two or more b hadrons in jet
- Two or more c hadrons, but no b-hadron in jet
- Light jets (udsg)
Training physics-process selection

Two aims:
• A generic tagger, use admixture of different processes that produce heavy flavour
• Robust tagger: train including realistic special cases, e.g. we do keep jets with accidental lepton overlap or alike

QCD:
• very clean, e.g. no accidental overlap of lepton from and jet
• Good source of gluon splitting sample, flavour excitation, flavour creation

ttbar:
• Less clean, i.e. includes accidental overlap of leptons
• bs from top decay and cs from W.

Use QCD and ttbar for training
Training sample size

Of course “more data” not always helps, but sometimes it can.

- CMS has >10 billion jets simulated for 2016 conditions
- This is a massive number, i.e. in HEP we stand out by having relatively “cheap” data.
- In DeepCSV we use about 50M jets, which is 25 x more sample/feature than e.g. arxiv:1607.08633
- Producing e.g. well 250M well labeled jets (e.g. 50M ttbar events) not a big deal!
- Used 0.5:1:2 ratio for c:b:udsg to have good statistics in each class
- Flattened PT/eta shape up to GeV and than used PT/eta shape of bs

- We are generally able to use huge sample training datasets
- For DeepCSV 50M were used
DeepCVS Deep Neural Network

Arguments for DNN:
• Good classification performance
• Application speed (will be applied billions of times)
• Scalability for future studies

DNN details:
• 66 input features
• 4 hidden layers with 100 nodes each
• Relu activation
• Softmax activation for last layer
• Loss: x-entropy
• Learning rate 0.0003
• Adam optimizer
• 500 epochs
• dropout

Relatively simple DNN structure lead to good results
ML tools used

- Compressed data-format “miniAOD” of CMS used
- Bare root-tupels from CMSSW converted to python (root_numpy)
- Preprocessing (zero-padding, mean subtraction, PT/eta flattening of classes, …) mostly python
- Pure Tensorflow and Keras with Tensorflow as backend was used for training studies
- LWTNN (pure C++) used to implement DNN in CMSSW

- Separated training an application tools
- LWTNN presented at IML (from UCI).
- Used tools widely spread outside HEP
• We use the probability to have at least one b-hadron in the jet as discriminator for default b-tagging, i.e. $p(b)+p(bb)$.
• Events without any pre-selected track are put first bin (underflow) for DeepCSV
• DeepCSV has a very smooth distribution
• CVSv2 and DeepCSV similar trends
DeepCSV 40% smaller fake (0.6%) rate at same b efficiency as medium WP CSVv2

20% relative (10% absolute) better efficiency for 0.1% misid. probability.
• Better performance than c-tagger
• Note, the c-tagger uses some lepton information
• DeepCSV more stringent in not accepting jets, thus less close to 1 (no track events).
ROC c vs. light

CMS Simulation Preliminary

\[\text{Discr.} = \frac{p(c) + p(cc)}{1 - p(b) - p(bb)} \]

Slight improvement w.r.t. c-tagger
Performance in real data

36 fb⁻¹, \(\sqrt{s} = 13 \) TeV, 2016

- Data/simulation agreement same within uncertainties
- Central values slightly better data/MC agreement for DeepCSV

Improvement by revisited ML strategy confirmed in real data
Efficiency as function of P_T

- $\sqrt{s}=13$ TeV, 2016

CMS Simulation, Preliminary

- CSVv2
 - Loose
 - Medium
 - Tight

- DeepCSV
 - Loose
 - Medium
 - Tight

- $t\bar{t}$ sample used for evaluation
- DeepCSV same trends as CSVv2
- Easiest region for tagging between 50-200 GeV
Light-jet misid prob. as a function of p_T

- Note, Working points defined (e.g. 1% mistag rate) in QCD sample with P_{80-120}, and not $ttbar$ as shown
- DeepCSV same trends as CSVv2
- Increasing mistag rate at high P_T
Light-jet misid prob. as a function of p_T

- Slightly stronger trend of c-jet rejection degrading with p_T
- For medium WP good c-jet rejection for DeepCSV
Application in physics analysis

SUS-16-044:
Search for events with two $h \to bb$ and MET

2b = $N_{b,T} = 2$, $N_{b,M} = 2$
3b = $N_{b,T} \geq 2$, $N_{b,M} = 3$, $N_{b,L} =$
4b = $N_{b,T} \geq 2$, $N_{b,M} \geq 3$, $N_{b,L} \geq$

<table>
<thead>
<tr>
<th>CSVv2</th>
<th>$L = 35.9$ fb$^{-1}$</th>
<th>All SM bkg.</th>
<th>TChiHH (225,1)</th>
<th>TChiHH (700,1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 2b</td>
<td>2600.1±101.0</td>
<td>75.6</td>
<td>3761.5</td>
<td>33.7</td>
</tr>
<tr>
<td>≥ 3b</td>
<td>276.9±5.5</td>
<td>49.6</td>
<td>1999.1</td>
<td>19.0</td>
</tr>
<tr>
<td>4b</td>
<td>72.2±4.1</td>
<td>30.9</td>
<td>860.0</td>
<td>9.3</td>
</tr>
<tr>
<td>Baseline, ≥ 2b</td>
<td>4625.6</td>
<td>95.1</td>
<td>3650.5±90.2</td>
<td></td>
</tr>
<tr>
<td>Baseline, ≥ 3b</td>
<td>385.2±9.0</td>
<td>68.6</td>
<td>144.8±2.8</td>
<td></td>
</tr>
<tr>
<td>Baseline, $p_T^{miss} > 300, ≥ 2b$</td>
<td>94.3±5.3</td>
<td>43.4</td>
<td>16.3±0.8</td>
<td></td>
</tr>
<tr>
<td>Baseline, $p_T^{miss} > 300, ≥ 3b$</td>
<td>14.4±2.8</td>
<td>3.2</td>
<td>4.6±0.4</td>
<td></td>
</tr>
</tbody>
</table>

- E.g. last row, 15% more background and up to ~50% more signal
- Significantly improved limit (150 GeV in Higgsino mass)
Conclusions

New tagger DeepCSV in CMS:

- More “relatively raw” input features used than before
- Adapted training strategy that includes large training dataset and two processes, ttbar and QCD
- Use Deep Neural Network for training.
- New tagger outperformed existing b and c-taggers
- Improvements confirmed in data
- First analysis used this tagger (more in the pipeline)
- Multiclassification (b,bb,c,cc,udsg) is lean to maintain and allows in future usage e.g. gluon->bb splitting tagging or similar applications
- Step towards exploring more deep-learning in CMS