Decorrelated Jet Substructure Tagging using Adversarial Neural Networks

Chase Shimmin

Yale University

IML Workshop March 22, 2017

Details can be found in:

"Decorrelated Jet Substructure Tagging using Adversarial Neural Networks"

C. Shimmin, P. Sadowski, P. Baldi, E. Weik, D. Whiteson, E. Goul, A. Søgaard

https://arxiv.org/abs/1703.03507

Boosted Objects

at rest

boosted

Boosted Objects

at rest

boosted

Large radius jet

(boosted) Jet Tagging

Goal: identify initial particle that caused the jet

Analysis Applications

Generally want to enhance signal w/known objects over QCD background:

Analysis Applications

Generally want to enhance signal w/known objects over QCD background:

Analysis Applications

Low-mass leptophobic resonance

Jet Substructure

In addition to resonance, boosted jets have distinctive structure:

arXiv:1603.09349

Substructure Variables

 Many theoretically motivated tools to quantify jet substructure, e.g. N-subjettiness, ECF...

Multivariate Taggers

Multivariate taggers (BDT, NN) in general can do even better!

arXiv:1511.05190

Mass Correlation

But... cutting on taggers distorts mass spectrum

Mass Correlation

But: cutting on taggers distorts mass spectrum

Mass Correlation

Correlation with the observable of interest is bad!

De-Correlation

 "DDT" paper proposes explicit transformation to decorrelate τ₂₁ variable

De-Correlation

 DDT method was used by CMS in lowmass Z' search

CMS-PAS-EXO-16-030

Generalization

- We would like to generalize this decorrelation approach for arbitrary classifiers
- Some proposed approaches:
 - multivariate DDT via PCA <u>arXiv:1603.00027</u>
 - uGBoost: add loss to enforce "flatness" <u>arXiv:1410.4140</u>
 - ★ Adversarial "pivot" / domain adaptation: arXiv:1611.01046

We investigate this approach

Basic idea:

Classifier is trained to identify signal jets

Simultaneously minimize: Ladversary and Ltagger = Lclassifier - λLadversary

Training

- Simultaneous optimization achieved with gradient scaling layer
- Signal events are given zero weight in adversary loss

Results

Results

✓ BG distortion considerably reduced

ROC Performance

Adversarial method: slightly lower AUC

... however this is not our figure of merit!

Statistical Significance

- Toy statistical model:
 - MC template fit
 - BG normalization uncertainty

Statistical Significance

- Toy statistical model:
 - MC template fit
 - BG normalization uncertainty
- ✓ Adversarial method attains highest discovery significance

Statistical Significance

- Toy statistical model:
 - MC template fit
 - BG normalization uncertainty
- ✓ Adversarial method attains highest discovery significance
- Larger systematics
 - ⇒ stronger improvement

Parameter Scans

→ Architecture can be extended to include parametric dependence on hypothesis mass, M_Z,

Summary / Conclusion

- Multivariate taggers are powerful tools for many signals
- However, correlation with analysis observables results in reduced sensitivity in the presence of BG modeling systematics
- Adversarial techniques can enforce decorrelation for arbitrarily complex classifiers
- The resulting classifier may outperform both theoreticallymotivated variables as well as conventional neural networks
- The method is generic and should work for different object taggers and/or analysis observables

End

N-subjettiness profiles

N - subjetiness 0.6 0.5 0.4 0.3 0.2 0.1 50 200 100 150 250 Jet Invariant Mass [GeV]

NN profiles

Adv. NN

Parametric Adv. NN

AUC and significance

pT dependence

