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https://arxiv.org/abs/1703.03507

C. Shimmin, P. Sadowski, P. Baldi, E. Weik, 
D. Whiteson, E. Goul, A. Søgaard

Details can be found in:

“Decorrelated Jet Substructure Tagging using 
Adversarial Neural Networks"

https://arxiv.org/abs/1703.03507
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Boosted Objects
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Large radius jet
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Jet Tagging

Goal: identify initial 
particle that caused the jet
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top
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QCD

(boosted)
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Analysis Applications
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Analysis Applications

7

W/Z/H

“Mono-X”
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Analysis Applications
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Jet Substructure
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QCD jet W jet

arXiv:1603.09349

In addition to resonance, boosted jets 
have distinctive structure:

https://arxiv.org/abs/1603.09349
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Substructure Variables
• Many theoretically motivated tools to quantify jet 

substructure, e.g. N-subjettiness, ECF…
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τ2/τ1 τ3/τ2

arXiv:1011.2268

https://arxiv.org/abs/1011.2268
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Multivariate Taggers

Multivariate taggers 
(BDT, NN) in general 
can do even better!
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arXiv:1511.05190

NN vs.  τ21

https://arxiv.org/abs/1511.05190
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Mass Correlation
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arXiv:1603.00027
arXiv:1703.03507

But… cutting on taggers distorts mass spectrum

https://arxiv.org/abs/1603.00027
https://arxiv.org/abs/1703.03507
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Mass Correlation
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But: cutting on taggers distorts mass spectrum

ATL-PHYS-PUB-2017-004

https://arxiv.org/abs/1603.00027
https://arxiv.org/abs/1703.03507
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-004/
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Mass Correlation
Correlation with the observable of interest is bad!
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Before cuts: 
low SNR

jet mass

what w
e want

what actually 
happens…

QCD

signal

signal

QCD

After cuts: 
improved SNR + BG sidebands

After cuts: 
BG looks like signal

jet mass

jet mass

CR looks different from SR
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De-Correlation
• “DDT” paper proposes explicit transformation to 

decorrelate τ21 variable
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arXiv:1603.00027

DDT

https://arxiv.org/abs/1603.00027
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De-Correlation

• DDT method was 
used by CMS in low-
mass Z’ search
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CMS-PAS-EXO-16-030

http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/EXO-16-030/
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Generalization

• We would like to generalize this decorrelation approach for 
arbitrary classifiers 

• Some proposed approaches: 

• multivariate DDT via PCA arXiv:1603.00027 

• uGBoost: add loss to enforce “flatness” arXiv:1410.4140 

★ Adversarial “pivot” / domain adaptation: arXiv:1611.01046
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We investigate this approach

https://arxiv.org/abs/1603.00027
https://arxiv.org/abs/1410.4140
https://arxiv.org/abs/1611.01046
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Adversarial Decorrelation

18

Classifier

Basic idea:

X fc(X)

Classifier is trained to identify signal jets

Jet features 
(pT, m, τ21, …)

Prob(signal)
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Adversarial Decorrelation
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Classifier

Adversary is trained to 
                         predict jet mass

X fc(X)

Adversary

fa(fc(X))

Jet Mass 
Regression

(binned)
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Adversarial Decorrelation
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Classifier

X fc(X) fa(fc(X))

Lclassifier Ladversary

Loss functions for 
each subnet 

(e.g. categorical x-entropy)

Adversary
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Adversarial Decorrelation
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Classifier
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Adversarial Decorrelation
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Classifier

X fc(X) fa(fc(X))

Lclassifier Ladversary

Simultaneously minimize:

Ladversary 
and 

Ltagger = Lclassifier - λLadversary

Adversary

Translation: 
The adversary penalizes the 

classifier for providing outputs 
that can be used to infer mass.
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Training
• Simultaneous optimization achieved with gradient scaling layer

• Signal events are given zero weight in adversary loss
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Classifier

X fc(X) fa(fc(X))

Lclassifier Ladversary

Adversary

-λ ∂L/∂θ
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Results
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✓ Tagger profile 
  much flatter

Training on ~200k 
MC events:  

    Sherpa γ+jet 
    MG5 γ+Z’ 
    Pythia + Delphes

(BG) 
(Signal) 
(Both)
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Results
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✓ BG distortion considerably reduced

Sherpa γ+jet Sherpa γ+jet
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ROC Performance
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… however this is not 
our figure of merit!
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• Toy statistical model: 

‣ MC template fit 
‣ BG normalization uncertainty 

• Adversarial method attains 
highest discovery significance 

• Larger systematics 
       ⇒ stronger improvement

Jet Invariant Mass [GeV]
60 80 100 120 140

Ev
en

ts

1

10

210

310
Z'+Backg.

Background

Z' (m=100)

=50%sigεAdv. NN, 



Chase Shimmin (Yale University)

Statistical Significance
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Statistical Significance
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• Toy statistical model: 

‣ MC template fit 
‣ BG normalization uncertainty 

✓ Adversarial method attains 
highest discovery significance 

• Larger systematics 
       ⇒ stronger improvement
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Parameter Scans

➡ Architecture can be 
extended to include 
parametric dependence 
on hypothesis mass, MZ’

30
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Summary / Conclusion
• Multivariate taggers are powerful tools for many signals 

• However, correlation with analysis observables results in 
reduced sensitivity in the presence of BG modeling 
systematics

• Adversarial techniques can enforce decorrelation for arbitrarily 
complex classifiers 

• The resulting classifier may outperform both theoretically-
motivated variables as well as conventional neural networks 

• The method is generic and should work for different object 
taggers and/or analysis observables

31
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