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Tracking at the LHC
• LHC particle tracking algorithms have 

seen great success in Runs I and II.  
They use a two-part strategy:  

• Track seeding using combinatorial 
search 

➡ Complexity: O(N3) 

• Track candidate formation using 
Kalman filter 

➡  Complexity: O(N2) - O(N3)
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Tracking at the HL-LHC

• High-Luminosity upgrade of 
the LHC: 

➡ Luminosity x 10 

➡ Number of track hits x 10

• Up to 200 collision events per 
bunch crossing in CMS and 
ATLAS detectors
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Tracking at the HL-LHC

• Upgraded LHC detectors will have O(100M) tracker readout channels 

• O(5000) charged particles per event → O(105) 3-D position measurements 

• Scaling of existing track algorithms is not favorable

4



  Dustin Anderson — 22 March 2017

Deep Learning
• Track finding is similar 

to problems on which 
deep neural networks 
have seen success: 

• Image captioning 

• Sequence prediction 

• Scene labeling/
partitioning
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Zagoruyko et al, https://arxiv.org/pdf/1604.02135.pdf
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Deep Learning
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Our goal (more or less…):
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HEP.TrkX Project
• HEP.TrkX: a one-year pilot project within the DOE 

HEP Center for Computational Excellence 

• Goals: 

➡ Explore and develop new tracking algorithms 
based on modern ML techniques 

➡ Demonstrate a scalable algorithm with the potential 
to reconstruct tracks in HL-LHC conditions
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HEP.TrkX Project
• Our collaboration: 

➡ Caltech : Dustin Anderson, Josh Bendavid, Maria 
Spiropulu, Jean-Roch Vlimant, Stephan Zheng 

➡ Fermilab : Giuseppe Cerati, Lindsey Gray, Jim 
Kowalkowski, Panagiotis Spentzouris, Aristeidis Tsaris 

➡ LBL : Paolo Calafiura, Steve Farrell, Mayur Mudigonda, 
Prabhat
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Exploring the Space of Ideas

• Track Extension — replace Kalman Filter with a 
smarter or faster iterative algorithm 

• Seed Finding — improve on N3 scaling of current 
algorithms 

• End-To-End Methods — cluster hits directly into 
tracks or produce values for track parameters
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Track Extension Algorithms
• Long-Short-Term Memory (LSTM) recurrent neural networks:  

➡ Produce a sequence of outputs, like Kalman Filter does 

➡ Have a state update equation learned from training data 

• An LSTM-based track extension algorithm could alleviate the 
combinatorial scaling problem present in current KF algorithms

10 http://colah.github.io/posts/2015-08-Understanding-LSTMs/



  Dustin Anderson — 22 March 2017

Track Extension with LSTM

• Proof-of-concept on 
toy detector data 

• Square, 2-D 
detector 

• Straight-line tracks 

• No missing hits
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• Starting from a seed, the model 
builds the track iteratively 

• At each step, it considers a 
slice of the detector 

• It outputs a probabilistic 
estimate of the track hit location 
in the current slice

12

Track Extension with LSTM
Guess for track 

hit location
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• Repeat for each detector 
slice to obtain full prediction 

• The LSTM memory state 
propagates relevant 
information from layer to 
layer
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Track Extension with LSTM

Uncertainty is larger near 
track intersection points
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• Variations on this model: 

➡ Deep architecture with more 
layers 

➡ Bi-directional LSTM running 
forward and backward 
simultaneously 

➡ Convolutional autoencoder 
instead of LSTM for layer-wise 
prediction 
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Track Extension with LSTM

Performance comparison 
for different architectures
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• Variations on this model: 

➡ Deep architecture with more 
layers 

➡ Bi-directional LSTM running 
forward and backward 
simultaneously 

➡ Convolutional autoencoder 
instead of LSTM for layer-wise 
prediction 
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Track Extension with LSTM

Extend also to 3-D toy data
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Predicting Track Parameters
• Different approach: treat 

track finding as an image 
recognition problem 

• Use convolutional neural 
networks — powerful tools for 
extracting image features
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http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
Network Architecture
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Predicting Track Parameters
• Given image of a track, the model directly predicts 

its parameters (slope & intercept, in this case) 

• Ex: single track with large noise background
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Visualization of predicted track
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Many Tracks
• Deal with multiple tracks per event 

using an LSTM network 

• Different from earlier LSTM 
application.  At each LSTM step: 

➡ It outputs parameters for a 
complete track

➡ The memory cell updates to 
focus on a new track in the 
image
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Predicting Track Parameters
• The model processes the image and identifies all 

tracks in one pass!
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Visualizing Filters
• Visualize the learned filters by finding an image that 

maximizes each filter’s activation level 

• Gives insight into the patterns that the model “sees”

20Inspired by: https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html

https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html
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Expressing Uncertainty
• To be useful, the model must assign uncertainties 

to its predictions 

• Strategy: train the model to produce a parameter 
covariance matrix for each track it finds
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• During training, minimize negative gaussian log 
likelihood: 

• The model learns to produce track covariance matrices 
that accurately reflect its performance
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L(x,y) = log |⌃|+ (y � f(x))

T ⌃�1
(y � f(x))

Expressing Uncertainty
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• Sample from each 
track’s covariance 
matrix to visualize the 
uncertainty on the 
model predictions

23

Expressing Uncertainty
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• Evaluate the uncertainties via 
the distribution of 
Mahalanobis distances: 

• They should be chi-square 
distributed 

• After a small by-hand 
calibration, the errors have 
the expected distribution
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Expressing Uncertainty

Y-axis: quantiles of observed distribution 
X-axis: quantiles of chi-square distribution
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Exploring Further
• Next plans for the group: 

• Choose 1-2 model architectures to optimize 
and scale up 

• Move from toy data to realistic detector 
simulation — ACTS data 

• Compare mature ML algorithms with baseline 
performance provided by Kalman filter
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Conclusion
• Developing a new, scalable particle tracking algorithm 

is critical for detector performance in the HL-LHC era 

• The HEP.TrkX project is exploring ML-inspired tracking 
algorithms, towards this end 

• Recurrent and convolutional NN models show promise 
on simplified detector data 

• Stay tuned for further developments!
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TrackMLRamp Hackathon at CTD 2017

• 2D tracking challenge with curved tracks, scattering effects, detector inefficiencies, and 
stopped tracks 
• Goal: cluster the hits in each event into tracks 

• Adapted LSTM model as follows 
• Unroll the circular detector and bin hits coarsely in phi to produce square “images” 
• Use first layer hits as “seeds” 
• Use LSTM model to score hits per track 
• Assign hits to their highest scored track 

• Won in the ML category of the challenge with 92.1% reco efficiency 

• Later adjustments using a high granularity window centered on the track seed boosted 
performance to 94.9%
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Model is robust 
against holes and 

other detector effects

S. Farrell


