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Tracking at the LHC

| HC particle tracking algorithms have
seen great success in Runs | and |l.
They use a two-part strategy:

">
* Track seeding using combinatorial ,ﬁ‘
search ;"

= Complexity: O(N>)

* Track candidate formation using
Kalman filter

|
nd COmp|eXi’[y: O(NZ) _ O(NB) Credit: Andy Salzburger
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Tracking at the HL-LHC

« High-LUmInosity Upgrade Of  pmm s
the LHC: NN g2y

= _uminosity x 10

= Number of track hits x 10

* Up to 200 collision events per
bunch crossing in CMS and
ATLAS detectors

Image: CERN
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Tracking at the HL-LHC
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> Spacepoints > ]()5> SP triplets > 109> Seeds > 104> Tracks > 10

 Upgraded LHC detectors will have O(100M) tracker readout channels

 O(5000) charged particles per event — 0(10°) 3-D position measurements

* Scaling of existing track algorithms is not favorable
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Deep Learning

* Jrack finding is similar
to problems on which
deep neural networks
have seen success:

* Image captioning

« Sequence prediction _Lm-\ -
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e Scene labeling/
partitioning

Zagoruyko et al, https://arxiv.org/pdf/1604.02135.pdf
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Deep Learning

Our goal (more or less...):

shee "\ L\
n -
I = e Oy T D o oy A St D

—

Photo by Pier Marco Tacca/Getty Images

Zagoruvko et al, https://arxiv.ora/pdf/1604.02135.pdf
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HEP.TrkX Project

 HEP.TrkX: a one-year pilot project within the DOE
HEP Center for Computational Excellence

e Goals:

= Explore and develop new tracking algorithms
based on modern ML technigques

= Demonstrate a scalable algorithm with the potential
to reconstruct tracks in HL-LHC conditions
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HEP.TrkX Project

 Qur collaboration:

= Caltech : Dustin Anderson, Josh Bendavid, Maria
Spiropulu, Jean-Roch Vlimant, Stephan Zheng

= Fermilab : Giuseppe Cerati, Lindsey Gray, Jim
Kowalkowski, Panagiotis Spentzouris, Aristeidis Tsaris

= LBL : Paolo Calafiura, Steve Farrell, Mayur Mudigonda,
Prabhat
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Exploring the Space of |ldeas

 Track Extension — replace Kalman Filter with a
smarter or faster iterative algorithm

* Seed Finding — improve on N3 scaling of current
algorithms

 End-To-End Methods — cluster hits directly into
tracks or produce values for track parameters
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Track extension Algorithms

e Long-Short-Term Memory (LSTM) recurrent neural networks:
= Produce a sequence of outputs, like Kalman Filter does
= Have a state update equation learned from training data

 An LSTM-based track extension algorithm could alleviate the
combinatorial scaling problem present in current KF algorithms

® D, ®
1 1

A

e N N ™)

S E
o
>

L
v
v

>
q~€—><><>

®
®_
®

10  http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Track Extension with LSTM

* Proof-of-concept on Seed hits
toy detector data

Input

10 20 30 40
Layer

e Square, 2-D Try to *

reconstruct
detector this track \_“ﬁ
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e Straight-line tracks 10

* NoO missing hits
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Track Extension with LSTM

. Guess for track
e Starting from a seed, the model " it location

builds the track iteratively

* At each step, it considers a
slice of the detector input

* |t outputs a probabilistic
estimate of the track hit location
IN the current slice

0 0 20 30 40
Layer
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Track Extension with LSTM

Model prediction

 Repeat for each detector
slice to obtain full prediction

» The LSTM memory state
oropagates relevant
information from layer to
ayer

Uncertainty is larger near
track intersection points

13
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Track Extension with LSTM

e Variations on this model: =

Hit Classification accuracy

.+ Uses best hit pixel
- Deep architecture with more .
layers " — S
~
= Bi-directional LSTM running | =esm
forward and backward = Gonn
simultaneously  DeeplST™H
-« NL-LSTM

Average number of background tracks

= Convolutional autoencoder

instead of LSTM for layer-wise Perfqrmance Comparison
prediction for different architectures

14
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Track Extension with LSTM

e \ariations on this model:

= Deep architecture with more l
layers e

= Bi-directional LSTM running i
forward and backward O
simultaneously

- Convolutional autoencoder ey, € 7
instead of LSTM for layer-wise
porediction

Extend also to 3-D toy data

15
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Predicting lrack Parameters

* Different approach: treat v
track finding as an image
recognition problem

r-

Relu _/
Use convolutional neural
networks — powerful tools for Comy (3x3) x16
extracting image features T
F==l==—===*
Convolution Pooling Convolution Pooling Relu _/

E I Dense(20) I

Network Architecture

b - - I !

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
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Predicting lrack Parameters

* Given image of a track, the model directly predicts
its parameters (slope & intercept, in this case)

* EX: single track with large noise background

40

Model prediction
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Pixel
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Visualization 1c;f predicted track
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Many ITracks

 Deal with multiple tracks per event
using an LSTM network

e Different from earlier LSTM
application. At each LSTM step:

= |t outputs parameters for a
complete track

= The memory cell updates to
focus on a new track in the

image

18

Input

Dense (400)

LSTM (400)
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Predicting lrack Parameters

* The model processes the image and identities all
tracks in one pass!

Input Model prediction

Layer Layer
19



Visualizing Filters

» Visualize the learned filters by finding an image that
maximizes each filter’s activation level

e (Gives insight into the patterns that the model “sees”
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Inspired by: https://blog.keras.io/how-convolutional-neural-networks-see-the-world.htm|
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EXpressing Uncertainty

* Jo be useful, the model must assign uncertainties
to Its predictions

» Strategy: train the model to produce a parameter
covariance matrix for each track it finds

Dense || LSTM

Cov. Matrix Parameters

21
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EXpressing Uncertainty

 During training, minimize negative gaussian log
likelihood:

L(z,y) =log|=| + (y — f(x)" =7 (y — f(x))

 The model learns to produce track covariance matrices
that accurately reflect its performance

m; LSTM Slopes and Intercepts
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EXpressing Uncertamty

 Sample from each
track’'s covariance
matrix to visualize the
uncertainty on the
model predictions
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EXpressing Uncertainty

 Evaluate the uncertainties via
the distribution of
Mahalanobis distances:

D (&) = /(& ~ i)™ (@ ~ i)

* [hey should be chi-square
distributed

* After a small by-hand
calibration, the errors have
the expected distribution

Probability Plot
10 T T

Ordered Values

| | | |
0 2 - 6 8 10
Theoretical quantiles

Y-axis: quantiles of observed distribution
X-axis: quantiles of chi-square distribution
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EXploring Further

* Next plans for the group:

 Choose 1-2 model architectures to optimize
and scale up

* Move from toy data to realistic detector
simulation — ACTS data

 Compare mature ML algorithms with baseline
performance provided by Kalman filter

25
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Conclusion

 Developing a new, scalable particle tracking algorithm
IS critical for detector performance in the HL-LHC era

 The HEP.TrkX project is exploring ML-inspired tracking
algorithms, towards this end

* Recurrent and convolutional NN models show promise
on simplitied detector data

» Stay tuned for further developments!
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S. Farrell
TrackMLRamp Hackathon at CTD 2017

« 2D tracking challenge with curved tracks, scattering effects, detector inefficiencies, and
stopped tracks

« Goal: cluster the hits in each event into tracks
» Adapted LSTM model as follows
* Unroll the circular detector and bin hits coarsely in phi to produce square “images”
« Use first layer hits as “seeds”
* Use LSTM model to score hits per track
 Assign hits to their highest scored track
* Won in the ML category of the challenge with 92.1% reco efficiency

 Later adjustments using a high granularity window centered on the track seed boosted
performance to 94.9%

Input Target

Model prediction

Model is robust
against holes and
other detector effects




