
Hans Pabst

Technical Computing Enabling, Switzerland

Developer Relations Division

Software and Services Group

March 20th 2017

• Hardware and Software Innovation

• JIT Code Specialization

• ISA Extensions

• Open Source Software

• Low-Level Primitives and Frameworks

• Intel DAAL, MKL-DNN

• LIBXSMM

Agenda

2

3

Do you remember Graphics processors turning into GPGPU? In the early

days, people used to “concatenate strings” to build GPGPU programs (shaders).

• Implied embedding variables as constants, etc.

• Example: Advantages for Stencil Computation

 Stencil (access-)pattern “baked” into code

 Grid bounds are known constants

 Code unrolling without remainder

[…]

Code specialization is an effective optimization!

• Small-size problems can be effectively hard-coded; no upfront code

generation needed (may also avoid control-flow to select cases)

• Perfect match for unpredictable use cases (scripting framework, etc.)

4

JIT Code Specialization

Direct convolutions are more efficient than a calculation in the frequency space

(There is a cross-over point when it comes to larger convolutions)

• Exploiting the memory bandwidth, caches, and register file is key

• ML frameworks are usually script-enabled (runtime dynamic)

• Network topology (graph structure) determines schedule,

code fusion, etc.

JIT code generation: ideal for small convolutions and graph-based structure

• Can further exploit topology

 Significant advantage with JIT code generation

5

Convolutional Neural Networks (CNNs) and JIT

Innovation happens to large extent at ISA level (true for CPU and GPU)

• Domain specific ISA extensions (supported only at intrinsic level)

Examples: CRC32 (SSE 4.2), AES-NI, SHA, F16 LD/ST (F16C)

• General compiler support (regularly generated from high-level code)

Examples: AVX, AVX2, AVX-512

ML domain for Intel Architecture (IA) is enabled at ISA and platform level

• Complemented by segment-specific HW e.g., KNM (KNL derivative)

• Platform level e.g., Xeon sockets shared with FPGA

• ISA level e.g., FMA, QFMA, VNNI, QVNNI

6

Hardware Specialization

7

Long-term commitment to Open Source Software (OSS)

• Linux OS (not just drivers): Intel contributes and ranks in top-10 since years

• Other contributions: compiler enabling (GCC), math library support (SVML),

language standards (OpenMP: iOMP  Clang), in general: 01.org

… but Intel software product teams are also commited

• Free-of-charge Intel MKL (supported by user forum), which is also for

commercial use (Premier support remains commercial)

• Open Source Software: Intel TBB, Intel MKL-DNN

 Domain specific HW/SW strongly asks for “OSS backup”

Avoids “vendor lock”, protects effort on customer’s side, etc.

Contribute and participate without replicating status quo

8

Open Source Software at Intel

Common Architecture for Machine & Deep Learning

Targeted acceleration

Most widely deployed machine
learning platform

Intel® Xeon® Processors
Higher performance, general

purpose machine learning

Intel® Xeon Phi™ Processors

Higher perf/watt inference, programmable

Intel® Xeon® Processor + FPGA

Best in class neural network training performance

Intel® Xeon® Processor + LakE CREST

LAKE
CREST

* Intel AI Days (series of worldwide events) shared more vision and roadmap information

9

Enhanced ISA QFMA instructions in Knights Mill delivers:

 Higher Peak Flops for CNN, RNN, DNN, LSTM

 Higher Efficiency (One Quad FMA executed in two cycles)

 2X FP operations per cycle

10

Knights Mill (KNM): QFMA Instruction*

FMA1
*

+

V1

S1

FMA2
*

+

V2

S2

FMA3
*

+

V3

S3

FMA4
*

+

V4

S4

RES
S1..4

KNM QFMA

Port 0 Port 1

16 x 32b = 512 bits 16 x 32b = 512 bits

2 x 32 = 64 FP32 flops 2 x 32 = 64 FP32 flops

V4FMADDPS (FP32)

2X#

2X faster per clock than KNL SP

* See Intel Architecture Reference Manual

QMADD packs 4 IEEE FMA ops in a single

instruction

• 2x the flops by using INT16 inputs

• Similar accuracy as SP by using INT32 accumulated output

11

Knights Mill (KNM) Variable Precision Instructions*

a1 a0

b1 b0

16b 16b

c0

32b

c0=c0+a0*b0+a1*b1

32b

Int16 inputs

Int32 accumulators

• 2x VNNI operations per port

• 4x* ML performance than regular AVX512-SP

VNNI QVNNI

INT16 to INT32

KNM

QVNNI

4X#

4x faster per clock than KNL SP

Enabling higher throughput for ML training tasks

2x 64 = 128 VNNI iops 2x 64 = 128 VNNI iops

* See Intel Architecture Reference Manual

Intel® Math Kernel

Library

Intel® MLSL

Intel® Data

Analytics

Acceleration

Library

(DAAL)

Intel®

Distribution

OpenSource

Frameworks

Intel Deep

Learning SDK

Intel® Computer

Vision SDKIntel® MKL MKL-DNN

High
Level

Overview

High performance

math primitives

granting low level

of control

Free open source

DNN functions for

high-velocity

integration with

deep learning

frameworks

Primitive

communication

building blocks to

scale deep learning

framework

performance over a

cluster

Broad data analytics

acceleration object

oriented library

supporting distributed

ML at the algorithm

level

Most popular and

fastest growing

language for

machine learning

Toolkits driven by

academia and

industry for training

machine learning

algorithms

Accelerate deep
learning model

design, training and
deployment

Toolkit to develop &

deploying vision-

oriented solutions

that harness the full

performance of Intel

CPUs and SOC

accelerators

Primary

Audience

Consumed by

developers of

higher level

libraries and

Applications

Consumed by

developers of the

next generation of

deep learning

frameworks

Deep learning
framework

developers and
optimizers

Wider Data Analytics

and ML audience,

Algorithm level

development for all

stages of data

analytics

Application

Developers and

Data Scientists

Machine Learning

App Developers,

Researchers and

Data Scientists.

Application
Developers and Data

Scientists

Developers who

create vision-oriented

solutions

Example

Usage

Framework

developers call

matrix

multiplication,

convolution

functions

New framework

with functions

developers call for

max CPU

performance

Framework

developer calls

functions to distribute

Caffe training

compute across an

Intel® Xeon Phi™

cluster

Call distributed

alternating least

squares algorithm for

a recommendation

system

Call scikit-learn

k-means function

for credit card

fraud detection

Script and train a

convolution neural

network for image

recognition

Deep Learning

training and model

creation, with

optimization for

deployment on

constrained end

device

Use deep learning to

do pedestrian

detection

…

Libraries, Frameworks and Tools*

* http:// software.intel.com/ai

13

Intel® Math Kernel

Library

Intel® MLSL

Intel® Data

Analytics

Acceleration

Library

(DAAL)

Intel®

Distribution

OpenSource

Frameworks

Intel Deep

Learning SDK

Intel® Computer

Vision SDKIntel® MKL MKL-DNN

High
Level

Overview

High performance

math primitives

granting low level

of control

Free open source

DNN functions for

high-velocity

integration with

deep learning

frameworks

Primitive

communication

building blocks to

scale deep learning

framework

performance over a

cluster

Broad data analytics

acceleration object

oriented library

supporting distributed

ML at the algorithm

level

Most popular and

fastest growing

language for

machine learning

Toolkits driven by

academia and

industry for training

machine learning

algorithms

Accelerate deep
learning model

design, training and
deployment

Toolkit to develop &

deploying vision-

oriented solutions

that harness the full

performance of Intel

CPUs and SOC

accelerators

Primary

Audience

Consumed by

developers of

higher level

libraries and

Applications

Consumed by

developers of the

next generation of

deep learning

frameworks

Deep learning
framework

developers and
optimizers

Wider Data Analytics

and ML audience,

Algorithm level

development for all

stages of data

analytics

Application

Developers and

Data Scientists

Machine Learning

App Developers,

Researchers and

Data Scientists.

Application
Developers and Data

Scientists

Developers who

create vision-oriented

solutions

Example

Usage

Framework

developers call

matrix

multiplication,

convolution

functions

New framework

with functions

developers call for

max CPU

performance

Framework

developer calls

functions to distribute

Caffe training

compute across an

Intel® Xeon Phi™

cluster

Call distributed

alternating least

squares algorithm for

a recommendation

system

Call scikit-learn

k-means function

for credit card

fraud detection

Script and train a

convolution neural

network for image

recognition

Deep Learning

training and model

creation, with

optimization for

deployment on

constrained end

device

Use deep learning to

do pedestrian

detection

…

Libraries, Frameworks and Tools*

* http:// software.intel.com/ai

Open

Source

Open

Source

14

Deep learning with Intel MKL-DNN (C/C++ API)

15

Intel® MKL-DNN

Programming Model
• Primitive – any operation

(convolution, data format re-order,

memory)

• Operation/memory

descriptor - convolution

parameters, memory

dimensions

• Descriptor - complete

description of a primitive

• Primitive – a specific

instance of a primitive relying

on descriptor

• Engine – execution device (e.g.,

CPU)

• Stream – execution context

/* Initialize CPU engine */

auto cpu_engine = mkldnn::engine(mkldnn::engine::cpu, 0);

/* Create a vector of primitives */

std::vector<mkldnn::primitive> net;

/* Allocate input data and create a tensor structure that describes it */

std::vector<float> src(2 * 3 * 227 * 227);

mkldnn::tensor::dims conv_src_dims = {2, 3, 227, 227};

/* Create memory descriptors, one for data and another for convolution input */

auto user_src_md = mkldnn::memory::desc({conv_src_dims},

mkldnn::memory::precision::f32, mkldnn::memory::format::nchw);

auto conv_src_md = mkldnn::memory::desc({conv_src_dims},

mkldnn::memory::precision::f32, mkldnn::memory::format::any);

/* Create convolution descriptor */

auto conv_desc = mkldnn::convolution::desc(

mkldnn::prop_kind::forward, mkldnn::convolution::direct,

conv_src_md, conv_weights_md, conv_bias_md, conv_dst_md,

{1, 1}, {0, 0}, mkldnn::padding_kind::zero);

/* Create a convolution primitive descriptor */

auto conv_pd = mkldnn::convolution::primitive_desc(conv_desc, cpu_engine);

/* Create a memory descriptor and primitive */

auto user_src_memory_descriptor

= mkldnn::memory::primitive_desc(user_src_md, engine);

auto user_src_memory = mkldnn::memory(user_src_memory_descriptor, src);

/* Create a convolution primitive and add it to the net */

auto conv = mkldnn::convolution(conv_pd, conv_input, conv_weights_memory,

conv_user_bias_memory, conv_dst_memory);

net.push_back(conv);

/* Create a stream, submit all primitives and wait for completion */

mkldnn::stream().submit(net).wait();

Intel DAAL Overview

Industry leading performance, open source C++/Java/Python library

for machine learning and deep learning optimized for Intel®

Architectures.

(De-)Compression
PCA

Statistical moments

Variance matrix

QR, SVD, Cholesky

Apriori

Linear regression

Naïve Bayes

SVM

Classifier boosting

Kmeans

EM GMM

Collaborative filtering

Neural Networks

Pre-processing Transformation Analysis Modeling Decision Making

S
c
ie

n
ti
fi
c
/E

n
g
in

e
e
ri
n

g

W
e
b
/S

o
c
ia

l

B
u
s
in

e
s
s

Validation

17

What’s the difference? Intel MKL vs. Intel DAAL

18

Intel MKL Intel DAAL

DNN primitives Performance critical Performance critical and convenience

DNN layers No All building blocks for NN topology

Optimization solvers No Yes

Performance
Top in the class, full control

from user side

Build on top of MKL, more convenience,

on-par with MKL

Distributed memory No (not yet)
APIs and samples for Spark, Hadoop,

MPI

Language support Low level: C, C++ - coming High level: C++, Java, Python

Target audience

Code ninjas, and users

who want to speedup

existing frameworks

Wider ML audience, and end users. For

example, users who want to prototype or

build from scratch

Hans Pabst Alexander Heinecke Greg Henry

Intel High Performance and Parallel Computing Lab SSG Pathfinding

Throughput Computing Intel Labs USA

Switzerland

https://github.com/hfp/libxsmm

19

General-purpose code cannot be optimal:

• If all cases are supported, the library is too large, too much

branching, etc.

• Lack of specialization hurts when matrices are 1-10 SIMD

units on a side.

Runtime specialization captures best of both worlds:

• “Perfect” code for only the cases needed; unused code is

never generated.

• Just-in-Time (JiT) compilation for general code is hard.

• Specific domain (SMM, DNN, etc.) allows for JiT code

generation without a compiler.

20

LIBXSMM, for small, dense or sparse matrix multiplications,

and small convolutions on Intel Architecture

Main function domains in LIBXSMM

SMM Small Matrix Multiplication Kernels (original library)

DNN Deep Neural Network Kernels for CNNs (v1.5)

SPMDM Sparse Matrix Dense Matrix Multiplication for CNNs (v1.6)

AUX Mem. alloc., synchronization, debugging, profiling

There is more functionality…

• Tiled GEMM routines based on SMM kernels (also parallelized)

• Stand-alone out-of-place matrix transpose routines (non-JIT, soon JIT)

• Matrix-copy kernels (JIT)

• Other “sparse routines”

21

LIBXSMM Function Domains

Highly efficient Frontend

• BLAS compatible (DGEMM, SGEMM)
including LD_PRELOAD

• Support for F77, C89/C99, F2003, C++

• Zero-overhead calls into assembly

• Two-level code cache

Code Generator

• Supports all Intel Architectures since 2005,
focus on AVX-512

• Prefetching across small GEMMs

• Can generate assembly (*.s), inline
assembly (*.h/*.c), and in-memory code

Just-In-Time (JIT) Encoder

• Encodes instructions based on basic blocks

• Very fast code generation (no compilation)

LIBXSMM: Overview

22

Fallback

(BLAS)

Backend for static code

(driver program printing C

code with inline assembly)

and JIT code (via API)

Frontend (User API for C/C++

and Fortran, build system for

statically generated kernels,

code registry/dispatcher, and OS

portability)

Application

Evaluation of suitable JIT code generators

• Numerous projects evaluated: jitasm, libgccjit, etc.

• Selection/rejection criterions

• Support for recent Intel Architectures,

• Active development

• Interesting candidates (with comments)

• LLVM Full-blown (with IR, phases, etc.), “slow” JIT, complex

• Xbyak compiler and JIT-assembler, incomplete AVX-512 (2015!)

• XED Closed source (2016: https://github.com/intelxed/xed)

Final decision in 2015: own development needed “JIT Assembler”

• Only “a few” instructions needed for a certain domain (still true)

• No legacy support needed (AVX/2 and beyond is fine)

23

JIT Technologies (2015)

https://github.com/intelxed/xed

Idea: leveraged GNU Compiler extension “Computed GOTO”

LABEL1:

c = a + b;

LABEL2:

memcpy(code, &&LABEL1, &&LABEL2 - &&LABEL1);

Reality: LIBXSMM manually encodes all instructions needed

• Basic form is encoded with placeholder(s) for varying parts (immediates)

• Emitting an instruction: call a function (arguments may cover instruction

variants and/or immediates), to write a whole kernel is like using a DSL

(“assembly programming domain”)

24

LIBXSMM Backend: Runtime Code Generation

(Very High Level Idea)

Quick facts about in-memory JIT code generation (JIT assembler)

• No intermediate representation

• No automatic register allocation

• No (compiler-)optimizations

What is the advantage of JIT code?

• It is able to leverage instruction variants/immediates to hardcode runtime

knowledge (hard to statically compile equivalent code!)

Example: hard-coded stride for load instruction address (broadcast ld.)

• Why is there a particular focus on AVX-512? There is a lot of potential in the

instruction set e.g., EVEX may also encode certain values into instruction

25

LIBXSMM Backend: Code Generation (cont.)

• Column-major storage; working

on all 9 columns and 8 rows

simultaneously

• Loads to A (vmovapd) are spaced

out to cover L1$ misses; K-loop is

fully unrolled

• B-elements are broadcasted

within the FMA instruction to save

execution slots (SIB)

• SIB addressing mode to keep

instruction size <= 8 byte for

2 decodes per cycle (16 byte I-

fetch per cycle)

• Multiple accumulators (zmm31-

xmm23 and zmm22-zmm14) for

hiding FMA latencies

LIBXSMM AVX512 code for N=9

26

 Max. theoretical efficiency: 90%!

CPUID-dispatched (critical) code paths

Makes LIBXSMM suitable for Linux

distributions where the code path (target

system) is unpredictable (1 package)

Link-time and Runtime Wrapper

Intercepts existing xGEMM calls at

runtime (LD_PRELOAD) or at link-time

(LD’s --wrap)

JIT Profiling

Support for Intel VTune Amplifier and

Linux Perf (contributed by Google)

libxsmm_hsw_dnn_23x23x23_23_23_23_a1_b1_p0::jit

• Encodes an Intel AVX-512 (“knl") double-precision

kernel ("d") which is multiplying matrices without

transposing them ("nn"),

• Rest of the name encodes M=N=K=LDA=LDB=LDC=23,

Alpha=Beta=1.0 (all similar to GEMM),

• No prefetch strategy ("p0").

LIBXSMM: Other Features

27

Support for “medium-sized” and “big” matrix multiplication

• Tiled matrix multiplication routines to go beyond SMM

• OpenMP for multicore support

• Thread-based multicore with internal parallel region

• Task based when called from parallel region

• Plan: more LIBXSMM for Eigen-library,

and non-OpenMP based multithreading

Initial support for stand-alone matrix transposes

• Tiled transpose optionally with task-based OpenMP

28

LIBXSMM: Developments

* https://github.com/hfp/libxsmm/#interface-for-convolutions

29

DNN API for Convolutional Neural Networks (CNNs)

• Introduced in LIBXSMM 1.5, refined in v1.6 and v1.7

• Features:

• Fallback code, JIT-code: AVX2, and AVX-512 (Common, Core, KNM)

• Forward convolution, backward convolution, and weight transformation

• Data formats: NHWC, RSCK, and custom formats

• Compute types: f32, and i16 (+ i8 as in-/output)

• Major additions in v1.8: logical padding, Winograd, KNM

Quick summary

• Handle-based API to generate/perform the requested transformation

30

LIBXSMM: Interface for Convolutions (DNN API)

LIBXSMM DNN API

• Sample code (samples/dnn) to also

act as benchmark for convolutions

• Results

DeepBench: https://software.intel.com/en-

us/articles/intel-xeon-phi-delivers-

competitive-performance-for-deep-learning-

and-getting-better-fast

TensorFlow

https://github.com/hfp/libxsmm/blob/ma

ster/documentation/tensorflow.md

• Initial integration only in master

revision of TensorFlow

• Scheduled for TF 1.1

LIBXSMM: Getting Started with DNN API

31

[1] https://cp2k.org/: Open Source Molecular Dynamics with its DBCSR component processing batches

of small matrix multiplications ("matrix stacks") out of a problem-specific distributed block-sparse matrix.

Starting with CP2K 3.0, LIBXSMM can be used to substitute CP2K's 'libsmm' library. Prior to CP2K 3.0,

only the Intel-branch of CP2K integrated LIBXSMM (see

https://github.com/hfp/libxsmm/raw/master/documentation/cp2k.pdf).

[2] https://github.com/SeisSol/SeisSol/: SeisSol is one of the leading codes for earthquake scenarios,

for simulating dynamic rupture processes. LIBXSMM provides highly optimized assembly kernels which

form the computational back-bone of SeisSol (see https://github.com/TUM-I5/seissol_kernels/).

[3] https://github.com/NekBox/NekBox: NekBox is a highly scalable and portable spectral element

code, which is inspired by the Nek5000 code. NekBox is specialized for box geometries, and intended

for prototyping new methods as well as leveraging FORTRAN beyond the FORTRAN 77 standard.

LIBXSMM can be used to substitute the MXM_STD code. Please also note LIBXSMM's NekBox

reproducer.

[4] https://github.com/Nek5000/Nek5000: Nek5000 is the open-source, highly-scalable, always-

portable spectral element code from https://nek5000.mcs.anl.gov/. The development branch of the

Nek5000 code incorporates LIBXSMM.

[5] http://pyfr.org/: PyFR is an open-source Python based framework for solving advection-diffusion

type problems on streaming architectures using the flux reconstruction approach. PyFR 1.6.0 optionally

incorporates LIBXSMM as a matrix multiplication provider for the OpenMP backend. Please also note

LIBXSMM's PyFR-related code sample.

32

LIBXSMM: Applications HPC

https://www.cp2k.org/version_history
https://github.com/cp2k/cp2k/tree/intel
https://github.com/hfp/libxsmm/raw/master/documentation/cp2k.pdf
https://github.com/TUM-I5/seissol_kernels/
https://nek5000.mcs.anl.gov/
https://github.com/Nek5000/NekBox/blob/box/mxm_std.F90
https://github.com/hfp/libxsmm/tree/master/samples/nek#nek-sample-collection
https://nek5000.mcs.anl.gov/
https://github.com/Nek5000/Nek5000/blob/develop/core/mxm_wrapper.f
http://pyfr.org/user_guide.php
https://github.com/hfp/libxsmm/tree/master/samples/pyfr

[6] https://github.com/baidu-research/DeepBench: The primary purpose of DeepBench is to

benchmark operations that are important to deep learning on different hardware platforms. LIBXSMM's

DNN primitives have been incorporated into DeepBench to demonstrate an increased performance of

deep learning on Intel hardware. In addition, LIBXSMM's DNN sample folder contains scripts to run

convolutions extracted from popular benchmarks in a stand-alone fashion.

[7] https://www.tensorflow.org/: TensorFlow™ is an open source software library for numerical

computation using data flow graphs. TensorFlow was originally developed by researchers and engineers

working on the Google Brain Team for the purposes of conducting machine learning and deep neural

networks research. LIBXSMM can be used to increase the performance of TensorFlow on Intel

hardware.

33

LIBXSMM: Applications ML

https://github.com/baidu-research/DeepBench/tree/master/code/intel/convolution/libxsmm_conv
https://github.com/hfp/libxsmm/tree/master/samples/dnn
https://github.com/hfp/libxsmm/blob/master/documentation/tensorflow.md#tensorflow-with-libxsmm

[1] http://sc16.supercomputing.org/presentation/?id=pap364&sess=sess153:

LIBXSMM: Accelerating Small Matrix Multiplications by Runtime Code Generation (paper).

SC'16: The International Conference for High Performance Computing, Networking,

Storage and Analysis, Salt Lake City (Utah).

[2] http://sc15.supercomputing.org/sites/all/themes/SC15images/tech_poster/tech_p

oster_pages/post137.html: LIBXSMM: A High Performance Library for Small Matrix

Multiplications (poster and abstract). SC'15: The International Conference for High

Performance Computing, Networking, Storage and Analysis, Austin (Texas).

[3] https://software.intel.com/en-us/articles/intel-xeon-phi-delivers-competitive-

performance-for-deep-learning-and-getting-better-fast: Intel Xeon Phi Delivers

Competitive Performance For Deep Learning - And Getting Better Fast. Article mentioning

LIBXSMM's performance of convolution kernels with DeepBench. Intel Corporation, 2016.

34

LIBXSMM: References

http://www.computer.org/csdl/proceedings/sc/2016/8815/00/8815a981.pdf
http://sc15.supercomputing.org/sites/all/themes/SC15images/tech_poster/poster_files/post137s2-file2.pdf
http://sc15.supercomputing.org/sites/all/themes/SC15images/tech_poster/poster_files/post137s2-file3.pdf
https://github.com/baidu-research/DeepBench/tree/master/code/intel/convolution/libxsmm_conv

35

1. From the industry angle, how do you see the field of machine learning

(ML) evolving over the next decade?

Aside from “insights” on how technology emerges: “pre-hype”, “hype”, “late

adopters”, etc. I am seeing ML still in an explorative phase (wrt known use

cases such as imaging, voice recognition, etc.), scientific and non-imaging

cases still need adequate primitives (e.g., need to currently “color code”

scientific data), a few cases are also entirely “rebadged” applications. I expect

surprisingly powerful applications to surpass the experience of services

(“press 1 to…”), ever ongoing consolidation of for instance services currently

supplied by humans, improved foundations and tighter bounds, and better

estimates for machine learning.

36

Seeded Questions

2. What are the limitations of ML today and the road ahead?

Scientific foundations did not accommodate ML so far (which does not mean

there are no foundations), and better/adapted theoretical coverage is much

needed. We also need “recipes” (not so scientific) on “how to achieve” or

“how to avoid”. On the computation side, I do not see big hurdles to ever

proceed. However, if something shows (proofs?) to be incorrect or

superseded – “ML bits” may leave a significant legacy.

3. Is realtime (~< microsecond) application of sophisticated ML possible?

Inferring from a trained existing model is subject to realtime decision making

(e.g., industrial processes, autonomous driving). Thinking of today (“2…4 GHz

clocked CPU”) – micro (10-6) is in the thousands (103) of cycles/instructions of

giga (109) and enables inference. Learning however, may be possible in that

range as well but requires “scale” or sufficient sources (“data center”). This

makes microsecond-timeframes unreliable for learning given today’s options.

37

Seeded Questions

4. Physicists use ML in many areas: classification of particles and events,

measurement of particle properties from increasingly lower-level data,

some unsupervised learning. In your opinion, what are we not doing

yet? e.g. what exciting new ideas of ML have not yet made it to particle

physics?

I cannot really provide advise on physics. Unfortunately (fortunately?), the

most interesting things are not classified, not learned already, and do not

adhere to an expectation. Perhaps it’s possible to learn “nothing” (e.g., noise

rather than filtering it) in order to find something i.e., the “disjunction of

nothing” (at least to check whether it leaves room for an event or not).

38

Seeded Questions (cont.)

5. Many physicists choose to go on to industry careers. What are the skills

that they need to master in ML to be more competitive.

This has yet to be seen. I have seen fluctuations in industry in both directions

from/to companies, and that includes “known to be good” people as well as

the opposite with no big perceived difference in booking the heads. Supplying

skills will differentiate very soon if not differentiated already. For physicists

(just as for any scientist), I can see a focus on “non-traditional applications” (if

this already exists for ML) might be valuable: working with time series data,

measurements, or sensors and data acquisition in general, uncertainty, and

quantifying natural effects, and being able to embed applications (HW/SW

combo) might be advantageous.

39

Seeded Questions (cont.)

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL

OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL

ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,

RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A

PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER

INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel

microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer

systems, components, software, operations and functions. Any change to any of those factors may cause the results to

vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated

purchases, including the performance of that product when combined with other products.

Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel

logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are

not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other

optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on

microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for

use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel

microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the

specific instruction sets covered by this notice.

Notice revision #20110804

40

