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Do you remember Graphics processors turning into GPGPU? In the early 

days, people used to “concatenate strings” to build GPGPU programs (shaders).

• Implied embedding variables as constants, etc.

• Example: Advantages for Stencil Computation

 Stencil (access-)pattern “baked” into code

 Grid bounds are known constants

 Code unrolling without remainder

[…]

Code specialization is an effective optimization!

• Small-size problems can be effectively hard-coded; no upfront code 

generation needed (may also avoid control-flow to select cases)

• Perfect match for unpredictable use cases (scripting framework, etc.)
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JIT Code Specialization



Direct convolutions are more efficient than a calculation in the frequency space

(There is a cross-over point when it comes to larger convolutions)

• Exploiting the memory bandwidth, caches, and register file is key

• ML frameworks are usually script-enabled (runtime dynamic)

• Network topology (graph structure) determines schedule,

code fusion, etc.

JIT code generation: ideal for small convolutions and graph-based structure

• Can further exploit topology

 Significant advantage with JIT code generation
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Convolutional Neural Networks (CNNs) and JIT



Innovation happens to large extent at ISA level (true for CPU and GPU)

• Domain specific ISA extensions (supported only at intrinsic level)

Examples: CRC32 (SSE 4.2), AES-NI, SHA, F16 LD/ST (F16C)

• General compiler support (regularly generated from high-level code)

Examples: AVX, AVX2, AVX-512

ML domain for Intel Architecture (IA) is enabled at ISA and platform level

• Complemented by segment-specific HW e.g., KNM (KNL derivative)

• Platform level e.g., Xeon sockets shared with FPGA

• ISA level e.g., FMA, QFMA, VNNI, QVNNI
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Hardware Specialization
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Long-term commitment to Open Source Software (OSS)

• Linux OS (not just drivers): Intel contributes and ranks in top-10 since years

• Other contributions: compiler enabling (GCC), math library support (SVML), 

language standards (OpenMP: iOMP  Clang), in general: 01.org

… but Intel software product teams are also commited

• Free-of-charge Intel MKL (supported by user forum), which is also for 

commercial use (Premier support remains commercial)

• Open Source Software: Intel TBB, Intel MKL-DNN

 Domain specific HW/SW strongly asks for “OSS backup”

Avoids “vendor lock”, protects effort on customer’s side, etc.

Contribute and participate without replicating status quo
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Open Source Software at Intel



Common Architecture for Machine & Deep Learning

Targeted acceleration

Most widely deployed machine 
learning platform

Intel® Xeon® Processors
Higher performance, general 

purpose machine learning

Intel® Xeon Phi™ Processors

Higher perf/watt inference, programmable

Intel® Xeon® Processor + FPGA

Best in class neural network training performance

Intel® Xeon® Processor + LakE CREST 

LAKE
CREST

* Intel AI Days (series of worldwide events) shared more vision and roadmap information
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Enhanced ISA QFMA instructions in Knights Mill delivers:

 Higher Peak Flops for CNN, RNN, DNN, LSTM

 Higher Efficiency (One Quad FMA executed in two cycles)

 2X FP operations per cycle
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Knights Mill (KNM): QFMA Instruction*

FMA1
*

+

V1

S1

FMA2
*

+

V2

S2

FMA3
*

+

V3

S3

FMA4
*

+

V4

S4

RES
S1..4

KNM QFMA

Port 0 Port 1

16 x 32b = 512 bits 16 x 32b = 512 bits

2 x 32 = 64 FP32 flops 2 x 32 = 64 FP32 flops

V4FMADDPS (FP32)

2X#

# 2X faster per clock than KNL SP

* See Intel Architecture Reference Manual

QMADD packs 4 IEEE FMA ops in a single 

instruction 



• 2x the flops by using INT16 inputs

• Similar accuracy as SP by using INT32 accumulated output
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Knights Mill (KNM) Variable Precision Instructions*

a1 a0

b1 b0

16b 16b

c0

32b

c0=c0+a0*b0+a1*b1

32b

Int16 inputs

Int32 accumulators

• 2x VNNI operations per port 

• 4x* ML performance than regular AVX512-SP

VNNI QVNNI

INT16 to INT32

KNM 

QVNNI

4X#

# 4x faster per clock than KNL SP

Enabling higher throughput for ML training tasks

2x 64 = 128 VNNI iops 2x 64 = 128 VNNI iops

* See Intel Architecture Reference Manual



Intel® Math Kernel 

Library

Intel® MLSL

Intel® Data 

Analytics 

Acceleration 

Library 

(DAAL)

Intel®

Distribution

OpenSource

Frameworks

Intel Deep 

Learning SDK

Intel® Computer 

Vision SDKIntel® MKL MKL-DNN

High 
Level 

Overview

High performance 

math primitives 

granting low level 

of control

Free open source 

DNN functions for 

high-velocity 

integration with 

deep learning 

frameworks

Primitive 

communication 

building blocks to 

scale deep learning 

framework 

performance over a 

cluster

Broad data analytics 

acceleration object 

oriented library 

supporting distributed 

ML at the algorithm 

level

Most popular and 

fastest growing 

language for 

machine learning

Toolkits driven by 

academia and 

industry for training 

machine learning 

algorithms

Accelerate deep 
learning model 

design, training and 
deployment

Toolkit to develop & 

deploying vision-

oriented solutions 

that harness the full 

performance of Intel 

CPUs and SOC 

accelerators

Primary 

Audience

Consumed by 

developers of 

higher level 

libraries and 

Applications

Consumed by 

developers of the 

next generation of 

deep learning 

frameworks

Deep learning 
framework 

developers and 
optimizers

Wider Data Analytics 

and ML audience, 

Algorithm level 

development for all 

stages of data 

analytics

Application 

Developers and 

Data Scientists

Machine Learning 

App Developers, 

Researchers and 

Data Scientists.

Application 
Developers and Data

Scientists

Developers who 

create vision-oriented 

solutions

Example 

Usage

Framework 

developers call 

matrix

multiplication, 

convolution 

functions

New framework 

with functions 

developers call for 

max CPU 

performance

Framework 

developer calls 

functions to distribute 

Caffe training 

compute across an 

Intel® Xeon Phi™ 

cluster

Call distributed 

alternating least 

squares algorithm for 

a recommendation 

system

Call scikit-learn

k-means function 

for credit card 

fraud detection

Script and train a 

convolution neural 

network for image 

recognition

Deep Learning

training and model 

creation, with 

optimization for 

deployment on 

constrained end 

device

Use deep learning to 

do pedestrian 

detection

…

Libraries, Frameworks and Tools*

* http:// software.intel.com/ai
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Deep learning with Intel MKL-DNN (C/C++ API)
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Intel® MKL-DNN 

Programming Model
• Primitive – any operation 

(convolution, data format re-order, 

memory)

• Operation/memory 

descriptor - convolution 

parameters, memory 

dimensions

• Descriptor - complete 

description of a primitive

• Primitive – a specific 

instance of a primitive relying 

on descriptor

• Engine – execution device (e.g., 

CPU)

• Stream – execution context

/* Initialize CPU engine */

auto cpu_engine = mkldnn::engine(mkldnn::engine::cpu, 0);

/* Create a vector of primitives */

std::vector<mkldnn::primitive> net;

/* Allocate input data and create a tensor structure that describes it */

std::vector<float> src(2 * 3 * 227 * 227);

mkldnn::tensor::dims conv_src_dims = {2, 3, 227, 227};

/* Create memory descriptors, one for data and another for convolution input */

auto user_src_md = mkldnn::memory::desc({conv_src_dims},

mkldnn::memory::precision::f32, mkldnn::memory::format::nchw);

auto conv_src_md = mkldnn::memory::desc({conv_src_dims},

mkldnn::memory::precision::f32, mkldnn::memory::format::any);

/* Create convolution descriptor */

auto conv_desc = mkldnn::convolution::desc(

mkldnn::prop_kind::forward, mkldnn::convolution::direct,

conv_src_md, conv_weights_md, conv_bias_md, conv_dst_md,

{1, 1}, {0, 0}, mkldnn::padding_kind::zero);

/* Create a convolution primitive descriptor */

auto conv_pd = mkldnn::convolution::primitive_desc(conv_desc, cpu_engine);

/* Create a memory descriptor and primitive */

auto user_src_memory_descriptor

= mkldnn::memory::primitive_desc(user_src_md, engine);

auto user_src_memory = mkldnn::memory(user_src_memory_descriptor, src);

/* Create a convolution primitive and add it to the net */

auto conv = mkldnn::convolution(conv_pd, conv_input, conv_weights_memory,

conv_user_bias_memory, conv_dst_memory);

net.push_back(conv);

/* Create a stream, submit all primitives and wait for completion */

mkldnn::stream().submit(net).wait();



Intel DAAL Overview

Industry leading performance, open source C++/Java/Python library 

for machine learning and deep learning optimized for Intel® 

Architectures.

(De-)Compression
PCA

Statistical moments

Variance matrix

QR, SVD, Cholesky

Apriori

Linear regression

Naïve Bayes

SVM

Classifier boosting

Kmeans

EM GMM

Collaborative filtering

Neural Networks

Pre-processing Transformation Analysis Modeling Decision Making
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What’s the difference? Intel MKL vs. Intel DAAL

18

Intel MKL Intel DAAL

DNN primitives Performance critical Performance critical and convenience

DNN layers No All building blocks for NN topology

Optimization solvers No Yes

Performance
Top in the class, full control 

from user side

Build on top of MKL, more convenience, 

on-par with MKL

Distributed memory No (not yet)
APIs and samples for Spark, Hadoop, 

MPI

Language support Low level: C, C++ - coming High level: C++, Java, Python

Target audience

Code ninjas, and users 

who want to speedup 

existing frameworks

Wider ML audience, and end users. For 

example, users who want to prototype or 

build from scratch



Hans Pabst Alexander Heinecke Greg Henry

Intel High Performance and Parallel Computing Lab SSG Pathfinding

Throughput Computing Intel Labs USA

Switzerland

https://github.com/hfp/libxsmm
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General-purpose code cannot be optimal:

• If all cases are supported, the library is too large, too much 

branching, etc.

• Lack of specialization hurts when matrices are 1-10 SIMD 

units on a side.

Runtime specialization captures best of both worlds:

• “Perfect” code for only the cases needed; unused code is 

never generated.

• Just-in-Time (JiT) compilation for general code is hard.

• Specific domain (SMM, DNN, etc.) allows for JiT code 

generation without a compiler.
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LIBXSMM, for small, dense or sparse matrix multiplications, 

and small convolutions on Intel Architecture



Main function domains in LIBXSMM

SMM Small Matrix Multiplication Kernels (original library)

DNN Deep Neural Network Kernels for CNNs (v1.5)

SPMDM Sparse Matrix Dense Matrix Multiplication for CNNs (v1.6)

AUX Mem. alloc., synchronization, debugging, profiling

There is more functionality…

• Tiled GEMM routines based on SMM kernels (also parallelized)

• Stand-alone out-of-place matrix transpose routines (non-JIT, soon JIT)

• Matrix-copy kernels (JIT)

• Other “sparse routines”
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LIBXSMM Function Domains



Highly efficient Frontend

• BLAS compatible (DGEMM, SGEMM)
including LD_PRELOAD

• Support for F77, C89/C99, F2003, C++

• Zero-overhead calls into assembly

• Two-level code cache

Code Generator

• Supports all Intel Architectures since 2005, 
focus on AVX-512

• Prefetching across small GEMMs

• Can generate assembly (*.s), inline 
assembly (*.h/*.c), and in-memory code

Just-In-Time (JIT) Encoder

• Encodes instructions based on basic blocks

• Very fast code generation (no compilation)

LIBXSMM: Overview
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Fallback 

(BLAS)

Backend for static code 

(driver program printing C 

code with inline assembly) 

and JIT code (via API)

Frontend (User API for C/C++ 

and Fortran, build system for 

statically generated kernels, 

code registry/dispatcher, and OS 

portability)

Application



Evaluation of suitable JIT code generators

• Numerous projects evaluated: jitasm, libgccjit, etc.

• Selection/rejection criterions

• Support for recent Intel Architectures,

• Active development

• Interesting candidates (with comments)

• LLVM Full-blown (with IR, phases, etc.), “slow” JIT, complex

• Xbyak compiler and JIT-assembler, incomplete AVX-512 (2015!)

• XED Closed source (2016: https://github.com/intelxed/xed)

Final decision in 2015: own development needed “JIT Assembler”

• Only “a few” instructions needed for a certain domain (still true)

• No legacy support needed (AVX/2 and beyond is fine)
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JIT Technologies (2015)

https://github.com/intelxed/xed


Idea: leveraged GNU Compiler extension “Computed GOTO”

LABEL1:

c = a + b;

LABEL2:

memcpy(code, &&LABEL1, &&LABEL2 - &&LABEL1);

Reality: LIBXSMM manually encodes all instructions needed

• Basic form is encoded with placeholder(s) for varying parts (immediates)

• Emitting an instruction: call a function (arguments may cover instruction 

variants and/or immediates), to write a whole kernel is like using a DSL 

(“assembly programming domain”)
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LIBXSMM Backend: Runtime Code Generation

(Very High Level Idea)



Quick facts about in-memory JIT code generation (JIT assembler)

• No intermediate representation

• No automatic register allocation

• No (compiler-)optimizations

What is the advantage of JIT code?

• It is able to leverage instruction variants/immediates to hardcode runtime 

knowledge (hard to statically compile equivalent code!)

Example: hard-coded stride for load instruction address (broadcast ld.)

• Why is there a particular focus on AVX-512? There is a lot of potential in the 

instruction set e.g., EVEX may also encode certain values into instruction
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LIBXSMM Backend: Code Generation (cont.)



• Column-major storage; working 

on all 9 columns and 8 rows 

simultaneously

• Loads to A (vmovapd) are spaced 

out to cover L1$ misses; K-loop is 

fully unrolled

• B-elements are broadcasted 

within the FMA instruction to save 

execution slots (SIB)

• SIB addressing mode to keep 

instruction size <= 8 byte for 

2 decodes per cycle (16 byte I-

fetch per cycle)

• Multiple accumulators (zmm31-

xmm23 and zmm22-zmm14) for 

hiding FMA latencies

LIBXSMM AVX512 code for N=9
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 Max. theoretical efficiency: 90%!



CPUID-dispatched (critical) code paths

Makes LIBXSMM suitable for Linux 

distributions where the code path (target 

system) is unpredictable (1 package)

Link-time and Runtime Wrapper

Intercepts existing xGEMM calls at 

runtime (LD_PRELOAD) or at link-time 

(LD’s --wrap)

JIT Profiling

Support for Intel VTune Amplifier and  

Linux Perf (contributed by Google)

libxsmm_hsw_dnn_23x23x23_23_23_23_a1_b1_p0::jit

• Encodes an Intel AVX-512 (“knl") double-precision 

kernel ("d") which is multiplying matrices without 

transposing them ("nn"),

• Rest of the name encodes M=N=K=LDA=LDB=LDC=23, 

Alpha=Beta=1.0 (all similar to GEMM),

• No prefetch strategy ("p0").

LIBXSMM: Other Features
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Support for “medium-sized” and “big” matrix multiplication

• Tiled matrix multiplication routines to go beyond SMM

• OpenMP for multicore support

• Thread-based multicore with internal parallel region

• Task based when called from parallel region

• Plan: more LIBXSMM for Eigen-library,

and non-OpenMP based multithreading

Initial support for stand-alone matrix transposes

• Tiled transpose optionally with task-based OpenMP
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LIBXSMM: Developments



* https://github.com/hfp/libxsmm/#interface-for-convolutions
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DNN API for Convolutional Neural Networks (CNNs)

• Introduced in LIBXSMM 1.5, refined in v1.6 and v1.7

• Features:

• Fallback code, JIT-code: AVX2, and AVX-512 (Common, Core, KNM)

• Forward convolution, backward convolution, and weight transformation

• Data formats: NHWC, RSCK, and custom formats

• Compute types: f32, and i16 (+ i8 as in-/output)

• Major additions in v1.8: logical padding, Winograd, KNM

Quick summary

• Handle-based API to generate/perform the requested transformation
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LIBXSMM: Interface for Convolutions (DNN API)



LIBXSMM DNN API

• Sample code (samples/dnn) to also 

act as benchmark for convolutions

• Results

DeepBench: https://software.intel.com/en-

us/articles/intel-xeon-phi-delivers-

competitive-performance-for-deep-learning-

and-getting-better-fast

TensorFlow

https://github.com/hfp/libxsmm/blob/ma

ster/documentation/tensorflow.md

• Initial integration only in master 

revision of TensorFlow

• Scheduled for TF 1.1

LIBXSMM: Getting Started with DNN API
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[1] https://cp2k.org/: Open Source Molecular Dynamics with its DBCSR component processing batches 

of small matrix multiplications ("matrix stacks") out of a problem-specific distributed block-sparse matrix. 

Starting with CP2K 3.0, LIBXSMM can be used to substitute CP2K's 'libsmm' library. Prior to CP2K 3.0, 

only the Intel-branch of CP2K integrated LIBXSMM (see 

https://github.com/hfp/libxsmm/raw/master/documentation/cp2k.pdf).

[2] https://github.com/SeisSol/SeisSol/: SeisSol is one of the leading codes for earthquake scenarios, 

for simulating dynamic rupture processes. LIBXSMM provides highly optimized assembly kernels which 

form the computational back-bone of SeisSol (see https://github.com/TUM-I5/seissol_kernels/).

[3] https://github.com/NekBox/NekBox: NekBox is a highly scalable and portable spectral element 

code, which is inspired by the Nek5000 code. NekBox is specialized for box geometries, and intended 

for prototyping new methods as well as leveraging FORTRAN beyond the FORTRAN 77 standard. 

LIBXSMM can be used to substitute the MXM_STD code. Please also note LIBXSMM's NekBox

reproducer.

[4] https://github.com/Nek5000/Nek5000: Nek5000 is the open-source, highly-scalable, always-

portable spectral element code from https://nek5000.mcs.anl.gov/. The development branch of the 

Nek5000 code incorporates LIBXSMM.

[5] http://pyfr.org/: PyFR is an open-source Python based framework for solving advection-diffusion 

type problems on streaming architectures using the flux reconstruction approach. PyFR 1.6.0 optionally 

incorporates LIBXSMM as a matrix multiplication provider for the OpenMP backend. Please also note 

LIBXSMM's PyFR-related code sample.
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LIBXSMM: Applications HPC

https://www.cp2k.org/version_history
https://github.com/cp2k/cp2k/tree/intel
https://github.com/hfp/libxsmm/raw/master/documentation/cp2k.pdf
https://github.com/TUM-I5/seissol_kernels/
https://nek5000.mcs.anl.gov/
https://github.com/Nek5000/NekBox/blob/box/mxm_std.F90
https://github.com/hfp/libxsmm/tree/master/samples/nek#nek-sample-collection
https://nek5000.mcs.anl.gov/
https://github.com/Nek5000/Nek5000/blob/develop/core/mxm_wrapper.f
http://pyfr.org/user_guide.php
https://github.com/hfp/libxsmm/tree/master/samples/pyfr


[6] https://github.com/baidu-research/DeepBench: The primary purpose of DeepBench is to 

benchmark operations that are important to deep learning on different hardware platforms. LIBXSMM's 

DNN primitives have been incorporated into DeepBench to demonstrate an increased performance of 

deep learning on Intel hardware. In addition, LIBXSMM's DNN sample folder contains scripts to run 

convolutions extracted from popular benchmarks in a stand-alone fashion.

[7] https://www.tensorflow.org/: TensorFlow™ is an open source software library for numerical 

computation using data flow graphs. TensorFlow was originally developed by researchers and engineers 

working on the Google Brain Team for the purposes of conducting machine learning and deep neural 

networks research. LIBXSMM can be used to increase the performance of TensorFlow on Intel 

hardware.
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LIBXSMM: Applications ML

https://github.com/baidu-research/DeepBench/tree/master/code/intel/convolution/libxsmm_conv
https://github.com/hfp/libxsmm/tree/master/samples/dnn
https://github.com/hfp/libxsmm/blob/master/documentation/tensorflow.md#tensorflow-with-libxsmm


[1] http://sc16.supercomputing.org/presentation/?id=pap364&sess=sess153: 

LIBXSMM: Accelerating Small Matrix Multiplications by Runtime Code Generation (paper). 

SC'16: The International Conference for High Performance Computing, Networking, 

Storage and Analysis, Salt Lake City (Utah).

[2] http://sc15.supercomputing.org/sites/all/themes/SC15images/tech_poster/tech_p

oster_pages/post137.html: LIBXSMM: A High Performance Library for Small Matrix 

Multiplications (poster and abstract). SC'15: The International Conference for High 

Performance Computing, Networking, Storage and Analysis, Austin (Texas).

[3] https://software.intel.com/en-us/articles/intel-xeon-phi-delivers-competitive-

performance-for-deep-learning-and-getting-better-fast: Intel Xeon Phi Delivers 

Competitive Performance For Deep Learning - And Getting Better Fast. Article mentioning 

LIBXSMM's performance of convolution kernels with DeepBench. Intel Corporation, 2016.
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LIBXSMM: References

http://www.computer.org/csdl/proceedings/sc/2016/8815/00/8815a981.pdf
http://sc15.supercomputing.org/sites/all/themes/SC15images/tech_poster/poster_files/post137s2-file2.pdf
http://sc15.supercomputing.org/sites/all/themes/SC15images/tech_poster/poster_files/post137s2-file3.pdf
https://github.com/baidu-research/DeepBench/tree/master/code/intel/convolution/libxsmm_conv
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1. From the industry angle, how do you see the field of machine learning 

(ML) evolving over the next decade?

Aside from “insights” on how technology emerges: “pre-hype”, “hype”, “late 

adopters”, etc.   I am seeing ML still in an explorative phase (wrt known use 

cases such as imaging, voice recognition, etc.), scientific and non-imaging 

cases still need adequate primitives (e.g., need to currently “color code” 

scientific data), a few cases are also entirely “rebadged” applications. I expect 

surprisingly powerful applications to surpass the experience of services 

(“press 1 to…”), ever ongoing consolidation of for instance services currently 

supplied by humans, improved foundations and tighter bounds, and better 

estimates for machine learning.
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Seeded Questions



2. What are the limitations of ML today and the road ahead?

Scientific foundations did not accommodate ML so far (which does not mean 

there are no foundations), and better/adapted theoretical coverage is much 

needed. We also need “recipes” (not so scientific) on “how to achieve” or 

“how to avoid”. On the computation side, I do not see big hurdles to ever 

proceed. However, if something shows (proofs?) to be incorrect or 

superseded – “ML bits” may leave a significant legacy.

3. Is realtime (~< microsecond) application of sophisticated ML possible?

Inferring from a trained existing model is subject to realtime decision making 

(e.g., industrial processes, autonomous driving). Thinking of today (“2…4 GHz 

clocked CPU”) – micro (10-6) is in the thousands (103) of cycles/instructions of 

giga (109) and enables inference. Learning however, may be possible in that 

range as well but requires “scale” or sufficient sources (“data center”). This 

makes microsecond-timeframes unreliable for learning given today’s options.

37

Seeded Questions



4. Physicists use ML in many areas: classification of particles and events, 

measurement of particle properties from increasingly lower-level data, 

some unsupervised learning. In your opinion, what are we not doing 

yet? e.g. what exciting new ideas of ML have not yet made it to particle 

physics?

I cannot really provide advise on physics. Unfortunately (fortunately?), the 

most interesting things are not classified, not learned already, and do not 

adhere to an expectation. Perhaps it’s possible to learn “nothing” (e.g., noise 

rather than filtering it) in order to find something i.e., the “disjunction of 

nothing” (at least to check whether it leaves room for an event or not).
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Seeded Questions (cont.)



5. Many physicists choose to go on to industry careers. What are the skills 

that they need to master in ML to be more competitive.

This has yet to be seen. I have seen fluctuations in industry in both directions 

from/to companies, and that includes “known to be good” people as well as 

the opposite with no big perceived difference in booking the heads. Supplying 

skills will differentiate very soon if not differentiated already. For physicists 

(just as for any scientist), I can see a focus on “non-traditional applications” (if 

this already exists for ML) might be valuable: working with time series data, 

measurements, or sensors and data acquisition in general, uncertainty, and 

quantifying natural effects, and being able to embed applications (HW/SW 

combo) might be advantageous.
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