
Data analysis in R
IML Machine Learning Workshop, CERN

Andrew John Lowe
Wigner Research Centre for Physics,
Hungarian Academy of Sciences

Downloading and installing R

You can follow this tutorial while I talk

1. Download R for Linux, Mac or Windows from the
Comprehensive R Archive Network (CRAN):
https://cran.r-project.org/

I Latest release version 3.3.3 (2017-03-06, “Another Canoe”)

RStudio is a free and open-source integrated development
environment (IDE) for R

2. Download RStudio from https://www.rstudio.com/
I Make sure you have installed R first!
I Get RStudio Desktop (free)
I Latest release version 1.0.136

https://cran.r-project.org/
https://www.rstudio.com/

Rstudio

RStudio looks something like this.

RStudio

RStudio with source editor, console, environment and plot pane.

What is R?

I An open source programming language for statistical computing
I R is a dialect of the S language
I S is a language that was developed by John Chambers and

others at Bell Labs
I S was initiated in 1976 as an internal statistical analysis

environment — originally implemented as FORTRAN libraries
I Rewritten in C in 1988
I S continues to this day as part of the GNU free software project
I R created by Ross Ihaka and Robert Gentleman in 1991
I First announcement of R to the public in 1993
I GNU General Public License makes R free software in 1995
I Version 1.0.0 release in 2000

Why use R?
I Free
I Runs on almost any standard computing platform/OS
I Frequent releases; active development
I Very active and vibrant user community

I Estimated ~2 million users worldwide
I R-help and R-devel mailing lists, Stack Overflow
I Frequent conferences; useR!, EARL, etc.
I 388 Meetup groups worldwide
I R-Ladies chapters in many major cities

I Big-name backing: Microsoft, Google, IBM, Oracle, . . .
I Functionality is divided into modular packages

I Download and install just what you need
I There are now > 10000 packages on CRAN

I Graphics capabilities very sophisticated
I Useful for interactive work, but contains a powerful

programming language for developing new tools

Any other reasons for using R?

I R enables fast prototyping and high-level abstractions that let
you concentrate on what you want to achieve, rather than on
the mechanics of how you might do it

I Enables you to stay “in the flow” of data analysis

I Latest machine learning algorithms are available
I Your technical questions have probably already been answered

on Stack Overflow
I R offers a pleasant user experience

R allows you to concentrate on your data, not on your tools

KDNuggets 2016 Advanced Analytics Survey

KDnuggets: R remains leading tool, but Python usage growing very fast.

O’Reilly 2016 Data Science Salary Survey

O’Reilly: SQL is king, but R and Python very popular.

Drawbacks of R
I Essentially based on 40-year-old technology
I Functionality is based on consumer demand and user

contributions
I Objects must generally be stored in physical memory

I Your data must fit within the contiguous RAM of your hardware
I True of other software such as scikit-learn, WEKA, and TMVA

I There have been advancements to deal with this, including:
I Interfaces to Spark and Hadoop
I Packages ff and bigmemory
I File-backed data objects

I Big RAM is eating Big Data!
I You can now get 2 TB X1 instances on Amazon EC2
I Google and Microsoft also offer instances with large RAM
I Trend driven by companies who increasingly are replacing local

hardware with cloud computing and need massive compute
resources

Resources for learning R

I Online courses on Coursera, edX, DataCamp, and elsewhere
I For machine learning specifically, the book Introduction to

Statistical Learning (Gareth James, Daniela Witten, Trevor
Hastie and Robert Tibshirani) can be downloaded for free from
http://www-bcf.usc.edu/~gareth/ISL/ and contains
many examples in R

I Learn R, in R, with swirl interactive courses:

install.packages("swirl")
require(swirl)
swirl()

http://www-bcf.usc.edu/~gareth/ISL/

Design of the R system

I The R system is divided into two conceptual parts:
I The “base” R system that you download from CRAN
I Everything else

I R functionality is divided into a number of packages

Where to get packages

I CRAN https://cran.r-project.org
I GitHub
I Bioconductor https://www.bioconductor.org/

I Mostly bioinformatics and genomics stuff

I Neuroconductor https://www.neuroconductor.org/
I The new kid on the block: computational imaging software for

brain imaging
I RForge http://rforge.net/

I Not so well known

I Some .tar.gz file you downloaded from a website
I Use caution!

https://cran.r-project.org
https://www.bioconductor.org/
https://www.neuroconductor.org/
http://rforge.net/

Installing from CRAN

install.packages("devtools") # Install it
require(devtools) # Load it
library(devtools) # Alternatively, load like this

You might need to specify a repository:

install.packages("devtools",
repos = "http://stat.ethz.ch/CRAN/")

List of mirrors here:
https://cran.r-project.org/mirrors.html

https://cran.r-project.org/mirrors.html

Installing from Bioconductor and Neuroconductor

source("https://bioconductor.org/biocLite.R")
biocLite()
biocLite("GenomicFeatures") # For example

source("https://neuroconductor.org/neurocLite.R")
neuro_install(c("fslr", "hcp")) # Install these two

Installing from GitHub

install.packages("devtools") # Install devtools first!
require(devtools) # Load devtools
install_github("mlr-org/mlr") # Install mlr
require(mlr) # Load mlr

Tip: What if the package you want has been removed from, say,
CRAN or Bioconductor? Both have read-only mirrors of their R
repositories. These mirrors can be a useful alternative source for
packages that have disappeared from their R repositories.

How to get help

I Typing ?command will display the help pages for command, e.g.:

This will display help on plotting of R objects:
?plot

I RTFM! Google for package reference manuals on CRAN
I CRAN packages usually come with example code; usually found

at the bottom of the help pages or on the CRAN webpage for
the package (search for “Vignettes”)

I CRAN Task Views: view packages for particular tasks
https://cran.r-project.org/web/views/

I Click Help on the RStudio toolbar for cheatsheets and quick
reference guides

https://cran.r-project.org/web/views/

Other ways for getting help

I recommend this.

A good way to learn R

Another gripping page-turner.

Packages for fun/strange things you can do with R

I twitteR: send tweets (or do sentiment analysis)
I ubeR: call an Uber
I rpushbullet: send a notification to your phone

I (“Your code finished running!”)

I predatory: keep track of predatory publishers
I xkcd: draw your plots in xkcd style
I remoji: plot using emoji
I magick: advanced image processing
I catterplots: plot using cats

Image processing with magick

0

40

80

120

5 10 15 20 25
speed

di
st

Obviously, you can replace Prof. Frink with (for example) the logo for your
institute or experiment.

Meow
Random Cats

some cats

ot
he

r
ca

ts

−10 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

−
1.

97
−

1.
4

−
0.

84
−

0.
28

0.
29

0.
85

1.
41

Fundamentals

Data types

I R has five basic or “atomic” classes of objects:
I character
I numeric (real numbers)
I integer
I complex
I logical (Boolean TRUE/FALSE or T/F in abbreviated form)

I The most basic object is a vector
I Vectors are homogeneous containers (elements all same type)

Numbers

I By default, numbers are objects of the class numeric
I If you explicitly want an integer, you need to specify the L

suffix: 42L
I Special numbers:

I Inf: infinity
I NaN: undefined value; “not a number”, e.g. 0/0. Another

example: pT of subleading jet in an event with only one jet can
be represented with a NaN. Arithmetic with a NaN value results
in a NaN. NaNs can also be thought of as representing a
missing value.

I Get numerical characteristics of your machine:

.Machine
For information on interpreting the output:
?.Machine

Attributes
R objects can have attributes:

I Names
I Dimensions (e.g., matrices)
I Length (e.g., vectors)
I Class

Create an empty matrix with 2 columns and 3 rows:
m <- matrix(ncol = 2, nrow = 3)
Dimensions:
dim(m)

[1] 3 2

class(m)

[1] "matrix"

Evaluation
I When a complete expression is entered at the prompt, it is

evaluated and the result of the evaluated expression is returned.
The result may be auto-printed.

I <- is the assignment operator (you might also see = in code)
I Tip: keyboard shortcut in RStudio is Alt+- (Windows/Linux)

or Option+- (Mac)

This is a comment!
x <- 42 # Nothing printed
x # Auto-printed

[1] 42

print(x) # Explicit printing

[1] 42

Sequences

x <- 1:5 # Create integer sequence
x

[1] 1 2 3 4 5

x <- seq(from = 0, to = 1, by = 0.2)
x

[1] 0.0 0.2 0.4 0.6 0.8 1.0

Vectors
The c() (“concatenate”) function can be used to create vectors of
objects:

x <- c(0.3, 0.5) # Numeric
x <- c(TRUE, FALSE) # Logical
x <- c(T, F) # Logical
x <- c("A", "B", "C") # Character
x <- c(1+5i, 3-2i) # Complex

Using the vector() function:

x <- vector("numeric", length = 10)
x

[1] 0 0 0 0 0 0 0 0 0 0

Mixing objects

y <- c(1.7, "a") # y is character
y <- c(TRUE, 2) # y is numeric
y <- c("a", TRUE) # y is character

When different objects are mixed in a vector, coercion occurs so
that every element in the vector is of the same class.

Explicit coercion
Objects can be explicitly coerced from one class to another using
the as.* functions, if available:

x <- 0:6
class(x)

[1] "integer"

as.logical(x)

[1] FALSE TRUE TRUE TRUE TRUE TRUE TRUE

as.character(x)

[1] "0" "1" "2" "3" "4" "5" "6"

Explicit coercion

Nonsensical coercion results in NAs (missing values):

x <- c("a", "b", "c")
as.numeric(x)

Warning: NAs introduced by coercion

[1] NA NA NA

Matrices
Matrices are vectors with a dimension attribute. The dimension
attribute is itself an integer vector of length 2 (nrow, ncol):

m <- matrix(1:6, nrow = 2, ncol = 3)
m

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

dim(m)

[1] 2 3

Matrices are constructed column-wise, so entries can be thought of
starting in the “upper left” corner and running down the columns.

Reshaping matrices
Matrices can also be created directly from vectors by adding a
dimension attribute:

v <- 1:10
v

[1] 1 2 3 4 5 6 7 8 9 10

dim(v) <- c(2, 5)
v

[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10

We can also reshape matrices (unroll them) using the same method.

cbind-ing and rbind-ing
Matrices can be created by column-binding or row-binding with
cbind() and rbind():

x <- 1:3
y <- 10:12
cbind(x, y)

x y
[1,] 1 10
[2,] 2 11
[3,] 3 12

rbind(x, y)

[,1] [,2] [,3]
x 1 2 3
y 10 11 12

Lists
Lists are a special type of vector that can contain elements of
different classes:

x <- list(1, "a", TRUE, 1 + 4i)
x

[[1]]
[1] 1
##
[[2]]
[1] "a"
##
[[3]]
[1] TRUE
##
[[4]]
[1] 1+4i

Factors

Factors are used to represent categorical data. Factors can be
unordered or ordered. One can think of a factor as an integer vector
where each integer has a label:

I signal/background
I bjet/light
I male/female
I benign/malignant
I low/middle/high
I etc.

Similar to enums in C++

Factors
The order of the levels can be set using the levels argument to
factor(). This can be important in linear modelling because the
first level is used as the baseline level:

x <- factor(c("signal", "signal",
"background", "signal"))

x

[1] signal signal background signal
Levels: background signal

x <- factor(c("signal", "signal",
"background", "signal"),

levels = c("signal", "background"))
x

[1] signal signal background signal
Levels: signal background

Factors

unclass(x)

[1] 1 1 2 1
attr(,"levels")
[1] "signal" "background"

Missing values
Missing values are denoted by NA or NaN for undefined
mathematical operations:

x <- 0/0
is.na(x) # Is x NA?

[1] TRUE

is.nan(x) # Is x NaN?

[1] TRUE

I A NaN value is also NA but the converse is not true
I Systematic use of NaNs in programming languages was

introduced by the IEEE 754 floating-point standard in 1985

Data frames
Data frames are used to store tabular data, and are like pandas
DataFrames and similar to ROOT Ntuples

x <- data.frame(foo = 1:3, bar = c(T, T, F))
x

foo bar
1 1 TRUE
2 2 TRUE
3 3 FALSE

colnames(x) # Names of the variables

[1] "foo" "bar"

rownames(x) # To identify specific observations

[1] "1" "2" "3"

Names
R objects can also have names, which is very useful for writing
readable code and self-describing objects:

x <- 1:3
names(x) <- c("foo", "bar", "qux")
x

foo bar qux
1 2 3

m <- matrix(1:4, nrow = 2, ncol = 2)
dimnames(m) <- list(c("a", "b"), c("c", "d"))
m

c d
a 1 3
b 2 4

Subsetting

There are a number of operators that can be used to extract subsets
of R objects.

I [always returns an object of the same class as the original; can
be used to select more than one element

I [[is used to extract elements of a list or a data frame; it can
only be used to extract a single element and the class of the
returned object will not necessarily be a list or data frame

I $ is used to extract elements of a list or data frame by name;
semantics are similar to that of [[

I The [[operator can be used with computed indices; $ can
only be used with literal names

I The [[operator can take an integer sequence
I Partial matching of names is allowed with [[and $

Subsetting

x <- c("A", "B", "C", "D", "E")
x[1] # This is the FIRST element!

[1] "A"

x[1:5]

[1] "A" "B" "C" "D" "E"

x[x > "A"]

[1] "B" "C" "D" "E"

Subsetting a matrix
x <- matrix(1:6, 2, 3)
x

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

x[1, 2]

[1] 3

x[1,] # Note missing index

[1] 1 3 5

Subsetting lists
x <- list(foo = 1:4, bar = 0.6)
x[1]

$foo
[1] 1 2 3 4

class(x[1])

[1] "list"

x[[1]]

[1] 1 2 3 4

class(x[[1]])

[1] "integer"

Subsetting lists

x$bar

[1] 0.6

class(x["bar"])

[1] "list"

class(x[["bar"]])

[1] "numeric"

Removing missing values

A common task is to remove missing values (NAs)

x <- c(1, 2, NA, 4, NA, 5)
is.na(x)

[1] FALSE FALSE TRUE FALSE TRUE FALSE

x[!is.na(x)]

[1] 1 2 4 5

Removing missing values
airquality[3:6,] # A toy dataset

Ozone Solar.R Wind Temp Month Day
3 12 149 12.6 74 5 3
4 18 313 11.5 62 5 4
5 NA NA 14.3 56 5 5
6 28 NA 14.9 66 5 6

good <- complete.cases(airquality) # Logical vector
airquality[good,][3:6,] # Remove NAs

Ozone Solar.R Wind Temp Month Day
3 12 149 12.6 74 5 3
4 18 313 11.5 62 5 4
7 23 299 8.6 65 5 7
8 19 99 13.8 59 5 8

Reading data

There are a few principal functions reading data into R:

I read.table, read.csv, for reading tabular data
I readLines, for reading lines of a text file
I source, for reading in R code files (inverse of dump)
I dget, for reading in R code files (inverse of dput)
I load, for reading in saved workspaces
I unserialize, for reading single R objects in binary form

There are analogous functions for writing data to files:
write.table, writeLines, dump, dput, save, serialize

read.csv and read.table

The read.csv function is one of the most commonly used
functions for reading data:

data <- read.csv("foo.txt")

R will automatically

I skip lines that begin with a #
I figure out how many rows there are
I figure what type of variable is in each column of the table
I read.table is identical to read.csv except that the default

separator is a tab

Faster methods for reading and writing data

I The time taken to read in data is not something we normally
have to consider in HEP; one of ROOT’s strengths is its ability
to allow the user access to huge datasets in the blink of an eye

I Sadly, this is not true of R
I If your data is big, you might be waiting minutes or even hours

with read.csv
I The data.table package provides fread and fwrite; both

are often many times faster than the base R read.csv and
write.csv methods

I Alternatively, use the sqldf package to subset your data with
a SQL query before you read it in — good if you know SQL!

Bang!

This is what happens if you try to read in more data than will fit in RAM.

RAM considerations

I Know Thy System
I A 64-bit OS will usually allow you to squeeze more out of RAM

than a 32-bit OS
I What other applications are in use?

I Close those umpteen Chrome tabs!

I You can delete objects you no longer need with rm(foo)

Stored Object Caches for R
I use the SOAR package to store objects out of memory in a stored
object cache on disk

Sys.setenv(R_LOCAL_CACHE=".R_Test") # Store stuff here
dummy <- rnorm(1e6, mean = 2) # 1e6 random normals
ls() # What's in my environment?

[1] "dummy"

Store(dummy) # Cache dummy data
ls() # Gone from RAM:

character(0)

mean(dummy) # But we can read it

[1] 1.999484

Interfaces to the outside world

Data are read in using connection interfaces. Connections can be
made to files (most common) or to other more exotic things.

I file, opens a connection to a file
I gzfile, opens a connection to a file compressed with gzip
I bzfile, opens a connection to a file compressed with bzip2
I url, opens a connection to a webpage

Type, for example, ?file to find out more

Reading ROOT data

I At some point, you’re going to want/need to do this
I I use Adam Lyon’s RootTreeToR package
I Debuted at useR! 2007 conference:

http://user2007.org/program
I No longer maintained, sadly

I Latest version 6 years old

I You need ROOT installed, but no need to run ROOT
I Launch R/RStudio from a terminal where ROOTSYS is set

I Haven’t checked if this works with ROOT 6
I What if this stops working with newer ROOT versions?

I Trivial to write a stand-alone C++ utility to parse command
line strings, like those you would pass to Draw(), and pass them
to TTreePlayer and use it to dump out the data into a text file

I Or use a R↔Python interface package to run root_numpy,
then use feather to write and then read back the data into R

http://user2007.org/program

RootTreeToR

devtools::install_github("lyonsquark/RootTreeToR")
require(RootTreeToR)
Open and load ROOT tree:
rt <- openRootChain("TreeName", "FileName")
N <- nEntries(rt) # Number of rows of data
Names of branches:
branches <- RootTreeToR::getNames(rt)
Read in a subset of branches (vars), M rows:
df <- toR(rt, vars, nEntries = M) # df: a data.frame

Other packages for reading ROOT data
I AlphaTwirl: a Python library for summarising event data in

ROOT Trees (https://github.com/TaiSakuma/AlphaTwirl)

“The library contains a set of Python classes which can be
used to loop over event data, summarize them, and store
the results for further analysis or visualization. Event data
here are defined as any data with one row (or entry) for
one event; for example, data in ROOT TTrees are event
data when they have one entry for one proton-proton
collision event. Outputs of this library are typically not
event data but multi-dimensional categorical data, which
have one row for one category. Therefore, the outputs can
be imported into R or pandas as data frames. Then, users
can continue a multi-dimensional categorical analysis with
R, pandas, and other modern data analysis tools.”

I For more details, ask the author Tai Sakuma (he’s here)

https://github.com/TaiSakuma/AlphaTwirl

Control structures
I Structures that will be familiar to C++ programmers include:

if, else, for, while, break, and return. repeat executes
an infinite loop, next skips an iteration of a loop.

for(i in 1:5) print(letters[i])

[1] "a"
[1] "b"
[1] "c"
[1] "d"
[1] "e"

I Although these structures exist, vectorisation means that loops
are not as common as in other languages

I It’s usually faster to use a function from the *apply family

Functions
Functions are created using the function() directive and are
stored as R objects just like anything else. In particular, they are R
objects of class function.

my_function <- function(foo, bar, ...) {
Do something interesting

}

Functions in R are “first class objects”, which means that they can
be treated much like any other R object. Importantly,

I Functions can be passed as arguments to other functions
I Functions can be nested, so that you can define a function

inside of another function
I The return value of a function is the last expression in the

function body to be evaluated

Function arguments
I R functions arguments can be matched positionally or by name
I In addition to not specifying a default value, you can also set

an argument value to NULL:

f <- function(a, b = 1, c = 2, d = NULL) { # stuff }

I Use ... to indicate a variable number of arguments to pass to
an inner function:

myplot <- function(x, y, type = "l", ...) {
plot(x, y, type = type, ...)

}

I Useful when the number of arguments passed to the function
cannot be known in advance

Inspecting function implementations

I Strip the parentheses from a function to see its implementation:

myplot

function(x, y, type = "l", ...) {
plot(x, y, type = type, ...)
}

Interlude: simplify your code with pipes

%>%

Data pipelines

R is a functional language, which means that your code often
contains a lot of parentheses. And complex code often means
nesting those parentheses together, which make code hard to read
and understand:

foo <- do_more_stuff(
do_something(

read_some_data(data), some.args,
)

)
print(foo)

Using %>%
I The dplyr package provides powerful functions for operating

on data, and relies on the %>% pipeline operator (provided by
magrittr), which takes the results of the previous operation
and passes it as the first argument of the next:

read_some_data(data) %>% do_something(some.args) %>%
do_more_stuff %>% print

I Unwrap nested function calls (I call this dematryoshkafication)
I Data manipulation with %>% mirrors the way we think about

processing data: like on a production line, performing actions
on an object sequentially, in a stepwise manner

I This results in more readable code, and can be used to reduce
the creation of intermediate data objects, which saves RAM

I Takes a mental switch to do analysis this way, but utterly
addictive once you get used to it

End of interlude

Vectorised operations

Many operations in R are vectorised:

x <- 1:4; y <- 5:8 # Two statements on one line
x * y

[1] 5 12 21 32

Vectorised matrix operations

a <- rep(10, 4) # 10 repeated 4 times
x <- matrix(1:4, 2, 2); y <- matrix(a, 2, 2)
x * y # element-wise multiplication

[,1] [,2]
[1,] 10 30
[2,] 20 40

x %*% y # true matrix multiplication

[,1] [,2]
[1,] 40 40
[2,] 60 60

Loop functions

The *apply family of functions enable looping at the command line:

I lapply: Loop over a list and evaluate a function on each
element

I sapply: Same as lapply but try to simplify the result
I apply: Apply a function over the margins of an array
I tapply: Apply a function over subsets of a vector
I mapply: Multivariate version of lapply

Loop functions: lapply

lapply always returns a list, regardless of the class of the input:

x <- list(a = 1:5, b = rnorm(10))
lapply(x, mean)

$a
[1] 3
##
$b
[1] 0.1878958

I The actual looping is done internally in C code

Loop functions: sapply

sapply will try to simplify the result of lapply if possible:

sapply(x, mean)

a b
3.0000000 0.1878958

Loop functions: apply

I apply is used to a evaluate a function (often an anonymous
one) over the margins of an array

I Usage: apply(X, MARGIN, FUN, ...)
I X is an array
I MARGIN is an integer vector indicating which margins should be
“retained”.

I FUN is a function to be applied
I ... is for other arguments to be passed to FUN

x <- matrix(rnorm(12), 4, 3)
apply(x, 2, mean)

[1] -0.002790676 1.185769439 0.339651320

Loop functions: apply

A more complicated example:

x <- matrix(rnorm(120000), 4, 30000)
apply(x, 1, FUN = function(x) {

quantile(x, probs = c(0.025, 0.975))
})

[,1] [,2] [,3] [,4]
2.5% -1.942963 -1.943087 -1.969441 -1.967983
97.5% 1.971000 1.961710 1.945407 1.958806

Some useful functions for exploring your data: str

str(mtcars)

'data.frame': 32 obs. of 11 variables:
$ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
$ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
$ disp: num 160 160 108 258 360 ...
$ hp : num 110 110 93 110 175 105 245 62 95 123 ...
$ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
$ wt : num 2.62 2.88 2.32 3.21 3.44 ...
$ qsec: num 16.5 17 18.6 19.4 17 ...
$ vs : num 0 0 1 1 0 1 0 1 1 1 ...
$ am : num 1 1 1 0 0 0 0 0 0 0 ...
$ gear: num 4 4 4 3 3 3 3 4 4 4 ...
$ carb: num 4 4 1 1 2 1 4 2 2 4 ...

Some useful functions for exploring your data: summary

summary(mtcars[1:3])

mpg cyl disp
Min. :10.40 Min. :4.000 Min. : 71.1
1st Qu.:15.43 1st Qu.:4.000 1st Qu.:120.8
Median :19.20 Median :6.000 Median :196.3
Mean :20.09 Mean :6.188 Mean :230.7
3rd Qu.:22.80 3rd Qu.:8.000 3rd Qu.:326.0
Max. :33.90 Max. :8.000 Max. :472.0

Some useful functions for exploring your data: head

head(mtcars[1:5])

mpg cyl disp hp drat
Mazda RX4 21.0 6 160 110 3.90
Mazda RX4 Wag 21.0 6 160 110 3.90
Datsun 710 22.8 4 108 93 3.85
Hornet 4 Drive 21.4 6 258 110 3.08
Hornet Sportabout 18.7 8 360 175 3.15
Valiant 18.1 6 225 105 2.76

Invoke the RStudio viewer
View(mtcars)

Simulations
Functions for probability distributions in R

I rnorm: generate random Normal variates with a given mean
and standard deviation

I dnorm: evaluate the Normal probability density (with a given
mean/SD) at a point (or vector of points)

I pnorm: evaluate the cumulative distribution function for a
Normal distribution

I rpois: generate random Poisson variates with a given rate

Probability distribution functions usually have four functions
associated with them. The functions are prefixed with a

I d for density
I r for random number generation
I p for cumulative distribution
I q for quantile function

Graphics

Plotting using R base plots: histograms

hist(airquality$Ozone, col = "skyblue")

Histogram of airquality$Ozone

airquality$Ozone

F
re

qu
en

cy

0 50 100 150

0
10

20
30

Plotting using R base plots: (Tukey) boxplots

airquality <- transform(airquality,
Month = factor(Month))

boxplot(Ozone ~ Month, airquality, col = "powderblue")

5 6 7 8 9

0
50

10
0

15
0

I Box: interquartile range (IQR)
I Line: median
I Whiskers: 1.5×IQR
I Outliers: in a Tukey boxplot, points beyond 1.5×IQR

Plotting using R base plots: scatter plots
x <- rchisq(10000, df = 5)
y <- rgamma(10000, shape = 3)
plot(x, y, pty = 19, col = "slateblue")
rug(x, col = "steelblue")

0 5 10 15 20 25

0
2

4
6

8
10

12

x

y

Plotting using R base plots: scatter plots

smoothScatter(x, y)

0 5 10 15 20 25

0
2

4
6

8
10

12

x

y

Plotting using R base plots: scatter plot matrices

plot(iris, col = iris$Species)

Sepal.Length

2.0 2.5 3.0 3.5 4.0 0.5 1.0 1.5 2.0 2.5

4.
5

6.
0

7.
5

2.
0

3.
0

4.
0

Sepal.Width

Petal.Length

1
3

5
7

0.
5

1.
5

2.
5

Petal.Width

4.5 5.5 6.5 7.5 1 2 3 4 5 6 7 1.0 1.5 2.0 2.5 3.0

1.
0

2.
0

3.
0

Species

Plotting using R base plots: line graphs
data("UKDriverDeaths")
plot(UKDriverDeaths)

Time

U
K

D
riv

er
D

ea
th

s

1970 1975 1980 1985

10
00

15
00

20
00

25
00

Plotting with ggplot2

I An implementation of the Grammar of Graphics by Leland
Wilkinson

I Written by Hadley Wickham
I Grammar of graphics represents an abstraction of graphic

ideas/objects
I Think “noun”, “verb”, “adjective” for graphics
I Plots are made up of aesthetics (size, shape, colour) and geoms

(points, lines)
I See the ggplot2 cheatsheet (Help → Cheatsheets in RStudio)
I The range of plots you can make is huge; I’ll show only a small

selection
I See my talk in the jet tagging session for more examples

Example ggplot2 plot: histogram

require(ggplot2, quietly = TRUE)
ggplot(diamonds, aes(price, fill = cut)) +

geom_histogram(binwidth = 500)

0

2500

5000

7500

10000

0 5000 10000 15000 20000
price

co
un

t

cut

Fair

Good

Very Good

Premium

Ideal

Example ggplot2 plot: scatter plot

require(gapminder, quietly = TRUE)
ggplot(

data = gapminder, aes(x = lifeExp, y = gdpPercap)) +
geom_point(

aes(color = continent, shape = continent)) +
scale_y_log10()

1e+03

1e+04

1e+05

40 60 80
lifeExp

gd
pP

er
ca

p

continent

Africa

Americas

Asia

Europe

Oceania

Example ggplot2 plot: box plot

ggplot(InsectSprays,
aes(x = spray, y = count, fill = spray)) +

geom_boxplot()

0

10

20

A B C D E F
spray

co
un

t

spray

A

B

C

D

E

F

Example ggplot2 plot: violin plot

ggplot(InsectSprays,
aes(x = spray, y = count, fill = spray)) +

geom_violin()

0

10

20

A B C D E F
spray

co
un

t

spray

A

B

C

D

E

F

Example ggplot2 plot: scatter plot with a LOESS (locally
weighted scatterplot smoothing) fit and 95% confidence
interval band

qplot(speed, dist, data = cars,
geom = c("point", "smooth"))

0

40

80

120

5 10 15 20 25
speed

di
st

Machine learning

Machine learning in R
I There are a huge number of packages available for machine

learning in R
I See CRAN Machine Learning task view

I Rather than interacting with algorithms directly, it’s easier to
drive them from a framework that provides a unified interface
for performing common operations

I These provide functions for data preprocessing (cleaning), data
splitting (creating partitions and resampling), training and
testing functions, and utilities for generating confusion matrices
and ROC plots

I Two excellent frameworks for machine learning are the caret
and mlr packages

I Another useful package is H2O, which includes algorithms
implemented in Java (for speed) for deep learning and boosted
decision trees, and has an interface to Spark for parallelised
machine learning on large datasets — well worth checking out!

Machine learning in R

I Caret and mlr are to R what scikit-learn is to Python
I These are powerful tools that I can’t cover in the available time
I Instead, I’ll show a few examples of what you can do with them

Caret

Load data and partition for training and testing:

library(mlbench, quietly = T); data(Sonar)
library(caret, quietly = T)
set.seed(42)

inTraining <- createDataPartition(
Sonar$Class, p = 0.75, list = FALSE)

training <- Sonar[inTraining,]
testing <- Sonar[-inTraining,]

Caret

Create a grid of hyperparameters to tune over:

gbmGrid <- expand.grid(interaction.depth = c(1, 5, 9),
n.trees = (1:30) * 50,
shrinkage = 0.1,
n.minobsinnode = 20)

Caret

Create train control for 5-fold CV, train GBM:

fitControl <- trainControl(# 5-fold CV
method = "cv",
number = 5)

Using R's formula language: Class ~ .
fit Class using all features in the data
gbmFit <- train(Class ~ ., data = training,

method = "gbm",
trControl = fitControl,
tuneGrid = gbmGrid,
verbose = FALSE)

Caret
Predict on held-out test data and generate confusion matrix:

predictions <- predict(gbmFit, newdata = testing)
confusionMatrix(predictions, testing$Class)

Confusion Matrix and Statistics
##
Reference
Prediction M R
M 25 6
R 2 18
##
Accuracy : 0.8431
95% CI : (0.7141, 0.9298)
No Information Rate : 0.5294
P-Value [Acc > NIR] : 2.534e-06
##
Kappa : 0.6822
Mcnemar's Test P-Value : 0.2888
##
Sensitivity : 0.9259
Specificity : 0.7500
Pos Pred Value : 0.8065
Neg Pred Value : 0.9000
Prevalence : 0.5294
Detection Rate : 0.4902
Detection Prevalence : 0.6078
Balanced Accuracy : 0.8380
##
'Positive' Class : M
##

Caret

Examining the effect of hyperparameter settings:

ggplot(gbmFit)

0.750

0.775

0.800

0.825

0 500 1000 1500
Boosting Iterations

A
cc

ur
ac

y
(C

ro
ss

−
V

al
id

at
io

n)

Max Tree Depth

1

5

9

Caret
Plot variable importance for top 10 variables:

imp <- varImp(gbmFit); plot(imp, top = 10)

Importance

V48

V43

V45

V10

V13

V4

V36

V9

V12

V11

40 50 60 70 80 90 100

mlr
A simple stratified cross-validation of linear discriminant analysis
with mlr:

require(mlr)
data(iris)
Define the task
task <- makeClassifTask(id = "tutorial",

data = iris,
target = "Species")

Define the learner
lrn <- makeLearner("classif.lda")
Define the resampling strategy
rdesc <- makeResampleDesc(method = "CV",

stratify = TRUE)
Do the resampling
r <- resample(learner = lrn, task = task,

resampling = rdesc, show.info = FALSE)

mlr

Results:

Get the mean misclassification error:
r$aggr

mmce.test.mean
0.02

Deep learning with H2O
require(h2o);
h2o.no_progress()
localH2O <- h2o.init() # Initialise

Connection successful!
##
R is connected to the H2O cluster:
H2O cluster uptime: 1 hours 54 minutes
H2O cluster version: 3.10.3.6
H2O cluster version age: 1 month
H2O cluster name: H2O_started_from_R_andy_kkj112
H2O cluster total nodes: 1
H2O cluster total memory: 0.84 GB
H2O cluster total cores: 2
H2O cluster allowed cores: 2
H2O cluster healthy: TRUE
H2O Connection ip: localhost
H2O Connection port: 54321
H2O Connection proxy: NA
R Version: R version 3.2.5 (2016-04-14)

Deep learning with H2O

Load prostate cancer dataset, partition into training and test sets:

prosPath <- system.file("extdata",
"prostate.csv",
package = "h2o")

prostate.hex <- h2o.importFile(
path = prosPath,
destination_frame = "prostate.hex")

prostate.split <- h2o.splitFrame(data = prostate.hex,
ratios = 0.75)

prostate.train <- as.h2o(prostate.split[[1]])
prostate.test <- as.h2o(prostate.split[[2]])

Deep learning with H2O

Train deep learning neural net with 5 hidden layers, ReLU with
dropout, 10000 epochs, then predict on held-out test set:

model <- h2o.deeplearning(
x = setdiff(colnames(prostate.train),

c("ID","CAPSULE")),
y = "CAPSULE",
training_frame = prostate.train,
activation = "RectifierWithDropout",
hidden = c(10, 10, 10, 10, 10),
epochs = 10000)

predictions <- h2o.predict(model, prostate.test)

Deep learning with H2O

Calculate AUC:

suppressMessages(require(ROCR, quietly = T))
preds <- as.data.frame(predictions)
labels <- as.data.frame(prostate.test[2])
p <- prediction(preds, labels)
auc.perf <- performance(p, measure = "auc")
auc.perf@y.values

[[1]]
[1] 0.7744834

Deep learning with H2O
Plot ROC curve:

plot(performance(p,
measure = "tpr", x.measure = "fpr"),

col = "red"); abline(a = 0, b = 1, lty = 2)

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Reproducible research

Quick live demo (if there is time)

That’s probably enough for now!

Thanks for listening!

	Fundamentals
	%>%
	End of interlude
	Graphics
	Machine learning
	Reproducible research

