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KINEMATIC SELECTIONS: 

PUPPI AK8 JET 
PT > 500 GEV, |η| < 2.5 
(VETO e,µ > 10 GEV) 

TRIGGER: 
•AK8PFHT650,TrimMass50 OR 
AK8PFJet360,TrimMass30 OR 
PFHT800 

SUBSTRUCTURE SELECTIONS: 

SOFT DROP/MMDT JET MASS 
(Z = 0.1, β = 0) 

Τ21DDT < 0.38 

[PUPPI’ED INPUTS] BKG: QCD  
SM CANDLES: W/Z + JETS
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O U T L I N E
• Motivation 

• Experimental techniques 

• Jet substructure and grooming 

• Double-b-tagging 

• Event selection 

• Data-driven QCD estimation 

• Higgs pT modeling 

• Results 

• Summary and outlook
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M O T I VAT I O N
• Search for gg → H → bb 

historically thought impossible 
due to  overwhelming and 
difficult to predict QCD 
background 

• We can access this process in 
the boosted dijet topology  

• Probing Higgs couplings at high 
momentum transfer (Q) 
accesses large new physics 
energy scale (Λ)
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FIG. 2: Sample of the leading-order Feynman diagrams, in the Full Theory with finite top mass e↵ects, contributing
to the scalar plus jet production at the LHC.

Analogously to the production of the Higgs, the dominant form of dark matter production at the LHC would be
through gluon fusion, as the tree-level couplings to the light quarks are Yukawa-suppressed. This production mode is
dominantly through the loop induced g � g � �(A) coupling. Representative diagrams for the leading-jet process are
shown in Figure 2. Note that in the production of the mediators in channels with associated b or t quarks is largely
dominated by the tree-level terms, though as in Higgs production, loop e↵ects can be important in the �(A)+ heavy
flavor channels.

If the external particles in the loop induced g � g � �(A) interaction are on-shell, then it can be exactly calculated
in a single coupling value, as in Higgs physics. A similar diagram induces couplings to photons. At leading-order, the
on-shell Lagrangians for our two benchmark models gain the additional terms [47–51]
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We should emphasize that the e↵ective coupling approximation can be accurately calculated for arbitrary top and
mediator masses. However, for associated production of � or A plus jets at collider, with momenta and energy scales
where the loop induced top contributions start to be resolved, that is pT,� = O(2mt), this e↵ective operator breaks
down and the one-loop dynamics should be taken into account.

In Section IV we will discuss further details of the missing transverse energy searches with associated jets used the
LHC experiments. For this section, it is su�cient to state that significant transverse missing momentum is required
(that is, large transverse momentum of the � or A), along with large momentum of at least one jet, in order to pass
the trigger and selection criteria. In events without additional heavy flavor tagging, the primary production vertex
for the � or A will be through the top-loop coupling to gluons, in association with a hard emission of initial state
radiation, see Figure 2.

In Figure 3, we show the missing transverse momentum distribution (MET or /ET ) for pp ! �̄� + j at the
8 TeV LHC, setting m� = 10 GeV. Following our sketch (in Figure 1) of the inclusion of integrated-out particles as
we resolve e↵ective operators, we present the di↵erential MET distribution from dark matter production for three
di↵erent interaction hypothesis:

1. for the direct production through an EFT interaction with gluons, ↵S/⇤3 [�̄�Gµ⌫Gµ⌫ ];

2. for the production via a scalar mediator with an e↵ective g � g � � interaction vertex, as in Eq. (3). For
comparison purposes, we show both a light (100 GeV) on-shell mediator and very heavy (1200 GeV) mediator
which gives dark matter through o↵-shell production; and

3. for the production via a scalar mediator where the top-loop has been taken into account via the exact one-loop
computation. We show once more a very light (m� = 100 GeV) and a very heavy (m� ! 1) mediator scenarios.

All these distributions were generated using MCFMv6.8 [52, 53], where we have extended the process implementation
pp ! H(A) + j ! ⌧+⌧� + j in MCFM to accommodate the o↵-shell mediator production and decay to a dark matter
pair. The hard scales are defined as µ2

F = µ2

R = m2

�(A)

+ p2

Tj . For further details on the event generation see
Section IV.
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dominated by the tree-level terms, though as in Higgs production, loop e↵ects can be important in the �(A)+ heavy
flavor channels.

If the external particles in the loop induced g � g � �(A) interaction are on-shell, then it can be exactly calculated
in a single coupling value, as in Higgs physics. At leading-order, the on-shell Lagrangians for our two benchmark
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We should emphasize that the e↵ective coupling approximation can be accurately calculated for arbitrary top and
mediator masses. However, for associated production of � or A plus jets at collider, with momenta and energy scales
where the loop induced top contributions start to be resolved, that is pT,� = O(2mt), this e↵ective operator breaks
down and the one-loop dynamics should be taken into account. Also note that the scalar coupling to gluons is
suppressed relative to the pseudoscalar by & 30% for mediator masses below ⇠ 400 GeV. This will result in slightly
weaker bounds on the scalar model relative to pseudoscalars in channels where the gluon coupling dominates (i.e.,
LHC monojets).

In Section IV we will discuss further details of the missing transverse energy searches with associated jets used the
LHC experiments. For this section, it is su�cient to state that significant transverse missing momentum is required
(that is, large transverse momentum of the � or A), along with large momentum of at least one jet, in order to pass
the trigger and selection criteria. In events without additional heavy flavor tagging, the primary production vertex
for the � or A will be through the top-loop coupling to gluons, in association with a hard emission of initial state
radiation, see Figure 2.

In Figure 3, we show the missing transverse momentum distribution (MET or /ET ) for pp ! �̄� + j at the
8 TeV LHC, setting m� = 10 GeV. Following our sketch (in Figure 1) of the inclusion of integrated-out particles as
we resolve e↵ective operators, we present the di↵erential MET distribution from dark matter production for three
di↵erent interaction hypothesis:

1. for the direct production through an EFT interaction with gluons, ↵s/⇤3 [�̄�Gµ⌫Gµ⌫ ];

2. for the production via a scalar mediator with an e↵ective g � g � � interaction vertex, as in Eq. (3). For
comparison purposes, we show both a light (100 GeV) on-shell mediator and very heavy (1200 GeV) mediator
which gives dark matter through o↵-shell production; and

3. for the production via a scalar mediator where the top-loop has been taken into account via the exact one-loop
computation. We show once more a very light (m� = 100 GeV) and a very heavy (m� ! 1) mediator scenarios.
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Table 11.1: State-of-the-art of the theoretical calculations in the main different
Higgs production channels in the SM, and main MC tools used in the simulations

ggF VBF VH tt̄H

Fixed order: Fixed order: Fixed order: Fixed order:

NNLO QCD + NLO EW NNLO QCD NLO QCD+EW NLO QCD

(HIGLU, iHixs, FeHiPro, HNNLO) (VBF@NNLO) (V2HV and HAWK) (Powheg)

Resummed: Fixed order: Fixed order: (MG5 aMC@NLO)

NNLO + NNLL QCD NLO QCD + NLO EW NNLO QCD

(HRes) (HAWK) (VH@NNLO)

Higgs pT :

NNLO+NNLL

(HqT, HRes)

Jet Veto:

N3LO+NNLL

g

g

t

tW, Z

W,Z

q

q

g

g

q

q

q

q
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(c) (d)

H

HH
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Figure 11.1: Generic Feynman diagrams contributing to the Higgs production
in (a) gluon fusion, (b) weak-boson fusion, (c) Higgs-strahlung (or associated
production with a gauge boson) and (d) associated production with top quarks.

procedures when including higher-order corrections matched to parton shower simulations
as well as uncertainties due to hadronization and parton-shower events.

Table 11.2, from Refs. [42–45], summarizes the Higgs boson production cross sections
and relative uncertainties for a Higgs mass of 125GeV, for

√
s = 7, 8, 13 and 14TeV. The

Higgs boson production cross sections in pp̄ collisions at
√

s = 1.96TeV for the Tevatron
are obtained from Ref. [47].

(i) Gluon fusion production mechanism

At high-energy hadron colliders, the Higgs boson production mechanism with the
largest cross section is the gluon-fusion process, gg → H + X , mediated by the exchange
of a virtual, heavy top quark [48]. Contributions from lighter quarks propagating in the
loop are suppressed proportional to m2

q . QCD radiative corrections to the gluon-fusion

October 6, 2016 14:51

t,et,X?

(a) (b)

Figure 3: Higgs transverse-momentum spectrum in the SM (black, solid) compared to separate
variations of the dimension-six operators for (a) 0GeV pT  400GeV and (b) 400GeV pT 
800GeV. The lower frame shows the ratio with respect to the SM prediction. The shaded band in
the ratio indicates the uncertainty due to scale variations. See text for more details.
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Figure 4: Higgs transverse-momentum spectrum in the SM (black, solid) compared to simultaneous
variations of ct and cg for (a) 0GeV pT  400GeV and (b) 400GeV pT  800GeV. The lower
frame shows the ratio with respect to the SM prediction. The shaded band in the ratio indicates
the uncertainty due to scale variations. See text for more details.
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S O  H O W  C A N  W E  D O  I T ?
• Inspiration from boosted Z’+jet search? 

• Use ISR jet to get you above the 
trigger threshold 

• Requires one boosted fat jet 

• Substructure and jet grooming to 
enhance S/B 

• Data-driven background estimate 

• Inspiration from machine learning and 
b-tagging? 

• Double b-tagger selects fat jets 
containing two b-quarks

✔

✔

✔

Z ′

q

q̄

g

q̄

q

1

✔

subjets fatjet double-b

τ-axis1

τ-axis2
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S U B S T R U C T U R E  A N D  TA G G I N G

B O O S T E D  G G F  H ( B B )
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J E T  M A S S
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• Provides good separation between W/Z/H-jets from q/g jets  

• Grooming removes soft and wide-angle radiation (soft 
drop / modified mass soft drop)

1 Introduction

The study of jet substructure has significantly matured over the past five years [1–3], with

numerous techniques proposed to tag boosted objects [4–46], distinguish quark from gluon jets

[44, 47–51], and mitigate the e↵ects of jet contamination [6, 52–61]. Many of these techniques

have found successful applications in jet studies at the Large Hadron Collider (LHC) [50, 62–

89], and jet substructure is likely to become even more relevant with the anticipated increase

in energy and luminosity for Run II of the LHC.

In addition to these phenomenological and experimental studies of jet substructure, there

is a growing catalog of first-principles calculations using perturbative QCD (pQCD). These

include more traditional jet mass and jet shape distributions [90–95] as well as more so-

phisticated substructure techniques [44, 59, 60, 96–103]. Recently, Refs. [59, 60] considered

the analytic behavior of three of the most commonly used jet tagging/grooming methods—

trimming [53], pruning [54, 55], and mass drop tagging [6]. Focusing on groomed jet mass

distributions, this study showed how their qualitative and quantitative features could be un-

derstood with the help of logarithmic resummation. Armed with this analytic understanding

of jet substructure, the authors of Ref. [59] developed the modified mass drop tagger (mMDT)

which exhibits some surprising features in the resulting groomed jet mass distribution, in-

cluding the absence of Sudakov double logarithms, the absence of non-global logarithms [104],

and a high degree of insensitivity to non-perturbative e↵ects.

In this paper, we introduce a new tagging/grooming method called “soft drop decluster-

ing”, with the aim of generalizing (and in some sense simplifying) the mMDT procedure. Like

any grooming method, soft drop declustering removes wide-angle soft radiation from a jet in

order to mitigate the e↵ects of contamination from initial state radiation (ISR), underlying

event (UE), and multiple hadron scattering (pileup). Given a jet of radius R0 with only two

constituents, the soft drop procedure removes the softer constituent unless

Soft Drop Condition:
min(pT1, pT2)

pT1 + pT2
> zcut

✓
�R12

R0

◆�

, (1.1)

where pT i are the transverse momenta of the constituents with respect to the beam, �R12

is their distance in the rapidity-azimuth plane, zcut is the soft drop threshold, and � is an

angular exponent. By construction, Eq. (1.1) fails for wide-angle soft radiation. The degree

of jet grooming is controlled by zcut and �, with � ! 1 returning back an ungroomed jet. As

we explain in Sec. 2, this procedure can be extended to jets with more than two constituents

with the help of recursive pairwise declustering.1

Following the spirit of Ref. [59], the goal of this paper is to understand the analytic

behavior of the soft drop procedure, particularly as the angular exponent � is varied. There

are two di↵erent regimes of interest. For � > 0, soft drop declustering removes soft radiation

1The soft drop procedure takes some inspiration from the “semi-classical jet algorithm” [58], where a variant

of Eq. (1.1) with zcut = 1/2 and � = 3/2 is tested at each stage of recursive clustering (unlike declustering

considered here).
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Figure 3: (a) Schematic of a 1-prong jet, showing the dominant soft (green) and collinear

(blue) radiation, as well as the characteristic scales z
s

and ✓
cc

. (b) Schematic of a 2-

prong jet, showing the dominant soft (green), collinear (blue), and collinear-soft (orange)

radiation, as well as the characteristic scales, z
s

, ✓
cc

, z
cs

, and ✓
12

.

ment itself allows for a powerful understanding of the jet’s energy and angular structure.

Arguments along these lines are ubiquitous in the e↵ective field theory (EFT) community.

For example, in Soft Collinear E↵ective Theory (SCET) [108–111], they are used to identify

the appropriate EFT modes required to describe a particular set of measurements.

In the context of power counting, soft and collinear emissions are defined by their

parametric scalings. A soft emission, denoted by s, is defined by

z
s

⌧ 1 , ✓
sx

⇠ 1 . (2.12)

Here, z
s

is the momentum fraction, as defined in Eq. (2.2), and ✓
sx

is the angle to any

other particle x in the jet, including other soft particles. The scaling ✓
sx

⇠ 1 means that

✓
sx

is not assigned any parametric scaling associated with the measurement. A collinear

emission, denoted by c, is defined by

z
c

⇠ 1 , ✓
cc

⌧ 1 , ✓
cs

⇠ 1 . (2.13)

Here, ✓
cc

is the angle between two collinear particles, while ✓
cs

is the angle between a

collinear particle and a soft particle. In an EFT context, overlaps between soft and collinear

regions are systematically removed using the zero-bin procedure [112], but this is not

relevant for the arguments here. The soft and collinear modes are illustrated in Fig. 3a

and their scalings are summaried in Table 1a.

We now use the simple example of e
2

to demonstrate how an applied measurement

sets the scaling of soft and collinear radiation.7 The analysis of more general observables

7In this analysis, we do not consider the scale set by the jet radius, R. For R ⌧ 1, the jet radius must

also be considered in the power counting and the scale R appears in perturbative calculations. For recent

work on the resummation of logarithms associated with this scale, see Refs. [113–116].
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For example, in Soft Collinear E↵ective Theory (SCET) [108–111], they are used to identify

the appropriate EFT modes required to describe a particular set of measurements.

In the context of power counting, soft and collinear emissions are defined by their

parametric scalings. A soft emission, denoted by s, is defined by
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Here, z
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emission, denoted by c, is defined by
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Here, ✓
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is the angle between two collinear particles, while ✓
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is the angle between a

collinear particle and a soft particle. In an EFT context, overlaps between soft and collinear

regions are systematically removed using the zero-bin procedure [112], but this is not

relevant for the arguments here. The soft and collinear modes are illustrated in Fig. 3a

and their scalings are summaried in Table 1a.

We now use the simple example of e
2

to demonstrate how an applied measurement

sets the scaling of soft and collinear radiation.7 The analysis of more general observables

7In this analysis, we do not consider the scale set by the jet radius, R. For R ⌧ 1, the jet radius must

also be considered in the power counting and the scale R appears in perturbative calculations. For recent

work on the resummation of logarithms associated with this scale, see Refs. [113–116].
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Their performance were studied in simulation [48], before and after grooming. From these
studies we conclude that N2 with b = 1 is the variable which provides the most discrimination
power and shows similar discrimination power as t21

The N2 observable has one clear advantage over t21, besides being theoretically well defined,
and that is its stability against jet mass and pT.

Because we want to preserve a smoothly falling jet mass distribution as a function of pT, it is
natural to determine a substructure variable’s stability as a function of the QCD scaling variable
r = log(m2

SD/p2
T). Since the QCD (quark or gluon-initated) jet mass scales with pT, decorrelat-

ing a given substructure variable as a function of r and pT is a well-bounded procedure.

The decorrelation procedure applied is derived for a specific background efficiency point. The
procedure is described in great detail in this document [48].

Given this map of the N1
2 as a function of r, at certain fixed background efficiency eQCD, we

define a transformation which fixes the background efficiency at eQCD. The background effi-
ciency point has been chosen following the optimization described in sec. 4 for tDDT

21 which
corresponds to eQCD = 26%.

The 2D map is shown in Fig. 22 for eQCD = 26%. Therefore, the transformation is defined as:

N1,DDT
2 = N1

2 � N1
2 (cut at 26%) (12)

Using this transformation map, we can show now the correlation between N1,DDT
2 and r. We

see this in Fig. 21 where now by definition the background is flat at 26% at a cut value of
N1,DDT

2 = 0.

In Fig. 23 the jet N1,DDT
2 distribution is shown for the pT leading jet for simulated signal (left)

and background (right) events.
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• Here’s what the boosted 
Z’+jet analysis looks like after 
kinematic selection 

• Difficult to use the QCD 
Monte Carlo to predict the 
background in this phase 
space 

• Fitting this mass distribution 
directly requires high order 
polynomial → large 
background uncertainties 

• Can we try a data-driven 
sideband prediction?
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S I D E B A N D  Q C D  P R E D I C T I O N

9

ρ = LOG(MSD2/ PT2)

N12

cut
SIGNAL REGION

CONTROL REGION

• Core idea: predict QCD jet mass distribution from region failing the tagger 

• Possible problem: does tagger sculpt jet mass distribution?
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ρ (MASS-LIKE VARIABLE)

cut

• Solution: define new substructure variable intended to be 
decorrelated from jet mass 

S I D E B A N D  Q C D  P R E D I C T I O N

Transformation: 
         N1

2                   →       N1
2

DDT = N1
2 - N1

2 (26% quantile)

N12DDT
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11

• Jet mass distribution is fit down to 40 GeV  

EXO-17-001

background prediction 
from failing region allows 

good precision
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ρ (MASS-LIKE VARIABLE)

cut
SIGNAL REGION

CONTROL REGION

• Can we use the same QCD prediction when using a double-b tagger? 

• Yes — if it’s sufficiently decorrelated from jet mass and pT

S I D E B A N D  Q C D  P R E D I C T I O N  ( R E D U X )

DOUBLE 
B-TAG
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• With large boost, both b quarks merge into a single large radius jets 

• How can we best exploit the presence of the b-quarks in the jet in a 
tagger?
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M U LT I P L E  A P P R O A C H E S

• Based on standard  
b-tagging algorithm 

• Not designed for two 
b’s in the same jet

• Defines sub-jets 

• Standard b-tagging 
applied to each subject

• Identifies two b hadron decay 
chains in the same fat jet 

• Does not define subjects, but 
uses N-subjettiness axes 

subjets fatjet double-b

τ-axis1

τ-axis2
ΔR<0.4
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D O U B L E  B - TA G G E R
• Combines tracking and vertexing 

information in a multivariate 
classifier with 27 observables  

• Targets the bb signal with 
additional aims: 

• jet mass and pT independent  

• cover a very wide pT range  

• inputs are chosen to avoid pT 
correlation  

• e.g. no ΔR-like variables, no 
substructure info 

Caterina Vernieri (FNAL)

double-b tagger 

• Combines tracking and vertexing information 
with a multivariate approach 

• 27 observables are used 
• It targets the bb̄ signal aiming to be: 

• mass independent 
• pT independent 

• training strategy is designed to cover a very wide 
pT range 

• inputs are chosen to avoid pT correlation  
• no dR-like variables, no substructure info

21
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C O R R E L AT I O N S ?

• No strong correlations in double-b tagger versus mSD or pT 
in QCD background
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E V E N T  S E L E C T I O N

B O O S T E D  G G F  H ( B B )

17
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• Online selection asks for a 
high pT single jet or large 
hadronic activities  

• pT > 360 GeV (m > 30) or  
Σ pT > 900 GeV 

• Offline: Highest pT jet 

• pT > 450 GeV, |η| < 2.5 

• jet mass mSD > 40 GeV 

• lepton veto, pT
miss veto 

• -6.0 < ρ = log(mSD
2

/ pT
2) < -2.1

E V E N T  S E L E C T I O N
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E V E N T  S E L E C T I O N

Substructure: two prong discrimination, 
~50% sig. efficiency, 26% bkg. efficiency
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S I G N A L  C O M P O S I T I O N

• Analysis is inclusive in Higgs 
production mode 

• Dominant contribution is 
ggF (74%) 

• 12% VBF  

• 8% VH 

• 6% ttH

HIG-17-010

http://cms.cern.ch/iCMS/analysisadmin/cadilines?line=HIG-17-010
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• Backgrounds estimated from data 

• QCD (90%): from failing 
double b-tag x transfer factor 

• tt+jets (3%): from 1μ control 
region 

• Backgrounds estimated from MC 
including NLO QCD + EWK 
corrections and jet mass, 
resolution, and  substructure 
tagging scale factors  

• W/Z+jets (5%) 

• single-t, VV (<1%)

B A C K G R O U N D  S T R AT E G Y
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• If the double b-tagger were 
completely uncorrelated from 
jet mass and pT, the transfer 
factor would be flat 

• Taylor expand as a polynomial 
in ρ and pT to parameterize 
any small correlations

Q C D  T R A N S F E R  FA C T O R

6 5 Background estimate

The main background component, QCD multijet production, in the signal-enriched passing
region is estimated from the signal-depleted failing region. Since the double-b tagger discrim-
inator value and the jet mass are largely uncorrelated, the passing and failing regions have
similar QCD jet mass distributions. A transfer factor F accounts for the residual difference in
the QCD jet mass shape between the two regions and is determined by a fit to the data. This
procedure is illustrated in Fig. 3.
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Figure 3: double-b tagger vs. jet pT and mSD
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If the double-b tagger discriminator value were completely uncorrelated from the jet pT and
mSD, the transfer factor would be constant. To account for deviations from this, F is Taylor-
expanded as a polynomial in r and pT, rather than mSD and pT, as the distribution of r is
expected to be roughly invariant in all regions of pT. For a given mSD and pT bin, the QCD
yields in the passing and failing regions are related to each other through the transfer factor
F (r, pT) = Âk,` ak`r

k p`T. The QCD yield of the passing region in the i-th mSD bin, with cen-
tral value mSDi and j-th pT bin with value pT j, corresponding to the midpoint of the bin in
logarithmic scale, is given by,

NQCD
pass (mSDi, pT j) = eQCD ·
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`
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· NQCD

fail (mSDi, pT j) , (4)

where eQCD, the polynomial coefficients ak`, and the QCD contribution in each bin of the failing
region, NQCD

fail (mSDi, pT j) are treated as free parameters determined by the fit to the data.

To determine the order of polynomial necessary to fit the data, an F-test is performed. Based
on its results, a polynomial second order in r and first order in pT was selected.

The mSD distribution is binned in 23 bins of 7 GeV width from 40 GeV to 201 GeV and the pT
distribution is binned in six bins of increasing width from 450 GeV to 1 TeV. The signal, tt,
and resonant electroweak backgrounds (W/Z) contributions are added as binned templates
derived from MC to both the failing and passing regions.
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The main background component, QCD multijet production, in the signal-enriched passing
region is estimated from the signal-depleted failing region. Since the double-b tagger discrim-
inator value and the jet mass are largely uncorrelated, the passing and failing regions have
similar QCD jet mass distributions. A transfer factor F accounts for the residual difference in
the QCD jet mass shape between the two regions and is determined by a fit to the data. This
procedure is illustrated in Fig. 3.
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If the double-b tagger discriminator value were completely uncorrelated from the jet pT and
mSD, the transfer factor would be constant. To account for deviations from this, F is Taylor-
expanded as a polynomial in r and pT, rather than mSD and pT, as the distribution of r is
expected to be roughly invariant in all regions of pT. For a given mSD and pT bin, the QCD
yields in the passing and failing regions are related to each other through the transfer factor
F (r, pT) = Âk,` ak`r

k p`T. The QCD yield of the passing region in the i-th mSD bin, with cen-
tral value mSDi and j-th pT bin with value pT j, corresponding to the midpoint of the bin in
logarithmic scale, is given by,
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where eQCD, the polynomial coefficients ak`, and the QCD contribution in each bin of the failing
region, NQCD

fail (mSDi, pT j) are treated as free parameters determined by the fit to the data.

To determine the order of polynomial necessary to fit the data, an F-test is performed. Based
on its results, a polynomial second order in r and first order in pT was selected.

The mSD distribution is binned in 23 bins of 7 GeV width from 40 GeV to 201 GeV and the pT
distribution is binned in six bins of increasing width from 450 GeV to 1 TeV. The signal, tt,
and resonant electroweak backgrounds (W/Z) contributions are added as binned templates
derived from MC to both the failing and passing regions.

• F-test determined 2nd order 
in ρ and 1st order in pT is 
sufficient to fit the ratio
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ρ (MASS-LIKE VARIABLE)

cut

SIGNAL REGION

CONTROL REGION

• Pre-fit both regions have the same predicted shape

DOUBLE 
B-TAG
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6 5 Background estimate

The main background component, QCD multijet production, in the signal-enriched passing
region is estimated from the signal-depleted failing region. Since the double-b tagger discrim-
inator value and the jet mass are largely uncorrelated, the passing and failing regions have
similar QCD jet mass distributions. A transfer factor F accounts for the residual difference in
the QCD jet mass shape between the two regions and is determined by a fit to the data. This
procedure is illustrated in Fig. 3.
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If the double-b tagger discriminator value were completely uncorrelated from the jet pT and
mSD, the transfer factor would be constant. To account for deviations from this, F is Taylor-
expanded as a polynomial in r and pT, rather than mSD and pT, as the distribution of r is
expected to be roughly invariant in all regions of pT. For a given mSD and pT bin, the QCD
yields in the passing and failing regions are related to each other through the transfer factor
F (r, pT) = Âk,` ak`r

k p`T. The QCD yield of the passing region in the i-th mSD bin, with cen-
tral value mSDi and j-th pT bin with value pT j, corresponding to the midpoint of the bin in
logarithmic scale, is given by,

NQCD
pass (mSDi, pT j) = eQCD ·
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where eQCD, the polynomial coefficients ak`, and the QCD contribution in each bin of the failing
region, NQCD

fail (mSDi, pT j) are treated as free parameters determined by the fit to the data.

TRANSFER FACTOR
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ρ (MASS-LIKE VARIABLE)
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• Post-fit signal region has slightly different shape with the 
ratio given by the polynomial transfer factor
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6 5 Background estimate

The main background component, QCD multijet production, in the signal-enriched passing
region is estimated from the signal-depleted failing region. Since the double-b tagger discrim-
inator value and the jet mass are largely uncorrelated, the passing and failing regions have
similar QCD jet mass distributions. A transfer factor F accounts for the residual difference in
the QCD jet mass shape between the two regions and is determined by a fit to the data. This
procedure is illustrated in Fig. 3.
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If the double-b tagger discriminator value were completely uncorrelated from the jet pT and
mSD, the transfer factor would be constant. To account for deviations from this, F is Taylor-
expanded as a polynomial in r and pT, rather than mSD and pT, as the distribution of r is
expected to be roughly invariant in all regions of pT. For a given mSD and pT bin, the QCD
yields in the passing and failing regions are related to each other through the transfer factor
F (r, pT) = Âk,` ak`r

k p`T. The QCD yield of the passing region in the i-th mSD bin, with cen-
tral value mSDi and j-th pT bin with value pT j, corresponding to the midpoint of the bin in
logarithmic scale, is given by,
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where eQCD, the polynomial coefficients ak`, and the QCD contribution in each bin of the failing
region, NQCD

fail (mSDi, pT j) are treated as free parameters determined by the fit to the data.
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• Two views of the same transfer factor function

F I N A L  T R A N S F E R  FA C T O R
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6 5 Background estimate

The main background component, QCD multijet production, in the signal-enriched passing
region is estimated from the signal-depleted failing region. Since the double-b tagger discrim-
inator value and the jet mass are largely uncorrelated, the passing and failing regions have
similar QCD jet mass distributions. A transfer factor F accounts for the residual difference in
the QCD jet mass shape between the two regions and is determined by a fit to the data. This
procedure is illustrated in Fig. 3.
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Figure 3: double-b tagger vs. jet pT and mSD
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If the double-b tagger discriminator value were completely uncorrelated from the jet pT and
mSD, the transfer factor would be constant. To account for deviations from this, F is Taylor-
expanded as a polynomial in r and pT, rather than mSD and pT, as the distribution of r is
expected to be roughly invariant in all regions of pT. For a given mSD and pT bin, the QCD
yields in the passing and failing regions are related to each other through the transfer factor
F (r, pT) = Âk,` ak`r

k p`T. The QCD yield of the passing region in the i-th mSD bin, with cen-
tral value mSDi and j-th pT bin with value pT j, corresponding to the midpoint of the bin in
logarithmic scale, is given by,

NQCD
pass (mSDi, pT j) = eQCD ·
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fail (mSDi, pT j) , (4)

where eQCD, the polynomial coefficients ak`, and the QCD contribution in each bin of the failing
region, NQCD

fail (mSDi, pT j) are treated as free parameters determined by the fit to the data.

To determine the order of polynomial necessary to fit the data, an F-test is performed. Based
on its results, a polynomial second order in r and first order in pT was selected.

The mSD distribution is binned in 23 bins of 7 GeV width from 40 GeV to 201 GeV and the pT
distribution is binned in six bins of increasing width from 450 GeV to 1 TeV. The signal, tt,
and resonant electroweak backgrounds (W/Z) contributions are added as binned templates
derived from MC to both the failing and passing regions.
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Figure 24: Same as Figure 23, but for the Higgs transverse momentum distribution at low pT .
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Figure 25: Same as Figure 24 for pT,H > 60 GeV.
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arXiv:1610.07922 (YR4)

≪ 1 TeV

• Other CMS Higgs results use Powheg: 1 jet + mt = ∞, 
arXiv:1111.2854 

• We want to account for both effects of higher order 
corrections and finite top mass 

• No real NLO + finite top mass calculation available 
in the literature 

• LO H+0-2jet, finite mt, pt

H

 up to 600 GeV, including WW 
acceptance cuts arXiv:1410.5806 → We build on this 

•  

•  
 

Disclaimer: we made an educated choice and 
assigned a reasonable uncertainty, but it’s not 

the only possible choice. We also provide 
results with CMS standard Powheg sample

https://arxiv.org/abs/1610.07922
http://arxiv.org/abs/1111.2854
http://www.apple.com
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GF H(NNLO+mt) = (1 jet mt ! 1)⇥ MG LO 0� 2 jet mt
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Figure 4: Transverse momentum distribution pT,H for H ! WW+jets production with Sherpa at NLO (left panel). We
present the distributions for exclusive and merged jet samples with finite top mass e↵ects (mt = 173 GeV) and in the
low-energy approximation (mt ! 1). In the right panel we show the pT,H -dependent K-factor for H and H + 1 jet
production.

Eq.(6),
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The NLO corrections in the low-energy limit and the top mass corrections are thus applied in a factorized form.
This prescription o↵ers a gauge invariant interpolation between both types of corrections. It is worth noting that
the resummation properties of the S-Mc@Nlo kernel are not altered, because its argument is a ratio of matrix

elements. The infrared safety of the fixed-order correction is guaranteed as long as r(n+1)

t ! r
(n)
t in the infrared

limit. Our approach generalizes the Meps@Nlo method [38], now including next-to-leading order corrections
in the low-energy approximation as well as the top mass dependence at leading order for all jet multiplicities
considered. Eventually, it needs to be tested once the two-loop multi-scale diagrams can be evaluated over the
full phase space.

Following this implementation we upgrade our boosted Higgs analysis in Fig. 2 to the NLO level. The 0-jet and
1-jet bins include the NLO corrections, while the 2-jet bin remains at leading order. In Fig. 3 we display a sample
of the Feynman diagrams in the NLO corrections. The upgraded NLO distributions are presented in Fig. 4. In
the left panel we show that apart from the di↵erent total rate all top mass features are completely analogous to
the leading order case. The ratio between the full calculation and low-energy limit shows the same profile. In the
right panel, we shown that the NLO corrections factorize, i.e. the relative NLO corrections for the full theory and
for the low-energy approximation agree independently for the H and H + 1 jet rate.

III. BOOSTED HIGGS PRODUCTION

For boosted Higgs production the e↵ect of a finite top mass has been known for an eternity: adding jets to the
hard process pushes one or two gluon propagators o↵ their respective mass shell. In that case the matrix elements
for Higgs production in association with one jet [17–19] and two jets [24] develop a top mass dependence,

|MHj(j)|2 / m4

t log4
p2T,H

m2

t

. (8)

Beyond this logarithmic dependence absorptive parts of the one-loop integrals exist, but are unfortunately too
small to be observed in the coming LHC run(s) [24]. If we follow Eq.(1) and allow for a top quark as well as

CKKW merged

• Other CMS Higgs results use Powheg: 1 jet + mt = ∞, 
arXiv:1111.2854 

• We want to account for effects of higher order 
corrections and finite top mass 

• No real NLO + finite top mass calculation available 
in the literature 

• Adopt a factorized approach: 

• LO H+0-2jet, finite mt, pt

H

 up to 600 GeV, including WW 
acceptance cuts arXiv:1410.5806 → We build on this 

•  

•  
 

http://arxiv.org/abs/1111.2854
http://www.apple.com
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Figure 9: Higgs inclusive transverse momentum distribution at LO and NLO⇤. The ribbon is
obtained by varying the factorization and renormalization scale µ =

q
p2

T,H + m2
H

by a factor of 2 and 1/2. The middle panel shows the ratio to the LO cross section.
The lower panel shows the mean of the upper and lower bound change with
respect to the central value in percent, commonly known as the scale uncertainty.
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• Other CMS Higgs results use Powheg: 1 jet + mt = ∞, 
arXiv:1111.2854 

• We want to account for both effects of higher order 
corrections and finite top mass 

• No real NLO + finite top mass calculation available 
in the literature 

• Adopt a factorized approach: 

• LO H+0-2jet, finite mt, pt

H

 up to 600 GeV, including WW 
acceptance cuts arXiv:1410.5806 → We build on this 

• NLO H+1jet finite mt up to 1/mt

4

 expansion: arXiv:
1609.00367 

•  
 

http://arxiv.org/abs/1111.2854
http://www.apple.com
https://arxiv.org/abs/1609.00367
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GF H(NNLO+mt) = (1 jet mt ! 1)⇥ MG LO 0� 2 jet mt

(1 jet mt ! 1)
⇥ NLO 1 jet mt

LO 1 jet mt
⇥ NNLO 1 jet mt ! 1

NLO 1 jet mt ! 1

• Other CMS Higgs results use Powheg: 1 jet + mt = ∞, 
arXiv:1111.2854 

• We want to account for both effects of higher order 
corrections and finite top mass 

• No real NLO + finite top mass calculation available 
in the literature 

• Adopt a factorized approach: 

• LO H+0-2jet, finite mt, pt

H

 up to 600 GeV, including WW 
acceptance cuts arXiv:1410.5806 → We build on this 

• NLO H+1jet finite mt up to 1/mt

4

 expansion: arXiv:
1609.00367 

• NNLO H+1jet, mt = ∞, pT

H

 up to ~200 GeV, arXiv:
1408.5325, arXiv:1302.6216, arXiv:1504.07922, arXiv:
1505.03893, arXiv:1508.02684

CKKW merged factor of 2 factor of 1.25

  14

Going to the Highest EFT order
● When adding NNLO we gain another 1.25

1508.02684 We couldn't find
anything going to
high p

T

No plots beyond 150 GeV

http://arxiv.org/abs/1111.2854
http://www.apple.com
https://arxiv.org/abs/1609.00367
http://arxiv.org/abs/1508.02684
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• Pythia version of CKKW-L 
merged 0,1,2jet LO finite top 
mass 

• ME generation in aMC@NLO  
(ptj > 20) with xqcut = 30 GeV 

• CKKW shower is extended 
down to a merging scale of 
TMS = 20 GeV 

• Two factorized systematic 
uncertainties: 

• 30% overall normalization 

• 30% linear change in slope  
(no effect on overall norm.)

chosen
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Work in Progress

Work in Progress
pT: 800-1000 GeV

SM candles: Z(bb) peak provides in-situ 
constraint of H(bb) signal systematics
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observed Z(bb) significance: 
5.1σ, μZ = 0.78+0.23-0.19

• Simultaneous fit for Z(bb) and H(bb) 

• All pT categories

http://cms.cern.ch/iCMS/analysisadmin/cadilines?line=HIG-17-010
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observed H(bb) significance: 
1.5σ, μH = 2.3+1.8-1.6
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• Simultaneous fit for Z(bb) and H(bb) 

• All pT categories

http://cms.cern.ch/iCMS/analysisadmin/cadilines?line=HIG-17-010
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• Two dimensional likelihood scan

8 7 Results

Table 1: Systematic uncertainties and their relative size.

Systematic uncertainty source Type (shape or normalization) Relative size (or description)
QCD transfer factor both profile ak` and QCD normalization

Luminosity normalization 2.5%
V-tag (N1,DDT

2 ) efficiency normalization 4.3%
Muon veto efficiency normalization 0.5%

Electron veto efficiency normalization 0.5%
Trigger efficiency normalization 4%

Muon ID efficiency shape up to 0.2%
Muon isolation efficiency shape up to 0.1%
Muon trigger efficiency shape up to 8%

tt normalization SF normalization from 1µ CR: 8%
tt double-b mis-tag SF normalization from 1µ CR: 15%

W/Z NLO QCD corrections normalization 10%
W/Z NLO EWK corrections normalization 15% � 35%

W/Z NLO EWK ratio decorrelation normalization 5% � 15%
double-b tagging efficiency normalization 4%

Jet energy scale normalization up to 10%
Jet energy resolution normalization up to 15%

Jet mass scale shape shift mSD peak by ±0.4%
Jet mass resolution shape smear mSD distribution by ±9%

Jet mass scale pT normalization 0.4%/100 GeV (pT)
Monte Carlo statistics normalization -

H pT correction (gluon fusion) both 30%

passing and failing regions. Contributions from W and Z boson production are clearly visible
in the data.

The measured Z boson signal strength is µZ = 0.78+0.23
�0.19, which corresponds to an observed

significance of 5.1s with 5.8s expected. This constitutes the first observation of the Z signal
in the single-jet topology, further validating the substructure and b-tagging strategy for the
Higgs boson search in the same topology. The measured cross section of the Z+jets process
is 0.85+0.26

�0.21 pb, which is consistent, within the uncertainty on the measurement, with the SM.
The measured H boson signal strength is µH = 2.3+1.8

�1.6 and includes the corrections to the
pT described in Sec. 3. The observed µH and the theoretical cross-section imply a measured
cross-section of 74+51

�49 fb, which is consistent, within the stated uncertainty, with the SM. The
observed (expected) significance is 1.5s (0.7s).

Tab. 2 summarizes the measured signal strengths and significances for the Higgs and Z boson
processes. In particular, they are also reported for the case the corrections to the Higgs pT spec-
trum are not applied. Fig. 5 shows the profile likelihood test statistic scan in data as function of
the Higgs and Z signal strength parameters (µH, µZ).

H H no pT corrections Z
Observed best fit µH = 2.3+1.8

�1.6 µ0
H = 3.2+2.2

�2.0 µZ = 0.78+0.23
�0.19

Expected significance 0.7s (µH = 1) 0.5s (µ0
H = 1) 5.8s (µZ = 1)

Observed significance 1.5s 1.6s 5.1s

Table 2: Fitted signal strength and observed significance of the Higgs and Z signals.

measured visible cross 
sections for pT > 450 GeV: 

σH = 74+51-49 fb 
σZ = 0.85+0.26-0.21 pb

http://cms.cern.ch/iCMS/analysisadmin/cadilines?line=HIG-17-010
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S U M M A R Y  A N D  O U T L O O K
• First LHC search for gg → H → bb in boosted topology 

• First observation of Z(bb) in single-jet topology, 5.1σ observed 
(5.8σ expected) 

• Observed significance of H(bb) is 1.5σ 

• Measured cross sections agree with SM 

• Search probes previously unexplored regions of Higgs phase 
space 

• New and generic strategy to search for boosted hadronic Higgs 
decays  

• Future prospects are bright 

• Means we need help from LHC H XS WG for best possible 
theory prediction in boosted Higgs regime — pT

H up to 1 TeV 
and beyond…

38
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• Cut value map used to transform N1
2

N 1
2

D D T
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E V E N T  S E L E C T I O N
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E F F I C I E N C Y  A N D  M I S - TA G

• Mis-tag is reduced by more than 40% at 30% signal 
efficiency for a tight working point

Caterina Vernieri (FNAL)

Efficiency vs. Mistag rate

22
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Javier Duarte 
Fermilab 43

E F F I C I E N C Y  I N  D ATA

• Using g(bb) jet as proxy in double muon tagged jet sample 

• Associated data/MC uncertainty 3-5%

Caterina Vernieri (FNAL)

Efficiency measurement in data

25

Associated uncertainty 
varies from 3 to 5% 
depending on the different 
tagging efficiency

CMS-PAS-BTV-16-002

Caterina Vernieri (FNAL)

Efficiency measurement in data

24

• Since there is no H/Z(bb̄) signal (yet!) we use: 
•  g(bb̄) jets as a proxy to measure the signal efficiency  
• Jet selection has been designed to ensure jets are signal-like 
• High AK8 pT jet (pT > 250 GeV) 
• double-muon tagged jets (muon with pT > 7 GeV)  
• mass cut (>50 GeV)

µµ

Z(bb̄) by the end of the talk 
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• Signal systematic uncertainties from merged 
W sample in semi-leptonic ttbar events 
(external constraint) 

• SM candles: presence of W/Z in final jet 
mass distribution provides additional in-situ 
constraint

S Y S T E M AT I C S

top
W

b
top

W

b

ν μ

8 7 Results

Table 1: Systematic uncertainties and their relative size.

Systematic uncertainty source Type (shape or normalization) Relative size (or description)
QCD transfer factor both profile ak` and QCD normalization

Luminosity normalization 2.5%
V-tag (N1,DDT

2 ) efficiency normalization 4.3%
Muon veto efficiency normalization 0.5%

Electron veto efficiency normalization 0.5%
Trigger efficiency normalization 4%

Muon ID efficiency shape up to 0.2%
Muon isolation efficiency shape up to 0.1%
Muon trigger efficiency shape up to 8%

tt normalization SF normalization from 1µ CR: 8%
tt double-b mis-tag SF normalization from 1µ CR: 15%

W/Z NLO QCD corrections normalization 10%
W/Z NLO EWK corrections normalization 15% � 35%

W/Z NLO EWK ratio decorrelation normalization 5% � 15%
double-b tagging efficiency normalization 4%

Jet energy scale normalization up to 10%
Jet energy resolution normalization up to 15%

Jet mass scale shape shift mSD peak by ±0.4%
Jet mass resolution shape smear mSD distribution by ±9%

Jet mass scale pT normalization 0.4%/100 GeV (pT)
Monte Carlo statistics normalization -

H pT correction (gluon fusion) both 30%

passing and failing regions. Contributions from W and Z boson production are clearly visible
in the data.

The measured Z boson signal strength is µZ = 0.78+0.23
�0.19, which corresponds to an observed

significance of 5.1s with 5.8s expected. This constitutes the first observation of the Z signal
in the single-jet topology, further validating the substructure and b-tagging strategy for the
Higgs boson search in the same topology. The measured cross section of the Z+jets process
is 0.85+0.26

�0.21 pb, which is consistent, within the uncertainty on the measurement, with the SM.
The measured H boson signal strength is µH = 2.3+1.8

�1.6 and includes the corrections to the
pT described in Sec. 3. The observed µH and the theoretical cross-section imply a measured
cross-section of 74+51

�49 fb, which is consistent, within the stated uncertainty, with the SM. The
observed (expected) significance is 1.5s (0.7s).

Tab. 2 summarizes the measured signal strengths and significances for the Higgs and Z boson
processes. In particular, they are also reported for the case the corrections to the Higgs pT spec-
trum are not applied. Fig. 5 shows the profile likelihood test statistic scan in data as function of
the Higgs and Z signal strength parameters (µH, µZ).

H H no pT corrections Z
Observed best fit µH = 2.3+1.8

�1.6 µ0
H = 3.2+2.2

�2.0 µZ = 0.78+0.23
�0.19

Expected significance 0.7s (µH = 1) 0.5s (µ0
H = 1) 5.8s (µZ = 1)

Observed significance 1.5s 1.6s 5.1s

Table 2: Fitted signal strength and observed significance of the Higgs and Z signals.
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L A R G E  H A D R O N  
C O L L I D E R

• Proton-proton collisions at  
8 TeV in 2012

47
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  8

What is the best Higgs p
T 
:Options

● The key is to identify two different effects

– Finite top mass effect 

– NNLO differential corrections

● What are the orders known: 

– Differential EFT : NNLO H+1jet production

– Finite top mass : almost NLO

– At MC level EFT : NLO H+0/1/2jet

– At MC level finite top mass : LO 0/1/2

48
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Going to EFT
● When going to EFT large gain
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Going to EFT
● Adding the finite top mass merged LO its lower
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CKKW-L [L.Lönnblad, JHEP 05 (2002) 046, L.Lönnblad and S.Prestel,JHEP 03 (2012) 019]

Idea: Reduce the dependence to the merging scale MS.

Start by generate events with N1..N2 ME partons, hard and well separated

Assume an event with n ME partons, reconstruct the possible shower
histories, pick one according to the occurence probabilities

Each clustering step i is characterized by the emission scale ⇢
i

, reweight by
the product of ↵

s

(⇢
i

)/↵
s

(ME )

For i=2..n (!=N2):
Generate one emission ⇢ with ⇢

i

as starting scale.
If ⇢ > ⇢

i+1 ) reject the event.

This is equivalent to the product of Sudakovs ⇧(⇢
i

, ⇢
i+1), i=2..n-1.

if not HME: generate an emission at ⇢ < ⇢
n

, if ⇢ >MS ) reject the event.

if HME, accept the event and start shower with ⇢
n

.

Simon de Visscher (CERN) Madgraph5 and Pythia8 October 15, 2014 7 / 29
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Practical use: Madgraph 5

Essential parameters for matching/merging:
ickkw

Applies the ↵
s

reweighting at each QCD vertex in the ME calculation. K

T

-MLM, Shower-K
T

:1
CKKW-L, UMEPS:0

xqcut

Defines the minimal K
T

between the partons (+beam) at ME level.

auto ptj mjj

Set to False: leaves the xqcut be the only cut applied to ME partons) ptj, mmjj=0

maxjetflavor

QCD partons with pdgIdmaxjetflavor are a↵ected by xqcut ptj,etc... Otherwise, a↵ected by
ptb, mmbb, etc... That means that for a n-Flavour prediction, maxjetflavor = n

Simon de Visscher (CERN) Madgraph5 and Pythia8 October 15, 2014 9 / 29
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Practical use: main89.cc

main89ckkwl.cmnd: CKKWL. Essential parameters are
Merging:TMS = XXX.

The merging scale

Merging:Process = UUU

Type of process, e.g. pp>LEPTONS,NEUTRINOS

Merging:nJetMax = WWW

Maximal number of additional jets in the matrix element

Merging:doPTLundMerging = on

Set the merging scale definition to P

T,evol (cfr definition in the manual)

main89umeps.cmnd: UMEPS. Essential parameters are
Merging:TMS = XXX.
Merging:Process = (e.g.) pp>LEPTONS,NEUTRINOS
Merging:nJetMax = WWW
Merging:doUMEPSTree = on

Reweight events according to the UMEPS prescription for tree-level
configurations)

Simon de Visscher (CERN) Madgraph5 and Pythia8 October 15, 2014 12 / 29


