FIRST SEARCH FOR BOOSTED HIGGS→BB WITH CMS

LHC HIGGS XS WG WORKSHOP CERN GENEVA, SWITZERLAND

Javier Duarte Fermilab JULY 14, 2017

OUTLINE

q/g

- Motivation
- Experimental techniques
 - Jet substructure and grooming
 - Double-b-tagging
- Event selection
- Data-driven QCD estimation
- Higgs p_T modeling
- Results
- Summary and outlook

$\mathsf{MOTIVATION} \quad t, \widetilde{t}, X?$

- Search for gg → H → bb historically thought impossible due to overwhelming and difficult to predict QCD background
- We can access this process in the boosted dijet topology
- Probing Higgs couplings at high momentum transfer (Q) accesses large new physics energy scale (Λ)

Javier Duarte

Fermilab

SO HOW CAN WE DO IT?

- Inspiration from boosted Z'+jet search?
 Use ISR jet to get you above the trigger threshold
 - Requires one boosted fat jet
 - Substructure and jet grooming to enhance S/B
 - VData-driven background estimate
- Inspiration from machine learning and b-tagging?
 - Double b-tagger selects fat jets containing two b-quarks

SUBSTRUCTURE AND TAGGING

5

BOOSTED GGF H(BB)

arXiv:1307.0007 arXiv:1402.2657

JET MASS

- Provides good separation between W/Z/H-jets from q/g jets
- Grooming removes soft and wide-angle radiation (soft drop / modified mass soft drop)

Soft Drop Condition: $\frac{m}{m}$

$$\frac{\min(p_{T1}, p_{T2})}{p_{T1} + p_{T2}} > z_{\text{cut}} \left(\frac{\Delta R_{12}}{R_0}\right)^{\beta}$$

CMS: $z_{cut} = 0.1$, $\beta = 0$

arXiv:1609.07483

JET SUBSTRUCTURE

- How many "prongs" are in the jet?
- Generalized energy correlation functions are sensitive to N-point correlations within a jet
 - A two-pronged jet has $_2e_3 < (_1e_2)^2$
 - Taking a ratio gives N¹₂

$$_{1}e_{2}^{\beta} = \sum_{1 \leq i < j \leq n_{J}} z_{i}z_{j}\Delta R_{i}^{\beta}$$

$${}_{2}e_{3}^{\beta} = \sum_{1 \le i < j < k \le n_{J}} z_{i}z_{j}z_{k} \min\{\Delta R_{ij}^{\beta} \Delta R_{ik}^{\beta}, \Delta R_{ij}^{\beta} \Delta R_{jk}^{\beta}, \Delta R_{ik}^{\beta} \Delta R_{jk}^{\beta}\}$$

EXO-17-001

N¹₂ IN PRACTICE

- Here's what the boosted
 Z'+jet analysis looks like after kinematic selection
- Difficult to use the QCD
 Monte Carlo to predict the background in this phase
 space
- Fitting this mass distribution directly requires high order polynomial → large background uncertainties
- Can we try a data-driven sideband prediction?

SIDEBAND QCD PREDICTION

- Core idea: predict QCD jet mass distribution from region failing the tagger
- Possible problem: does tagger sculpt jet mass distribution?

SIDEBAND QCD PREDICTION

• Solution: define new substructure variable intended to be decorrelated from jet mass

Z' RESULTS

• Jet mass distribution is fit down to 40 GeV

EXO-17-001

SIDEBAND QCD PREDICTION (REDUX)

- Can we use the same QCD prediction when using a double-b tagger?
 - Yes if it's sufficiently decorrelated from jet mass and p_{T}

BOOSTED H(BB)

- With large boost, both b quarks merge into a single large radius jets
- How can we best exploit the presence of the b-quarks in the jet in a tagger?

MULTIPLE APPROACHES

- Based on standard b-tagging algorithm
- Not designed for two b's in the same jet

- Defines sub-jets
- Standard b-tagging applied to each subject
- Identifies two b hadron decay chains in the same fat jet
- Does not define subjects, but uses N-subjettiness axes

DOUBLE B-TAGGER

- Combines tracking and vertexing information in a multivariate classifier with 27 observables
- Targets the bb signal with additional aims:
 - jet mass and p_T independent
 - cover a very wide p_T range
 - inputs are chosen to avoid p_T correlation
 - e.g. no ΔR-like variables, no substructure info

CORRELATIONS?

• No strong correlations in double-b tagger versus m_{SD} or p_{T} in QCD background

EVENT SELECTION

BOOSTED GGF H(BB)

<u>HIG-17-010</u>

EVENT SELECTION

- Online selection asks for a high p_T single jet or large hadronic activities
 - $p_T > 360 \text{ GeV} (m > 30) \text{ or}$ $\Sigma p_T > 900 \text{ GeV}$
- Offline: Highest p_T jet
 - $p_T > 450 \text{ GeV}, |\eta| < 2.5$
 - jet mass $m_{SD} > 40 \text{ GeV}$
- lepton veto, p_T^{miss} veto
- $-6.0 < \rho = \log(m_{SD}^2/p_T^2) < -2.1$

<u>HIG-17-010</u>

EVENT SELECTION

Substructure: two prong discrimination, ~50% sig. efficiency, 26% bkg. efficiency

Javier Duarte

Fermilab

Double-b tagger: ~30% sig. efficiency, 1% bkg. efficiency (tight working point)

HIG-17-010 SIGNAL COMPOSITION

- Analysis is inclusive in Higgs production mode
- Dominant contribution is ggF (74%)
 - 12% VBF
 - 8% VH
 - 6% ttH

BOOSTED GGF H(BB) BACKGROUND ESTIMATION

BACKGROUND STRATEGY

- Backgrounds estimated from data
 - QCD (90%): from failing double b-tag x transfer factor
 - tt+jets (3%): from 1µ control region
- Backgrounds estimated from MC including NLO QCD + EWK corrections and jet mass, resolution, and substructure tagging scale factors
 - W/Z+jets (5%)
 - single-t, VV (<1%)

QCD TRANSFER FACTOR

- If the double b-tagger were completely uncorrelated from jet mass and p_T, the transfer factor would be flat
- Taylor expand as a polynomial in *ρ* and p_T to parameterize any small correlations
- F-test determined 2nd order in p and 1st order in p_T is sufficient to fit the ratio

$$N_{\text{pass}}^{\text{QCD}}(m_{\text{SD}}, p_{\text{T}}) = R_{\text{p/f}}(\rho, p_{\text{T}}) \cdot N_{\text{fail}}^{\text{QCD}}(m_{\text{SD}}, p_{\text{T}})$$
$$N_{\text{pass}}^{\text{QCD}}(m_{\text{SD}i}, p_{\text{T}j}) = \left(\sum_{k,\ell} a_{k\ell} \rho_{ij}^k p_{\text{T}j}^\ell\right) \cdot N_{\text{fail}}^{\text{QCD}}(m_{\text{SD}i}, p_{\text{T}j})$$

FITTING TRANSFER FACTOR

• Pre-fit both regions have the same predicted shape

FITTING TRANSFER FACTOR

• Post-fit signal region has slightly different shape with the ratio given by the polynomial transfer factor

FINAL TRANSFER FACTOR

• Two views of the same transfer factor function

HIGGS PT MODELING

BOOSTED GGF H(BB)

- Other CMS Higgs results use Powheg: 1 jet + m_t = ∞, <u>arXiv:1111.2854</u>
- We want to account for both effects of higher order corrections and finite top mass
 - No real NLO + finite top mass calculation available in the literature

« 1 TeV

- Other CMS Higgs results use Powheg: 1 jet + m_t = ∞, <u>arXiv:1111.2854</u>
- We want to account for effects of higher order corrections and finite top mass
 - No real NLO + finite top mass calculation available in the literature
- Adopt a factorized approach:
- LO H+0-2jet, finite m_t, p_t⁻ up to 600 GeV, including WW acceptance cuts <u>arXiv:1410.5806</u> → We build on this

GF H(NNLO +
$$m_t$$
) = (1 jet $m_t \to \infty$) × $\frac{\text{MG LO } 0 - 2 \text{ jet } m_t}{(1 \text{ jet } m_t \to \infty)}$

CKKW merged

- Other CMS Higgs results use Powheg: 1 jet + m_t = ∞, <u>arXiv:1111.2854</u>
- We want to account for both effects of higher order corrections and finite top mass
 - No real NLO + finite top mass calculation available in the literature
- Adopt a factorized approach:
- LO H+0-2jet, finite m_t, p_t up to 600 GeV, including WW acceptance cuts <u>arXiv:1410.5806</u> → We build on this
- NLO H+1jet finite m_t up to 1/m_t expansion: <u>arXiv:</u> <u>1609.00367</u>

$$\text{GF H(NNLO} + m_{\text{t}}) = (1 \text{ jet } m_{\text{t}} \to \infty) \times \frac{\text{MG LO } 0 - 2 \text{ jet } m_{\text{t}}}{(1 \text{ jet } m_{\text{t}} \to \infty)} \times \frac{\text{NLO } 1 \text{ jet } m_{\text{t}}}{\text{LO } 1 \text{ jet } m_{\text{t}}}$$

$$\text{CKKW merged} \qquad \text{factor of } 2$$

- Other CMS Higgs results use Powheg: 1 jet + m_t = ∞, <u>arXiv:1111.2854</u>
- We want to account for both effects of higher order corrections and finite top mass
 - No real NLO + finite top mass calculation available in the literature
- Adopt a factorized approach:
- LO H+0-2jet, finite m_t, p_t up to 600 GeV, including WW acceptance cuts <u>arXiv:1410.5806</u> → We build on this
- NLO H+1jet finite m_t up to 1/m_t expansion: <u>arXiv:</u> <u>1609.00367</u>
- NNLO H+1jet, m_t = ∞, p_T up to ~200 GeV, arXiv: 1408.5325, arXiv:1302.6216, arXiv:1504.07922, arXiv: 1505.03893, <u>arXiv:1508.02684</u>

$$\text{GF H}(\text{NNLO} + m_{\text{t}}) = (1 \text{ jet } m_{\text{t}} \to \infty) \times \frac{\text{MG LO } 0 - 2 \text{ jet } m_{\text{t}}}{(1 \text{ jet } m_{\text{t}} \to \infty)} \times \frac{\text{NLO } 1 \text{ jet } m_{\text{t}}}{\text{LO } 1 \text{ jet } m_{\text{t}}} \times \frac{\text{NNLO } 1 \text{ jet } m_{\text{t}} \to \infty}{\text{NLO } 1 \text{ jet } m_{\text{t}} \to \infty}$$

$$\text{CKKW merged} \quad \text{factor of 2} \quad \text{factor of 1.25}$$

- Pythia version of CKKW-L merged 0,1,2jet LO finite top mass
- ME generation in aMC@NLO (ptj > 20) with xqcut = 30 GeV
- CKKW shower is extended down to a merging scale of TMS = 20 GeV
- Two factorized systematic uncertainties:
 - 30% overall normalization
 - 30% linear change in slope (no effect on overall norm.)

RESULTS

BOOSTED GGF H(BB)

33

HIG-17-010 FIT RESULTS Simultaneous fit for Z(bb) and H(bb)

SM candles: Z(bb) peak provides in-situ constraint of H(bb) signal systematics

Javier Duarte

Fermilab

observed Z(bb) significance: 5.1 σ , $\mu_z = 0.78^{+0.23}$ -0.19

HIG-17-010 FIT RESULTS Simultaneous fit for Z(bb) and H(bb)

Javier Duarte

Fermilab

observed H(bb) significance:

1.5σ, μ_H = **2.3**^{+1.8}_{-1.6}

<u>HIG-17-010</u>

FIT RESULTS

• Two dimensional likelihood scan

$P_T CATEGORIES$

Javier Duarte

Fermilab

180

SUMMARY AND OUTLOOK

- First LHC search for $gg \rightarrow H \rightarrow bb$ in boosted topology
 - First observation of Z(bb) in single-jet topology, 5.1 σ observed (5.8 σ expected)
 - Observed significance of H(bb) is 1.5σ
- Measured cross sections agree with SM
- Search probes previously unexplored regions of Higgs phase space
- New and generic strategy to search for boosted hadronic Higgs decays
 - Future prospects are bright
 - Means we need help from LHC H XS WG for best possible theory prediction in boosted Higgs regime — p_T^H up to 1 TeV and beyond...

BOOSTED GGF H(BB)

BACKUP

$N_{2}^{1}D^{D}$

• Cut value map used to transform N_2^1

EVENT SELECTION

 $-6.0 < \rho < -2.1$

EFFICIENCY AND MIS-TAG

Mis-tag is reduced by more than 40% at 30% signal efficiency for a tight working point

EFFICIENCY IN DATA

- Using g(bb) jet as proxy in double muon tagged jet sample
- Associated data/MC uncertainty 3-5%

- Signal systematic uncertainties from merged W sample in semi-leptonic ttbar events (external constraint)
- SM candles: presence of W/Z in final jet mass distribution provides additional in-situ constraint

100

120

ErfExp Data comp. ErfExp MC comp.

1400

1200

1000

800

600

400

200

0∟ 40

60

80

Javier Duarte Fermilab

$P_T CATEGORIES$

<u>HIG-17-010</u>

Javier Duarte

Fermilab

$P_T CATEGORIES$

<u>HIG-17-010</u>

Javier Duarte Fermilab

LARGE HADRON COLLIDER

CMS

CERN

What is the best Higgs p_{τ} :Options

- The key is to identify two different effects
 - Finite top mass effect
 - NNLO differential corrections
- What are the orders known:
 - Differential EFT : NNLO H+1jet production
 - Finite top mass : almost NLO
 - At MC level EFT : NLO H+0/1/2jet
 - At MC level finite top mass : LO 0/1/2

Going to EFT

When going to EFT large gain

X/Powheg

Going to EFT

Adding the finite top mass merged LO its lower

CKKW-L [L.Lönnblad, JHEP 05 (2002) 046, L.Lönnblad and S.Prestel, JHEP 03 (2012) 019

Idea: Reduce the dependence to the merging scale MS.

- Start by generate events with $N_1..N_2$ ME partons, hard and well separated
- Assume an event with n ME partons, reconstruct the possible shower histories, pick one according to the occurence probabilities

- Each clustering step *i* is characterized by the emission scale ρ_i , reweight by the product of $\alpha_s(\rho_i)/\alpha_s(ME)$
- For i=2..n (!=N₂):

Simon de Visscher (CERN)

ap

- Generate one emission ρ with ρ_i as starting scale.
- If $\rho > \rho_{i+1} \Rightarrow$ reject the event.
 - This is equivalent to the product of Sudakovs $\Pi(\rho_i, \rho_{i+1})$, i=2..n-1.
- if not HME: generate an emission at $\rho < \rho_n$, if $\rho > MS \Rightarrow$ reject the event.
- if HME, accept the event and start shower with ρ_n .

 $\checkmark Q (\sim$

7 / 29

Essential parameters for matching/merging:

- ickkw
 - Applies the α_s reweighting at each QCD vertex in the ME calculation. K_T -MLM, Shower- K_T :1 CKKW-L, UMEPS:0
- xqcut
 - Defines the minimal K_T between the partons (+beam) at ME level.
- auto_ptj_mjj
 - Set to False: leaves the xqcut be the only cut applied to ME partons \Rightarrow ptj, mmjj=0
- maxjetflavor
 - QCD partons with pdgId < maxjetflavor are affected by xqcut ptj,etc... Otherwise, affected by ptb, mmbb, etc... That means that for a n-Flavour prediction, maxjetflavor = n

 $\checkmark Q (\sim$

Practical use: main89.cc

• main89ckkwl.cmnd: CKKWL. Essential parameters are

- Merging:TMS = XXX.
 - The merging scale
- Merging:Process = UUU
 - Type of process, e.g. pp>LEPTONS,NEUTRINOS
- Merging:nJetMax = WWW
 - Maximal number of additional jets in the matrix element
- Merging:doPTLundMerging = on
 - Set the merging scale definition to $P_{T,evol}$ (cfr definition in the manual)

• main89umeps.cmnd: UMEPS. Essential parameters are

- Merging:TMS = XXX.
- Merging:Process = (e.g.) pp>LEPTONS,NEUTRINOS
- Merging:nJetMax = WWW
- Merging:doUMEPSTree = on
 - Reweight events according to the UMEPS prescription for tree-level configurations)

 $\mathcal{A} \mathcal{A} \mathcal{A}$

12 / 29

<ロト < 国 > < 国 > < 国 > < 国 > 三 国 <