ttH/tH: Experimental Status

General Meeting of the LHC Higgs Cross Section Working Group 14 July 2017

Stefan Guindon,

Chris Neu,

Stefano Pozzorini,

Laura Reina

Benjamin Stieger

Motivation

- Direct measurement of top-Higgs coupling is essential for full characterization of the Higgs boson:
 - Within the SM, the Higgs coupling to the top quark, Y_t , is predicted to be by far the largest
 - needs to be verified
 - For fermions, only Y_b and Y_{τ} probed so far
 - complements existing information
 - Y_t will be the easiest (and perhaps only) uptype fermion coupling to probe
 - probes something unique
 - The top quark plays a unique role in many SM-like EWSB extensions/alternatives, affecting the observed Y_t
 - possible window to new physics

Motivation

- Best avenue to measure the top-Higgs coupling is through observation of ttH production
 - Need to do everything we can to enable the observation of this process
 - A single-channel observation of ttH will need corroboration in other decay modes
 - ttH,H→bb and ttH,multileptons and ttH,H→ττ all important
 - Very rare yet very pure ttH,H $\rightarrow \gamma \gamma$ essential as well especially for precision studies post-first-measurement
- tH production is crucial as well
 - Access to new physics through sensitivity to the sign of top Yukawa coupling
 - Supplements searches in the ttH campaign
- ttH/tH is a bit unique compared to other WG1 subgroups:
 - ttH production has not yet been observed in a statistically-satisfying way
- Below is a summary of status ttH and tH search campaigns at 13 TeV

State of the Searches: $ttH, H \rightarrow bb$

- Systematics-limited search:
 - Leading experimental systematics, mostly associated with b tagging, being investigated
 - Theory systematics it's all about tt+HF...

ttH,H->bb: The Key is Understanding tt+HF

- Canonical ad-hoc 50% rate uncertainty on all tt+HF processes
 - tt+b-jets is an irreducible signature
 - tt+charm even less known than tt+b-jets
 - Huge impact on analyses
- The tt+b-jets process is poorly understood
 - Only recently do we have NLO calculations for the xsec
 - And even more recently NLO ME+PS events for use in analyses
- But NLO ≠ better, necessarily, if the predictions are poor
- Focus currently:
 - Compare various NLO ME+PS events for tt+bb
 - Consistency under well-defined conditions?
 - New scale treatment in MG5_aMC@NLO 2.5.4?
 - How do these state-of-the-art tools compare to CMS data
 - Need control regions independent from ttH signal-extraction campaign

See SP's talk earlier, and updates in ttH/tH WG meetings in coming weeks!

State of the Searches: ttH in multilepton signatures

Significance of observation is 3.3σ , whereas the expectation, assuming SM-level of ttH was 2.4\sigma **Upper limit:** μ < 4.9 (2.3) obs (exp) at 95% CL

- CMS has achieved sensitivity to SM-level of ttH in this signature, ATLAS soon
- Both experiments are systematics limited...how can we improve?

State of the Searches: ttH, $H\rightarrow \tau\tau$ at CMS

- Best fit: $\mu = 0.72^{+0.62}_{-0.53}$ (stat \bigcirc syst)
- Significance of observation is 1.4σ , whereas the expectation, assuming SM-level of ttH production was 1.8σ
- Upper limit: μ < 2.0 (1.1) obs (exp) at 95% CL

State of the Searches: volunteer ttH, $H \rightarrow ZZ \rightarrow 4$ lep at ATLAS

Recent result from ATLAS on ttH in 4-lep

ttH in multileptons: Leading systematic uncertainties

Opportunities:

- Improve our understanding of authentic leptons but from nonprompt sources
- Theoretical cross sections on ttW and ttW:
 - NLO currently good to ~±15%, driven by missing higher order terms
 - NNLO tricky computationally

State of the Searches: ttH, $H \rightarrow \gamma \gamma$

- Uncertainty driven by statistics at both experiments
- Somewhat an afterthought…but will be a workhorse
 - Good things come to those who wait...and build a solid analysis in the meantime

Single top + Higgs Searches

tHq Analyses: Different Approach to Y_t

 $\kappa_{V} = g_{HVV} / g_{HVV(SM)}$ $Y_{t} = \kappa_{t} Y_{t(SM)}$ $\sigma(tHq) \approx a \kappa_{t}^{2} + b \kappa_{V}^{2} + c \kappa_{t} \kappa_{V}$

- Hence this process is dependent on the *sign* of the top-Higgs coupling
- Interference effects suppress tHq production in the SM, but if Y_t is negative there is considerable enhancement:
 - For 8 TeV,
 - $\sigma_{SM}(tHq) = 18 \text{ fb}$
 - $\sigma(tHq, Y_t = -1) = 230 \text{ fb}$
- ttH is far less sensitive to this negative coupling

tHq 13TeV Analyses

- Suite of tH analyses performed at 8 TeV:
 - See for instance JHEP 06 (2016) 177,
 PLB 740 (2015)
- Campaign at 13 TeV underway, first results from CMS:

Scenario	Channel	Obs. Limit	Exp. Limit (pb)		
		(pb)	Median	$\pm 1\sigma$	$\pm 2\sigma$
$\kappa t/\kappa_{\rm V} = -1$	μμ	1.00	0.58	[0.42, 0.83]	[0.31, 1.15]
	еμ	0.84	0.54	[0.39, 0.76]	[0.29, 1.03]
	$\ell\ell\ell$	0.70	0.38	[0.26, 0.56]	[0.19, 0.79]
	Combined	0.64	0.32	[0.22, 0.46]	[0.16, 0.64]
$\kappa t/\kappa_{\rm V}=1$	μμ	0.87	0.41	[0.29, 0.58]	[0.22, 0.82]
(SM-like)	еμ	0.59	0.37	[0.26, 0.53]	[0.20, 0.73]
	$\ell\ell\ell$	0.54	0.31	[0.22, 0.43]	[0.16, 0.62]
	Combined	0.56	0.24	[0.17, 0.35]	[0.13, 0.49]

Input from the Experiments: Studies We Would Like to See

Several needs still exist:

Finalize tt+HF background recommendations for ttH,H→bb:

- Systematics and modeling of tt+bb drives sensitivity to ttH(bb)
 - Important to have proper and justified systematics model
 - Profiling of these systematics is used significantly
- 4FS vs 4FS differences of aMC@NLO_MG5 vs Sherpa+OpenLoops from YR4
 - Very large uncertainties compared to the Sherpa+OpenLoops systematics
 - Is there any motivation to keep this difference as a systematics uncertainty?
 - Need to understand settings (e.g. scales used) for each tt+bb 4FS prediction
- Kinematic re-weighting of 5FS sample to 4FS sample does not change the kinematics drastically
 - Component re-weighting important since we correlate across all regions (including single and dilepton channels)
 - Replacement is difficult since it could potentially result in discontinuities in certain variables where replacement is performed

YR4 Reprise:

New Shower Starting Scale in MG5_aMC@NLO

- Hypothesis:
 - Discrepancy due to inequivalent shower starting scale in MG5_aMC@NLO and Sherpa+OpenLoops
- MG5_aMC@NLO authors implemented in v2.5.3 (and subsequent) the ability to adjust this shower starting scale _____
 - Testing underway now results from study at an upcoming ttH/tH WG mtg
- Must be followed by data-driven validation preferably in regions independent of ttH signal extraction

Input from the Experiments: Studies We Would Like to See

ttW/ttZ at NNLO:

- Significant uncertainty on ttW/ttZ backgrounds which makes the observation of ttH in multileptons no observable with strong correlation to $M_{\rm H}$ difficult to achieve high precision
 - It's there but how much?
- Followed by continuation of precision measurements of the ttV processes

Input from the Experiments: Studies We Would Like to See

$tt+\gamma\gamma$ at (N)NLO:

- $ttH,H\rightarrow\gamma\gamma$ signal is clear, yet very rare
 - Searches for ttH,H→γγ currently rely on data-driven background models
 - Parametrized into signal region based on a falling exponential model
- But ttH,H→γγ will provide the mostclear and satisfying signature:
 - a diphoton bump at 125
 - in events with a well-identified ttbar system with b-tagged jets, leptons, MET, reconstructed top candidates

- Hence, ttH,H→γγ will be a very important process for precision differential ttH production studies
- Ideal to have high-precision simulated samples of tt+γγ as part of such characterization studies

Summary

- Higgs physics has now moved from the search and discovery phase into a precision measurement era
- Characteristics of this Higgs boson need to be measured with high precision. The measurement campaign has so far revealed no significant deviations from the predictions of the SM
- A few crucial ones remain to be measured the most foremost being the coupling between the top quark and the Higgs boson
- First direct measurement of the top-Higgs coupling is among the primary goals of the LHC physics program.
- Input from the community via the ttH/tH subgroup of the HXSWG will help achieve this first direct measurement of the top-Higgs coupling
 - Three topics of future work discussed here, but others will arise

Backup

$tHq, H \rightarrow bb$

Leptonic W decay 3-,4-tag categories MVA for tHq v. ttbar

Expected (observed) upper limits:

$$\sigma/\sigma(Y_{t} = -1) < 5.4 (7.6)$$

$tHq, H \rightarrow WW, \tau\tau$

Same-sign 2lep and 3lep MVA for tHq v. bkgd

$$\sigma/\sigma(Y_t = -1) < 5.0 (6.7)$$

$tHq, H \rightarrow \gamma\gamma$

Enhancement on production and decay side. No events survive in data.

$$\sigma/\sigma(Y_t = -1) < 4.1 (4.1)$$

Combined upper limit $\sigma/\sigma(Y_t = -1) < 2.0$ (2.8)

Christopher Neu

