Tools for BSM-Higgs physics: # **Progress report** Heidi Rzehak CP3 Origins, SDU, Odense July 13, 2017 ### **Tools: Overview** ### Higgs production: SusHi Gluon fusion & bottom-quark annihilation in the SM, 2HDM, (N)MSSM New in version 1.6.0 [Harlander, Liebler, Mantler 1605.03190]: - N³LO results in the heavy top-limit employing the threshold expansion [Anastasiou, Duhr, Dulat, Herzog, Mistelberger: + Furlan, Gehrmann 1411.3584, 1503.06056, + Furlan 1505.04110, + Furlan, Gehrmann, Lazopoulos 1602.00695] - Top-quark mass corrections (expansion in $1/m_t^2$) at NNLO [Marzani, Ball, Del Duca, Forte, Vicini 0801.2544; Harlander, Mantler, Marzani, Ozeren 0912:2104; Harlander, Ozeren 0907.2997, 0909.3420; Pak, Rogal, Steinhauser 0907.2998, 0911.4662, 1107.3391] - Matching to the high-energy limit for the s/m_t^2 terms [0801.2544, 0912:2104, 0909.3420] - Implementation of dimension-5 operators - Heavy quark annihilation (not just bb→h) [Harlander 1512.04901] ### Higgs production: SusHi ### Upcoming: SusHi 1.7.0: - Including SusHiMi extension for CP violation in the MSSM [Liebler, Patel, Weiglein 1611.09308] - Employing Z factors for gluon fusion ### Higgs production: vh@NNLO Calculation of pp \rightarrow HV at NNLO QCD incl. gg \rightarrow HZ and bb \rightarrow HZ [Brein, Harlander, Zirke 1210.5347] ### Upcoming: Extension to 2HDM and MSSM linking to 2HDMC and FeynHiggs # Higgs production: HPAIR: A code for HH production - HPAIR computes cross section of Higgs pair production via gluon fusion at NLO QCD in infinite top mass limit in the SM and MSSM Dawson, Dittmaier, Spira hep-ph/9805244 Also for dim-6 operators in linear and non-linear realisation [Gröber, Mühlleitner, Spira, Dawson, Dittmaier, Spira hep-ph/9805244 - NEW! including CP-violating operators in future release [Gröber, Mühlleitner, Spira, Streicher 1504.06577] [Gröber, Mühlleitner, Spira, 1705.05314] $$\begin{split} \mathcal{L} &= -\mathit{m}_{t}\overline{t}t\left(c_{t}\frac{h}{v} + c_{tt}\frac{h^{2}}{2v^{2}}\right) - c_{3}\frac{1}{6}\frac{3M_{h}^{2}}{v}h^{3} + \frac{\alpha_{s}}{\pi}G^{a}_{\mu\nu}G^{a}_{\mu\nu}\left(c_{g}\frac{h}{v} + c_{gg}\frac{h^{2}}{2v^{2}}\right) \\ &- \mathit{im}_{t}\overline{t}\gamma_{5}t\left(\tilde{c}_{t}\frac{h}{v} + \tilde{c}_{tt}\frac{h^{2}}{2v^{2}}\right) + \frac{\alpha_{s}}{\pi}G^{a}_{\mu\nu}\widetilde{G}^{a}_{\mu\nu}\left(\tilde{c}_{g}\frac{h}{v} + \tilde{c}_{gg}\frac{h^{2}}{2v^{2}}\right) \end{split}$$ → Effect on K-factor is order few percent slides by R. Gröber ## Higgs (pair) production: HPAIR: For the C2HDM - NEW! HPAIR for the complex 2HDM (at NLO QCD) [Gröber, Mühlleitner, Spira, 1705.05314] - ullet A heavier Higgs boson can be produced resonantly in 2HDM ullet strong increase of cross section possible #### Starting scenario: α_i denote the mixing angles between the 3 neutral Higgs bosons m_{12} the mixing parameter between the two doublets $$\begin{split} \alpha_1 &= 0.853 \;,\; \alpha_2 = -0.103 \;,\; \alpha_3 = 0.0072 \;,\; \tan\beta = 0.969 \;,\; \mathrm{Re}(m_{12}^2) = 70957 \; \mathrm{GeV}^2 \;,\\ m_{H_1} &= 125 \; \mathrm{GeV} \;,\; m_{H_2} = 377.6 \; \mathrm{GeV} \;,\; m_{H^\pm} = 709.7 \; \mathrm{GeV} \;, \end{split}$$ Heidi Rzehak slides by R. Gröber # Higgs production (& more): Recolar for BSM physics ### RECOLA2: REcursive Computation of One-Loop Amplitudes2 [Denner, Lang, Uccirati 1705.06053] - ▶ Based on - ► RECOLA for the tensor coefficient computation [Actis, Denner, Hofer, Scharf, Uccirati: 1211.6316, + Lang 1605.01090] - ► COLLIER tensor integral evaluation [Denner, Dittmaier, Hofer; 1604.06792] - ▶ <u>EW</u> and QCD amplitudes in BSM at NLO. RECOLA2 model files available: - ightharpoonup Two-Higgs-Doublet Model (Z_2 symmetry, all Yukawa types) - ▶ Higgs-Singlet Extension of the SM (Z_2 symmetry) - ► Anomalous couplings: VVV, HVV - ► Formulation in Background-Field Method - ► Soon publicly available at hepforge.org slides by J.N. Lang # Higgs production (& more): Recolar for BSM physics ${ m RECOLA2}$ can compute any process at one-loop order for a given ${ m RECOLA2}$ model file. Limitations: available memory/CPU power (tested with up to 9 external particles at NLO) ### As simple as: ``` use Recola ``` ``` call define_process_rcl(1, "u u -> u u H", "NLO") call generate_processes_rcl ``` - call compute_process_rcl(1, p) - Dynamic process generation (in memory), no code generated. - No intermediate intervention. RECOLA2 can be used as black box. - ▶ Dedicated interface of RECOLA2 to HAWK 2.0. - \rightarrow automated Higgs-boson production in VBF and Higgs strahlung (no charged Higgs-boson production). slides by J.N. Lang # Higgs production (& more):RECOLA2 for BSM physics # Generation of renormalized model files for RECOLA2 via the tool REPT1L [Denner, Lang, Uccirati 1705.06053] - ► Fully automated, derived from tree-level UFO format. [Degrande, Duhr, Fuks, Grellscheid, Mattelaer, Reiter 1108.2040] - ▶ Standard renormalization conditions for SM gauge-group. - $ightharpoonup \alpha$: α_0 (in Thomson limit), G_F (Fermi scheme) - lacktriangle $lpha_{ m s}$: Fixed or dynamical Nf-flavour scheme - Simple framework for custom renormalization conditions. - ► Models currently restricted to scalars, Dirac fermions and vector bosons. No SUSY yet. - ▶ If you are interested in particular models, do not hesitate to contact the authors! # Higgs decays: HDECAY: Extensions to BSM H sectors [Douadi,Spira,Kalinowski+Mühlleitner(2010), Comput.Phys.Commun. 108 (1998) 56] • Features: Stand-alone codes; relevant QCD corrections & off-shell decays included, New! General: Based on implementation in HDECAY EW corrections consistently neglected • sHDECAY [Costa, Mühlleitner, Sampaio, Santos, JHEP 06 (106) 034] * Real-extended SM in symmetric (dark) phase, RxSM-dark: http://www.itp.kit.edu/~maggie/sHDECAY/ - $1 ext{ Higgs} + 1 ext{ Dark } (\mathbb{Z}_2)$ - * Real-extended SM in broken phase, RxSM-broken: 2 mixing Higgs bosons (\mathbb{Z}_2 spont. broken) - * Complex-extended SM in symmetric (dark) phase, CxSM-dark: - 2 mixing Higgs + 1 Dark * Complex-extended SM in broken phase, CxSM-broken: 3 mixing Higgs bosons slides by M. Mühlleitner ## Higgs decays: HDECAY: Extensions to BSM H sectors slides by M. Mühlleitner - N2HDECAY for N2HDM http://www.itp.kit.edu/~maggie/N2HDECAY/ [Mühlleitner, Sampaio, Santos, Wittbrodt, JHEP 1703 (2017) 094] - \star 2DHM + real singlet \mathbb{Z}_2 spont. broken: 3 scalars $H_{1,2,3}$, 1 pseudocalar A, charged pair H^\pm - * 2HDM + real singlet \mathbb{Z}_2 : in preparation - ullet C2HDECAY to be released soon \leftarrow 2HDM already available - * CP-violating 2DHM: 3 CP-mixing scalars $H_{1,2,3}$, charged Higgs pair H^{\pm} Further available - eHDECAY http://www.itp.kit.edu/~maggie/eHDECAY/ [Contino, Ghezzi, Grojean, Mühlleitner, Spira, Comput.Phys.Commun. 185 (2014) 3412] - SILH, minimal composite models MCHM4,5, non-linear parametrisation - NMSSMCALC http://www.itp.kit.edu/~maggie/NMSSMCALC/ [Baglio, Gröber, Mühlleitner, Dao, Rzehak, Spira, Comput.Phys.Commun. 185 (2014) 12] - CP-conserving & violating NMSSM: Mass corrections $\mathcal{O}(\alpha_t \alpha_s)$, branching ratios # Higgs decays: EW corrections beyond and with HDECAY New code for Higgs decays with 2-particle-final state for the 2HDM: Important ingredient: Renormalization of the 2HDM with focus on - gauge independenceprocess independence - avoiding artificially large corrections - . . . based on [Krause, Lorenz, Mühlleitner, Santos, Ziesche, 1605.04853; Krause, Mühlleitner, Santos, Ziesche, 1009.04185] ### Features: - 2 choices for mixing angles α and β, 2 scale choices (+ 1 process dep.) 2 choices for the parameter m₁₂² - Masses and field-strength-renormalization constants on-shell - Private version available public version with link to UDECAY in proparation # Higgs decays: EW corrections beyond and with HDECAY slide by M. Mühlleitner Example: $H^{\pm} \rightarrow W^{\pm} h$: - ϕ $m_{H^{\pm}} = (654...804), m_H = 743, m_A = 700 \text{ GeV}, \text{ tg}\beta = 1.46,$ $<math>\alpha = -0.57, m_{12}^2 = 2.1 \cdot 10^5 \text{ GeV}^2$ - \diamond angular renorm.: 'c, o': β renorm. through charged/odd sector; ' \star . OS': 2 different scales - ♦ 'KOSY': gauge-dependent scheme [Kanemura, Okada, Senaha, Yuan, hep-ph/0408364] ## Higgs decays: PROPHECY4F PROPHECY4F: A Monte Carlo generator for a Proper description of the Higgs decay into 4 fermions $[Bredenstein,\ Denner,\ Dittmaier,\ Weber\ hep-ph/0604011;\ hep-ph/0607060;\ hep-ph/0611234]$ New (available on request, soon on hepforge): [Altenkamp, Dittmaier, HR 1704.02645] • Extension to the 2HDM: #### Features: - ▶ 4 different renormalization schemes: - \star Different options for α/λ_3 and $\tan \beta$ - \star Masses and field-strength-renormalization constants on-shell, λ_5 $\overline{\rm MS}$ Note: m_{12}^2 is not an input parameter - ▶ Consistent conversion of parameters between the different ren. schemes - ► Running of MS parameters - Upcoming: SM Singlet extensions ### Higgs decays: PROPHECY4F ### $cos(\beta - \alpha)$ dependence of $h \rightarrow 4f$ in the 2HDM: Scenario: $$\begin{split} &M_h = 125 \text{ GeV}, \ M_H = 300 \text{ GeV}, \\ &M_{A_0} = M_{H^+} = 460 \text{ GeV}, \\ &\lambda_5 = -1.9, \tan\beta = 2, \\ &\mu_0 = \big(M_h + M_H + M_{A_0} + 2M_{H^+}\big)/5 \end{split}$$ LO: dashed NLO:solid • Scheme λ_3 $\overline{\text{MS}}$ used: $$\Gamma_{ m 2HDM,\ LO}^{h ightarrow 4f}|_{\lambda_3,\overline{ m MS}} = s_{eta-lpha}^2 \Gamma_{ m SM,\ LO}^{h ightarrow 4f}$$ [Altenkamp, Dittmaier, HR 1704.02645] ### Higgs decays: GMCALC A calculator for the Georgi-Machacek model ← scalar triplets: [Hartling, Kumar, Logan 1412.7387] - particle spectrum and tree-level couplings - theoretical constraints - branching ratios and total decay widths of the scalars (2-particle-final states) ### Upcoming: • Calculation of 1-loop decays including $H_5^+ \to W^+ \gamma$ particular important for $m_{H_5^+} < M_W + M_Z$ ## Higgs decays (and more): SloopS #### SLOOPS An automatic code for calculation of loops diagrams for \mathcal{SM} and \mathcal{BSM} processes with application to colliders, astrophysics and cosmology. - <u>Automatic</u> derivation of the CT Feynman rules and <u>computation</u> of the CT's - ► Models renormalized: SM, MSSM, NMSSM, Wino DM, xSM (w/ & w/o v_s), - Modularity between different renormalisation schemes. - Non-linear gauge fixing. - ► Checks: results UV,IR finite and gauge independent. http://code.sloops.free.fr/ LPT Orsay slide by G. Chalons # Higgs decays (and more): SloopS ### Recent developments: - Renormalization of the NMSSM [Bélanger, Bizouard, Boudjema, Chalons 1602.05495, 1705.02209] - Application: 1-loop evaluation of Higgs decays to SUSY particles [Bélanger, Bizouard, Boudjema, Chalons 1705.02209] # Higgs decays (and more): NMSSMTools [Ellwanger, Hugonie] #### New features since v5.0.0: - Treatment of the CP-violating NMSSM [Domingo 1503.07087] - New improved treatment of light CP-even and CP-odd Higgs partial widths [Domingo 1612.06538] - Continously updated constraints from Higgs measurements and dark matter searches ## Higgs masses (and more): FeynHiggs [Bahl, Hahn, Heinemeyer, Hollik, Paßehr, HR, Weiglein] ### Most important new feature in v2.12.0: - Log resummation via RGE improved: use loglevel [Bahl, Hollik 1608.01880] - \star loglevel = 2: three high-mass scales: $M_{\rm stop}$, $M_{\rm gluino}$, $M_{\rm cha/neu}$ electroweak contributions taken into account in the RGEs - ★ loglevel = 3: RGE resummation at the 3-loop (NNLL) level; threshold effects at the 2-loop level. #### New features since v2.13.0: - looplevel = 0, 1 can be combined with loglevel (still beta-version) Note: looplevel = 0 ⇒ pure EFT calculation - Interpolation of the EFT calculation in the case of complex parameters - Higgs production cross sections for 13 TeV and 14 TeV updated - Improvement of electroweak precision observables using [Awramik, Czakon, Freitas hep-ph/0608099; Heinemeyer, Hollik, Weiglein, Zeune 1311.1663] ### Higgs masses (and more): FeynHiggs [Bahl, Hahn, Heinemeyer, Hollik, Paßehr, HR, Weiglein] Upcoming: (see also [Bahl, Heinemeyer, Hollik, Weiglein 1706.00346]) - DR renormalization of the top/stop sector - Improved procedure for calculation of the pole masses/Z factors - Some improvements of the resummation routines # Higgs masses (and more): MhEFT: Method Outline | slides by G. Lee | • | Begin with SM couplings at M_t . [Buttazzo, Degrassi, Giardin Giudice, Sala, Salvio, Strumia 1307.3 | | |----------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------|--------------| | | • | Use SM RGE's (possibly with EWkino contributions beginning at μ) to evolve $\{g_i, y_j, \lambda\}$ from M_t to m_A . | | | <i>M</i> | I_S | Use THDM RGE's (in the $\lambda_i=0$ approximation) to evol $\{g_i,h_j,\tan\beta\}$ from m_A to M_S . | ve | | | • | Compute 1-loop threshold corrections to Yukawas h_j . | | | THDM(+EWkino) | • | Compute THDM quartic couplings $\lambda_i(M_S)$ in the MSSM (with 1-loop, select 2-loop corrections). | | | | • | Use THDM RGE's to evolve $\{g_i, h_j, l_k\}$ from M_S to m_A . | | | SM(+EWkino) | | Compute λ_k combinations appearing in Higgs mass matr $\mathcal{M}_{H^0}^2$ at m_A . [Gunion, Haber hep-ph/0207] | | | $\frac{\mu}{\text{SM}}$ | | Evolve $\{g_i, y_j, \lambda\}$ using SM RGE's in "Higgs basis", when corresponds to the Higgs doublet that receives a vev. | re λ | | | • | Diagonalize $\mathcal{M}^2_{H^0}$ at M_t . | | | | • | Compute masses, couplings, angles, etc. | | | Tools for BSM-Higgs physic | s: Progr | ess report Heidi Rzehak July 13, 2017 18 | 3/31 | # Higgs masses (and more): MhEFT Package slides by G. Lee [Lee, Wagner] - ▶ Mathematica notebook incorporating the calculations in [Lee, Wagner 1508.00576]. - ▶ It also incorporates approximate branching ratio and decay width calculations for the light SM-like Higgs. - ▶ Use decay widths to bb, $\tau\tau$, $\mu\mu$, cc, gg, $\gamma\gamma$, $Z\gamma$, WW^* , ZZ^* from LHCHXSWG tabulation for $M_h=125$ GeV. [Denner, Heinemeyer, Puljak, Rebuzzi, Spira 1107.5909] - ► Scale by computed couplings and Higgs masses according to formulae in, e.g., Djouadi reviews or Higgs Hunter's Guide. [Djouadi hep-ph/0503172(3)] - ▶ Include additional contributions to $\gamma\gamma$, $Z\gamma$ from charginos. - ▶ Find good agreement in the SM case for masses $M_h \sim 110$ –150 GeV, e.g. within 5–10% for the decay to gauge bosons (worse at lower masses because we did not include 4-body decays). - lacktriangle Numerical integration in Mathematica $\Rightarrow t \sim 1$ s for evaluation of one point. - Functional inputs: - $M_S, m_A, X_t, A_b, A_\tau, \tan \beta(m_A), \mu, M_1, M_2,$ - ▶ Can specify NLO, NNLO y_t. Available at http://gabrlee.com/code ## **Higgs masses:** MhEFT: M_h vs. X_t for different tan β Significant effect of Higgs mixing at low t_{β} : For $t_{\beta}=5$, the difference in M_h between curves for the same M_S is 2–3 GeV lower for $m_A=200$ GeV compared to for $m_A=500$ GeV (\sim decoupling limit). ## Higgs masses (and more): SOFTSUSY [Allanach, Athron, Bednyakov, Bernhardt, Cridge, Grellscheid, Hanussek, Kom, Martin, Robertson, Ruiz de Austri, Slavich, Tunstall, Voigt and Williams] ### Mass spectrum generator for - flavour-violating MSSM with/without R-parity - NMSSM #### New: • MSSM/NMSSM decays added [Allanach, Cridge, 1703.09717] ### Higgs masses (and more): SARAH/SPheno #### New features: - EFT calculation included [Porod, Staub 1703.03267] - 1-loop two-body decays included - Solution of the Goldstone boson catastrophe Braathen, Goodsell, Staub 1706.05372 $\overline{\text{MS}}$ parameters at M_Z $(g_i^{\overline{\text{MS}}}(M_Z), Y_i^{\overline{\text{MS}}}(M_Z), v^{\overline{\text{MS}}}(M_Z))$: full one-loop matching including higher order corrections Running Up: SM RGEs up to three-loop $\overline{ m DR}$ parameters at $M_{ m SUSY}$ ($g_i^{\overline{ m DR}}(M_{ m SUSY}), Y_i^{\overline{ m DR}}(M_{ m SUSY}), v^{\overline{ m DR}}(M_{ m SUSY})$ two-loop $\overline{ m MS}$ - $\overline{ m DR}$ conversion; one-loop SUSY shifts Effective Higgs self-coupling $\lambda_{\text{SM}}^{\overline{\text{MS}}}(M_{\text{SUSY}})$: Higgs mass matching at one- or two-loop mass matching at one- or two-loop Running Down: SM RGEs up to three-loop $\downarrow ({\rm not~converged})$ \downarrow (converged) $\begin{array}{|c|c|} \lambda_{\mathrm{SM}}^{\overline{\mathrm{MS}}}(M_Z): \\ \text{new iteration to obtain } g_i^{\overline{\mathrm{MS}}}(M_Z), \\ Y_i^{\overline{\mathrm{MS}}}(M_Z), v^{\overline{\mathrm{MS}}}(M_Z) \end{array}$ $\lambda_{SM}^{MS}(M_t)$: Higgs pole mass calculation: oneand two-loop corrections included ### Higgs masses (and more): FlexibleSUSY [Athron, Park, Stöckinger, Voigt] - BSM particle mass spectrum at 1-loop for SUSY/ non-SUSY models (2-loop and 3-loop corrections included in the SM, MSSM, NMSSM) [Athron, Park, Stöckinger, Voigt 1406.2319] - Many pre-defined models (MSSM, NMSSM, E6SSM, MRSSM, ...) and EFTs of the MSSM (HSSUSY, split-MSSM, THDM-II, ...) - FlexibleEFTHiggs approach to predict Higgs mass in a combined EFT/fixed-order approach with (N)LL resummation [Athron, Park, Steudtner, Stöckinger, Voigt 1609.00371] - \rightarrow improved in version 2.0 #### New in version 2.0: - observables: effective $hgg \& h\gamma\gamma$ couplings at NNNLO, $(g-2)_{\mu}$, EDMs, μ decay - semi-analytic boundary value problem solver to solve full-constrained models (CNMSSM, CE6SSM, ...) - → multiple solutions of constrained models # Higgs masses (and more): FlexibleSUSY: Predictions ### Higgs mass in the MSSM: ### Improved resummation (NLL) ### EDM in the NMSSM at 1-loop: ### HiggsBounds/HiggsSignals Testing parameter points of a model wrt Higgs search/measurement constraints New beta versions: - HiggsBounds-5 [Bechtle, Dercks, Heinemeyer, Stefaniak, Weiglein] - HiggsSignals-2 [Bechtle, Heinemeyer, Stefaniak, Weiglein] #### Features: - New structure of "effective Couplings Approximation": Linear instead of squared scaling parameters - New way for calculating $pp \rightarrow HZ$ from g_{hVV} , g_{htt} , g_{hbb} using vh@nnlo - 13 TeV cross section input included - Charged Higgs production cross section input included - New branching ratio input (e.g. Higgs-to-Higgs decays, LFV decays) - SM/BSM reference values ← YR4 - HiggsSignals: estimated uncertainties ← YR4 - New method for χ^2 -calculation for comb. of ATLAS & CMS run-1 results # Scanners: Overview (see also scanners.hepforge.org) # ScannerS alows general scalar potential with automatic: - Analysis of tree level local minimum/stability - ▶ Detection of tree level scalar spectrum and mixing - ► Tree level unitarity test #### Interfaces to - ▶ HDECAY, SHDECAY, N2HDECAY, C2HDECAY - ► HIGGSBOUNDS/SIGNALS (collider bounds/measurements) - ► MICROMEGAS (dark matter observables) - ► SusHi (+ internal numerical tables for gluon fusion) - ► Superiso (flavour physics observables) ### User/model defined functions to - ► Check boundedness from below - ► Check global stability - ▶ Implement phenomenological analysis for each point slides by M.O.P. Sampaio # Scanners: Overview (see also scanners.hepforge.org) # ScannerS alows general scalar potential with automatic: - Analysis of tree level local minimum/stability - ▶ Detection of tree level scalar spectrum and mixing - ► Tree level unitarity test ### Interfaces to: - ► HDECAY, SHDECAY, N2HDECAY, C2HDECAY - ► HIGGSBOUNDS/SIGNALS (collider bounds/measurements) - ► MICROMEGAS (dark matter observables) - ► SusHi (+ internal numerical tables for gluon fusion) - ► SUPERISO (flavour physics observables) ### User/model defined functions to - Check boundedness from below - ► Check global stability - ▶ Implement phenomenological analysis for each point slides by M.O.P. Sampaio # Scanners: Overview (see also scanners.hepforge.org) ### slides by ScannerS alows general scalar potential with automatic: - Analysis of tree level local minimum/stability - Detection of tree level scalar spectrum and mixing - Tree level unitarity test ### Interfaces to: - ► HDECAY, SHDECAY, N2HDECAY, C2HDECAY - HIGGSBOUNDS/SIGNALS (collider bounds/measurements) - MICROMEGAS (dark matter observables) - SUSHI (+ internal numerical tables for gluon fusion) - SUPERISO (flavour physics observables) ### User/model defined functions to: - Check boundedness from below - Check global stability - Implement phenomenological analysis for each point M.O.P. Sampaio ► Real and Complex Scalar Singlet Extensions: slides by M.O.P. Sampaio R. Costa, M. Mühlleitner, M.O.P. Sampaio, R. Santos, JHEP 1606 (2016) 034 + see YR4 R. Coimbra, M.O.P. Sampaio, R. Santos, EPJ C73 (2013) 2428 R. Costa, A. Morais, M.O.P. Sampaio, R. Santos, Phys.Rev. D92 (2015) 2, 025024 - **RxSM-dark**: 1 Higgs + 1 Dark (\mathbb{Z}_2) - **RxSM-broken**: 2 Higgs mixing (\mathbb{Z}_2 spont.broken) - ► CxSM-dark: 2 Higgs mixing + 1 Dark - ► CxSM-broken: 3 Higgs mixing **New:** Input files allow *Scan* or *Check* point mode. $\mathsf{see} \to \mathit{How} \ \mathsf{to} \ \mathit{run} \ \mathit{scalar} \ \mathit{singlet} \ \mathsf{extensions} \ \mathit{in} \ \mathit{ScannerS} \ (\mathtt{indico.cern.ch/event/640710})$ - Scalar Doublet Extensions: - 2HDM: Scan or Check point modes available. P.M. Ferreira, R. Guedes, M.O.P. Sampaio, R. Santos, JHEP 12 (2014) 067 - Scan mode (Check mode available soon ...) - M.M. Mühlleitner M.O.P. Sampaio, R. Santos, J. Wittbrodt, JHEP 1703 (2017) 094 - COUDM To Love Live Live Land Singlet 222 (an ► Real and Complex Scalar Singlet Extensions: slides by M.O.P. Sampaio R. Costa, M. Mühlleitner, M.O.P. Sampaio, R. Santos, JHEP 1606 (2016) 034 \pm see YR4 R. Coimbra, M.O.P. Sampaio, R. Santos, EPJ C73 (2013) 2428 R. Costa, A. Morais, M.O.P. Sampaio, R. Santos, Phys.Rev. D92 (2015) 2, 025024 - **RxSM-dark**: 1 Higgs + 1 Dark (\mathbb{Z}_2) - **RxSM-broken**: 2 Higgs mixing (\mathbb{Z}_2 spont.broken) - ► CxSM-dark: 2 Higgs mixing + 1 Dark - ► CxSM-broken: 3 Higgs mixing **New:** Input files allow *Scan* or *Check* point mode. $\mathsf{see} \to \mathit{How} \ \mathsf{to} \ \mathit{run} \ \mathit{scalar} \ \mathit{singlet} \ \mathsf{extensions} \ \mathit{in} \ \mathit{ScannerS} \ (\mathtt{indico.cern.ch/event/640710})$ - Scalar Doublet Extensions: - ▶ **2HDM**: *Scan* or *Check* point modes available. - P.M. Ferreira, R. Guedes, M.O.P. Sampaio, R. Santos, JHEP 12 (2014) 067 - **N2HDM-broken**: $2HDM + Real singlet \mathbb{Z}_2$ spont. broken. *Scan* mode (*Check* mode available soon . . .) - **N2HDM-dark**: 2HDM + Real singlet \mathbb{Z}_2 (under dev.) - ► C2HDM: To be publicly released soon. - M.M. Mühlleitner M.O.P. Sampaio, R. Santos, J. Wittbrodt, arXiv:1703.07750 ► Real and Complex Scalar Singlet Extensions: slides by M.O.P. Sampaio R. Costa, M. Mühlleitner, M.O.P. Sampaio, R. Santos, JHEP 1606 (2016) 034 \pm see YR4 R. Coimbra, M.O.P. Sampaio, R. Santos, EPJ C73 (2013) 2428 R. Costa, A. Morais, M.O.P. Sampaio, R. Santos, Phys.Rev. D92 (2015) 2, 025024 - **RxSM-dark**: 1 Higgs + 1 Dark (\mathbb{Z}_2) - **RxSM-broken**: 2 Higgs mixing (\mathbb{Z}_2 spont.broken) - ► CxSM-dark: 2 Higgs mixing + 1 Dark - ► CxSM-broken: 3 Higgs mixing **New:** Input files allow *Scan* or *Check* point mode. $\mathsf{see} \to \mathit{How to run scalar singlet extensions in ScannerS} \; (\texttt{indico.cern.ch/event/640710})$ - Scalar Doublet Extensions: - ▶ **2HDM**: *Scan* or *Check* point modes available. - P.M. Ferreira, R. Guedes, M.O.P. Sampaio, R. Santos, JHEP 12 (2014) 067 - ▶ **N2HDM-broken**: 2HDM + Real singlet \mathbb{Z}_2 spont. broken. Scan mode (Check mode available soon . . .) - M.M. Mühlleitner M.O.P. Sampaio, R. Santos, J. Wittbrodt, JHEP 1703 (2017) 094 - **N2HDM-dark**: 2HDM + Real singlet \mathbb{Z}_2 (under dev.) - ► C2HDM: To be publicly released soon. M.M. Mühlleitner M.O.P. Sampaio, R. Santos, J. Wittbrodt, arXiv:1703.07750 ► Real and Complex Scalar Singlet Extensions: slides by M.O.P. Sampaio R. Costa, M. Mühlleitner, M.O.P. Sampaio, R. Santos, JHEP 1606 (2016) 034 + see YR4 R. Coimbra, M.O.P. Sampaio, R. Santos, EPJ C73 (2013) 2428 R. Costa, A. Morais, M.O.P. Sampaio, R. Santos, Phys.Rev. D92 (2015) 2, 025024 - **RxSM-dark**: 1 Higgs + 1 Dark (\mathbb{Z}_2) - **RxSM-broken**: 2 Higgs mixing (\mathbb{Z}_2 spont.broken) - ► CxSM-dark: 2 Higgs mixing + 1 Dark - ► CxSM-broken: 3 Higgs mixing **New:** Input files allow *Scan* or *Check* point mode. ${\sf see} \to {\sf How} \ {\sf to} \ {\sf run} \ {\sf scalar} \ {\sf singlet} \ {\sf extensions} \ {\sf in} \ {\sf ScannerS} \ ({\sf indico.cern.ch/event/640710})$ - Scalar Doublet Extensions: - ▶ **2HDM**: *Scan* or *Check* point modes available. - P.M. Ferreira, R. Guedes, M.O.P. Sampaio, R. Santos, JHEP 12 (2014) 067 - **N2HDM-broken**: $2HDM + Real singlet \mathbb{Z}_2$ spont. broken. *Scan* mode (*Check* mode available soon . . .) M.M. Mühlleitner M.O.P. Sampaio, R. Santos, J. Wittbrodt, JHEP 1703 (2017) 094 - **N2HDM-dark**: 2HDM + Real singlet \mathbb{Z}_2 (under dev.) - ▶ C2HDM: To be publicly released soon. M.M. Mühlleitner M.O.P. Sampaio, R. Santos, J. Wittbrodt, arXiv:1703.07750 ### **HEPfit:** New fitting tool [de Blas Ciuchini, Chowdhury, Eberhardt, Fedele, Franco, Grilli di Cortona, Mishima, Paul, Pierini, Reina, Silvestrini, Valli, Yokozaki] • Fit the model parameters to a given set of experimental observables including Higgs observables Models including SM, effective extensions, specific models e.g. 2HDM - Obtain fit results for observables - Obtain predictions for observables see http://hepfit.roma1.infn.it ### ROSETTA and HEL@NLO ROSETTA: EFT basis translation tool (see http://rosetta.hepforge.org) includes modules e.g. interface to eHDECAY, # Ongoing work: consistency check of parameter points - Translations to other implementations of dimension 6-operators generated with FeynRules: [Alloul, Christensen, Duhr, Degrande, Fuks 1310.1921] - * HEL model [Alloul, Fuks, Sanz1310.5150] - * HEL@NLO model [Degrande, Fuks, Mawatari, Mimasu, Sanz 1609.04833] - Implementation of the RGE running of the wilson coefficients via the anomalous dimensions matrix [Alonso, Jenkins, Manohar, Trott 1312.2014] #### HEL@NLO model: - small set of operators relevant for EW Higgs production at NLO in QCD (see http://feynrules.irmp.ucl.ac.be/wiki/HELatNLO) - Ongoing: Increasing set of operators - → towards a complete dimension-6 basis at NLO in QCD (no 4-fermions operators) ### **Overall** - Many aspects covered (cross sections, decay widths, mass spectra, scans and fits) - Many models covered (extra singlets, extra doublets, SUSY models, triplets) - Precision increased (higher-order QCD, EW corrections) ### To discuss: Input scheme? Example: 2HDM: $cos(\beta - \alpha)$ in different ren. schemes: [Altenkamp, Dittmaier, HR 1704.02645] Scenario: $M_h=125$ GeV, $M_H=300$ GeV, $M_{A_0}=M_{H^+}=460$ GeV, $\lambda_5=-1.9$, $\tan\beta=2$ -0.4 -0.4 $$\begin{array}{c} 0.4 \\ \mu = 361 \text{ GeV} \\ \text{Scenario A} \\ \\ 0.2 \\ \\ \end{array}$$ $\lambda_{3\frac{MS}{FJ}}$ FJ λ_3 $c_{\beta-\alpha}|_{\alpha \overline{MS}}$ 0.2 0.4 ### Running $(\cos(\beta - \alpha) = 0.1)$: • A benchmark scenario depends on the chosen ren. scheme and the scale. -0.2 ### To discuss: Input scheme? ### Example: 2HDM: First gauge-independent ren. scheme using pinch techniques and specific processes ``` [Krause, Lorenz, Mühlleitner, Santos, Ziesche, 1605.04853; ``` Krause, Mühlleitner, Santos, Ziesche 1609.04185] - → New Code for Higgs decays to 2-particle-final state - Gauge-independent ren. scheme without use of pinch techniques and specific processes ``` [Denner, Jenniches, Lang, Sturm 1607.07352] ``` - \rightarrow HAWK - Further ren. schemes with diff. options for λ_3/α , $\tan\beta$, m_{12}^2 [Altenkamp, Dittmaier, HR 1704.02645] - \rightarrow PROPHECY4F - ⇒ No simple combination of results - ⇒ Discussion of choice of input scheme needed