CHARMLESS B DECAYS

Emi KOU

(LAL/IN2P3, Universite Paris-Sud XI)
Cirs
FPCPos@ Lake Placid, 28 May-ı June 2009

Outline

- Puzzle of $B \rightarrow \pi \pi, K \pi$
- QCD based approaches: what did we learn?
- Is annihilation large?
- Large color-suppressed amplitude understandable?
- Puzzle of $B \rightarrow \eta^{\prime} K$ branching ratio
- An anomaly enhancement to density matrix

QCD based approaches and annihilation contribution

Importance of Annihilation Diagrams

Keum, Li *o Sanda, PLB504 ('oI)
E.K.'s talk at FPCPo3 (Paris)

Annihilation diagrams had been neglected due to:

- α_{s} slippressed \rightarrow Not in pQCD
- $\frac{1}{m_{b}}$ suppressed comparing to the emission diagrams.
- Angular momentum conservation forbids the $V-A$ currents ($O_{1 \sim 4}$) by a factor of m_{π}^{2} (as $\left.\pi \rightarrow e \bar{\nu}\right)$.

However, $V+A$ currents $\left(O_{5,6}\right)$ remain accompanied by the chiral enhancement factor $m_{0}^{\pi}=m_{\pi}^{2} /\left(m_{u}+m_{d}\right)$.

Furthermore, we found that:

- The large absorptive part arises from cuts on the intermediate state.
- The strong phase associated with $O_{5,6}$ annihilation diagrams is nearly 90° in $B \rightarrow \pi \pi$ as well as $B \rightarrow K \pi$.

QCD based approaches and annihilation contribution

Importance of Annihilation Diagrams
Keum, Li \& Sanda, PLB504 ('oI)
E.K.'s talk at FPCPo3 (Paris)

However, $V+A$ currents $\left(O_{5,6}\right) \mathrm{r}$ hancement factor $m_{0}^{\pi}=m_{\pi}^{2} /\left(m_{u}+\right.$

Furthermore, we found that:

- The large absorptive part arises f
- The strong phase associated wit in $B \rightarrow \pi \pi$ as well as $B \rightarrow K \pi$.

Annihilation diagrams had been neglected due to:
\checkmark QCD factorization:
Annihilation non-calculable but possibly large (para. ρ_{A}) BBNS ('or), Beneke \&o Neubert ('o3) \checkmark SCET:

Annihilation calculable but large and real (imaginary part from charm penguin)

Arnesen, Ligeti, Rothstein \& Stewart ('o6)
\checkmark QCD sum-rule:
Annihilation calculable but small
Khodjamirian Mannel, Melcher, Melic ('05)

Attempts to predict CPV with annihilation phase.

CP Violation in $B \rightarrow \pi^{+} \pi^{-}$
Keum © Sanda, PRD68 ('03)
E.K.'s talk at FPCPO_{3} (Paris)

Thanks to Y.Y. Keum for the figure!

Attempts to predict CPV with annihilation phase.

CP Violation in $B \rightarrow \pi^{+} \pi^{-}$
Keum © Sanda, PRD68 ('o3)
E.K.'s talk at FPCPO_{3} (Paris)

Thanks to Y.Y. Keum for the figure!

More hints of large annihilation

- In most of the decay channels, annihilation is difficult to separate from the other topologies, however,
- In PQCD/QCDF, some of $B \rightarrow P V$ modes seem to require a large annihilation (e.g. $\operatorname{Br}(B \rightarrow \phi K)$). Mishima ('oz), Beneke \& Neubert ('o3)
- A large penguin annihilation provides an interesting solution to the $B \rightarrow V V$ polarization problem. Kagan (0_{4}), Beneeke $\dot{\text { d Robre, Yang (} 0_{7} \text {) }}$
- Is there any role in the pure annihilation processes?
${ }^{\text {- }} \operatorname{Br}\left(B^{0} \rightarrow K^{+} K^{-} / B_{s} \rightarrow \pi^{+} \pi^{-}\right):$
$\mathrm{PQCD} / \mathrm{QCDF}$ predict very small branching ratio: $\mathcal{O}\left(10^{-8}\right)$.
The current experimental bound is: $\left(0.15_{-0.10}^{+0.11}\right) \times 10^{-6}$
 Lu, Shen, Wang (05)
- Note: pure annihilation is seen (though different regime) in:

More recent progresses

- Many refinements in the theoretical predictions have been made by including the higher order corrections.

Li \& Mishima ('o6, 'o7), Bekene, Fager ('05)

- Still a few puzzling phenomena...
- Large $B^{0} \rightarrow \pi^{0} \pi^{0}$ branching ratio:

Exp: $B r=(1.55 \pm 0.19) \times 10^{-6} \quad$ Theo: $B r=(0.1 \sim 0.8) \times 10^{-6}$
A very large color-suppressed amplitude (C) is required!

- K pi puzzle:

$$
\mathcal{A}_{K-\pi^{+}}^{\mathrm{CP}}=-0.098_{-0.011}^{+0.012}, \mathcal{A}_{K^{-} \pi^{0}}^{\mathrm{CP}}=0.050 \pm 0.025
$$

Different from branching ratio K pi ($\mathrm{Rc} / \mathrm{Rn}$) puzzle (in 2003), solution can be either large electroweak penguin or large color-suppressed amplitude

How to increase color-suppressed amplitude?

- QCD based approaches:
- PQCD: uncanceled soft divergence (soft factor introduced)

Li \& Mishima ('og)

- QCDF: large spectator-scattering (or decrease $\lambda_{B} \simeq 200 \mathrm{MeV}$)

Beneke and Fager ('05)

- Final State Interaction:
- The re-scattering $\pi^{+} \pi^{-} \rightarrow \pi^{0} \pi^{0}$ can enhance effectively the color-suppressed amplitude, when there is a phase difference between $I=0,1$
- Large enhancement on C through $\rho^{+} \rho^{-} \rightarrow \pi^{0} \pi^{0}$?!

Kaidalov \& Vysotsky ('o7)

$$
C_{\mathrm{eff}} e^{i \delta_{\mathrm{eff}}}=\left[-(2 T-C) e^{i \delta_{0}}+2(T+C) e^{i \delta_{2}}\right] / 3
$$

Puzzle of $B \rightarrow K \eta^{\prime}$

- A puzzle since CLEO's measurement in '97
$\operatorname{Br}\left(K^{+} \eta^{\prime}\right)=(70.2 \pm 2.5) \times 10^{-6}, \operatorname{Br}\left(K^{+} \eta^{\prime}\right)=(64.9 \pm 3.1) \times 10^{-6}$
- It is very large comparing to
$\operatorname{Br}\left(K^{+} \pi^{0}\right)=(12.9 \pm 0.6) \times 10^{-6}, \operatorname{Br}\left(K^{+} \eta\right)=(2.7 \pm 0.3) \times 10^{-6}$
- $\mathrm{SU}(3)$ relation derived $\left(\theta=-19.5^{\circ}\right)$:

$$
B r\left(K \eta^{\prime}\right): B r(K \eta): B r\left(K \pi^{0}\right)=3: 0: 1
$$

Theoretical investigations...

- Anomaly diagram specific for $B \rightarrow K^{\prime}$
Gronau b' Rosner '97, Atwood © Soni'97
- Theoretical estimate still has a large error.
- Estimate of $B \rightarrow \eta^{\prime}$ form factor essential.

$$
\left\langle\eta^{\prime}\right| \bar{b} \gamma_{\mu} \gamma_{5} b|B\rangle
$$

Ball, fones ' $\mathrm{o7}$, Pham '07, Charng, Kurimoto, Li'o6

- Estimate of η^{\prime} decay constant and density matrix essential. $\langle 0| \bar{s} \gamma_{\mu} \gamma_{5} s\left|\eta^{\prime}\right\rangle$
Kaiser, Leutwyler '98, Feldman, Kroll, Stech '98

$$
\langle 0| \bar{s} \gamma_{5} s|\eta\rangle
$$

Gerard, E.K. 'o7

Decay constant and density matrix from effective theory

- Effective Lagrangian at large Nc (NLO)

$$
\begin{aligned}
\mathcal{L} & \left.=\frac{f^{2}}{8}\left\langle\partial_{\mu} U \partial^{\mu} U^{\dagger}\right\rangle+\frac{\pi_{0}^{2} \frac{f^{2}}{4 N_{c}} \frac{1}{8}\langle\ln U-\ln U\rangle}{}\right)^{2}+\frac{f^{2}}{8} r\left\langle m U^{\dagger}+U m\right\rangle \\
& +\frac{f^{2}}{8}\left[-\frac{r}{\Lambda^{2}}\left\langle m \partial^{2} U^{\dagger}\right\rangle+\frac{r^{2}}{2 \Lambda_{1}^{2}}\left\langle m U^{\dagger} m U^{\dagger}\right\rangle+\frac{r}{2 \Lambda_{2}^{2}}\left\langle m U^{\dagger} \partial_{\mu} U \partial^{\mu} U^{\dagger}\right\rangle\right]+\text { h.c. }
\end{aligned}
$$

$\Rightarrow \eta-\eta^{\prime}$ and $\mathrm{K} /$ pi masses, mixing, $\mathrm{K} /$ pi decay constants fix all the input parameters (we find mixing angle as $\theta_{p} \simeq-22^{\circ}$).

$$
f_{K} / f_{\pi}-1=\left(m_{K}^{2}-m_{\pi}^{2}\right)\left(\frac{1}{\Lambda_{0}^{2}}+\frac{1}{2 \Lambda_{2}^{2}}\right) \quad M_{K}^{2}=m_{K}^{2}\left[1+m_{K}^{2}\left(\frac{2}{\Lambda_{1}^{2}}-\frac{1}{2 \Lambda_{2}^{2}}\right)\right]
$$

\Rightarrow Using these parameters, we can predict $\eta-\eta^{\prime}$ decay constants and density matrix.
\Rightarrow Decay constant prediction coincides with the FKS values.

$$
\langle 0| \bar{s} \gamma_{5} s\left|\eta^{(\prime)}\right\rangle,\langle 0| \bar{u} \gamma_{5} u\left|\eta^{(\prime)}\right\rangle
$$

Decay constant and density matrix from effective theory

- Density matrix of K:

$$
\begin{aligned}
\langle 0| \bar{d} \gamma_{\mu} \gamma_{5} s|K\rangle & =i f_{K} p_{\mu} \\
\downarrow & \partial^{\mu} \text { and Eq. Of motion } \\
\langle 0| \bar{d}_{5} s|K\rangle & =\frac{m_{K}^{2}}{m_{s}+m_{d}} f_{K}
\end{aligned}
$$

- Density matrix of

$$
\partial^{\mu}\left(\bar{s} \gamma_{\mu} \gamma_{5} s\right)=2 i m_{s} \bar{s} \gamma_{5} s+\frac{\alpha_{s}}{4 \pi} G_{\mu \nu}^{a} \widetilde{G}_{a}^{\mu \nu}
$$

Decay constant and density matrix from effective theory

- Our numerical result:

$$
\begin{array}{r}
\zeta \equiv \frac{\langle 0| \bar{s} \gamma_{5} s|\eta\rangle}{\langle 0| \bar{d} \gamma_{5} s|K\rangle} / \sin \phi, \quad \zeta^{\prime} \equiv \frac{\langle 0| \bar{s} \gamma_{5} s\left|\eta^{\prime}\right\rangle}{\langle 0| \bar{d} \gamma_{5} s|K\rangle} / \cos \phi \\
\quad \phi=\theta-\theta_{I}+\pi / 2
\end{array}
$$

	our result	$\mathrm{SU}(3)$	AG	BN
ζ	1.29 ± 0.19	1	1.38	1.34
ζ^{\prime}	1.72 ± 0.26	1	1.12	1.07

Gerard, E.K. PRL‘o7 AliむGreub (98)
Beneke © Neubert (${ }^{\circ} 3$)

- The $\mathrm{SU}(3)$ relation is modified as:

$$
A\left(K \eta^{\prime}\right): A(K \eta): A\left(K \pi^{0}\right)=-\sqrt{\frac{1}{3}}\left[1+2 \zeta^{\prime}\right]:-\sqrt{\frac{2}{3}}[1-\zeta]: 1
$$

\checkmark Interpretation in terms of the distribution function, in progress

Conclusions

* Several puzzles exist in charmless B decays. Confrontation of the theoretical predictions to the experimental data continue.
* QCD based approaches (PQCD, QCDF, SCET, QCDSR, ChPTH ...) play important roles to distinguish new physics and hadronic uncertainties.

