CHARMLESS B DECAYS

Emi KOU (LAL/IN2P3, Universite Paris-Sud XI)

FPCP09 @ Lake Placid, 28 May-1 June 2009

In2p3

Outline

- Puzzle of $B \to \pi \pi, K \pi$
 - VQCD based approaches: what did we learn?
 - Is annihilation large?
 - Large color-suppressed amplitude understandable?
- Puzzle of $B \to \eta' K$ branching ratio
 - An anomaly enhancement to density matrix

QCD based approaches and annihilation contribution

Importance of Annihilation Diagrams

Keum, Li & Sanda, PLB504 ('01)

E.K.'s talk at FPCP03 (Paris)

Annihilation diagrams had been neglected due to:

- α_s suppressed \rightarrow Not in pQCD
- $\frac{1}{m_b}$ suppressed comparing to the emission diagrams.
- Angular momentum conservation forbids the V - A currents $(O_{1\sim 4})$ by a factor of m_{π}^2 (as $\pi \to e\overline{\nu}$).

However, V + A currents ($O_{5,6}$) remain accompanied by the chiral enhancement factor $m_0^{\pi} = m_{\pi}^2/(m_u + m_d)$.

Furthermore, we found that:

- The large absorptive part arises from cuts on the intermediate state.
- The strong phase associated with $O_{5,6}$ annihilation diagrams is nearly 90° in $B \to \pi\pi$ as well as $B \to K\pi$.

QCD based approaches and annihilation contribution

Importance of Annihilation Diagrams

E.K.'s talk at FPCP03 (Paris)

However, V + A currents ($O_{5,6}$) r hancement factor $m_0^{\pi} = m_{\pi}^2/(m_u + m_{\pi}^2)$

Furthermore, we found that:

- The large absorptive part arises f
- The strong phase associated with in $B \to \pi\pi$ as well as $B \to K\pi$.

Annihilation diagrams had been neglected due to:

- ✓ QCD factorization: Annihilation non-calculable but possibly large (para. ρA) BBNS ('o1), Beneke & Neubert ('o3)
 - ✓ SCET:

Keum, Li & Sanda, PLB504 ('01)

Annihilation calculable but large and real (imaginary part from charm penguin)

Arnesen, Ligeti, Rothstein & Stewart ('06) ✓QCD sum-rule: Annihilation calculable but small Khodjamirian Mannel, Melcher, Melic ('05)

Thanks to Y.Y. Keum for the figure!

CP Violation in $B \rightarrow \pi^+ \pi^-$

Keum & Sanda, PRD68 ('03)

E.K.'s talk at

FPCP03 (Paris)

More hints of large annihilation

- In most of the decay channels, annihilation is difficult to separate from the other topologies, however,
 - In PQCD/QCDF, some of $B \to PV$ modes seem to require a large annihilation (e.g. $Br(B \to \phi K)$). Mishima ('02), Beneke & Neubert ('03)
 - A large penguin annihilation provides an interesting solution to the $B \rightarrow VV$ polarization problem. Kagan (°04), Beneke & Robre, Yang (°07)
- Is there any role in the pure annihilation processes?

$$Br(B^0 \to K^+ K^- / B_s \to \pi^+ \pi^-)$$
:

PQCD/QCDF predict very small branching ratio: $O(10^{-8})$. The current experimental bound is: $(0.15^{+0.11}_{-0.10}) \times 10^{-6}$ An observation will have a huge impact! Chen & Li ('00), Beneke & Neubert ('03), Lu, Shen, Wang ('05)

• Note: pure annihilation is seen (though different regime) in: $B^0 \rightarrow D_s^- K^+, \ D_s \rightarrow \pi \rho / \pi \omega$ Fajfer, Prapotnik, Singer & Zupan ('03), Gronau & Rosner ('09)

More recent progresses

- Many refinements in the theoretical predictions have been made by including the higher order corrections. Li & Mishima ('06, '07), Bekene, Jager ('05)
- Still a few puzzling phenomena...
- Large $B^0 \to \pi^0 \pi^0$ branching ratio:

Exp: $Br = (1.55 \pm 0.19) \times 10^{-6}$ Theo: $Br = (0.1 \sim 0.8) \times 10^{-6}$

A very large color-suppressed amplitude (C) is required!

• K pi puzzle:

 $\mathcal{A}_{K^-\pi^+}^{\text{CP}} = -0.098^{+0.012}_{-0.011}, \ \mathcal{A}_{K^-\pi^0}^{\text{CP}} = 0.050 \pm 0.025$

Different from branching ratio K pi (Rc/Rn) puzzle (in 2003), solution can be *either* large electroweak penguin or large color-suppressed amplitude *e.g. see Baek, Chiang, Gronau, London, Rosner* ('09), Li & Mishima ('09)

How to increase color-suppressed amplitude?

- QCD based approaches:
 - PQCD: uncanceled soft divergence (soft factor introduced)
 - QCDF: large spectator-scattering (or decrease $\lambda_B \simeq 200 \text{ MeV}$)
- Final State Interaction:
 - The re-scattering $\pi^+\pi^- \rightarrow \pi^0\pi^0$ can enhance effectively the color-suppressed amplitude, when there is a phase difference between I = 0, 1
 - Large enhancement on C through $\rho^+ \rho^- \rightarrow \pi^0 \pi^0$?!

Kaidalov & Vysotsky ('07)

Li & Mishima ('09)

Beneke and Jager ('05)

 $C_{\text{eff}}e^{i\delta_{\text{eff}}} = [-(2T-C)e^{i\delta_0} + 2(T+C)e^{i\delta_2}]/3$

Puzzle of $B \to K\eta'$

- A puzzle since CLEO's measurement in '97 $Br(K^+\eta') = (70.2 \pm 2.5) \times 10^{-6}, Br(K^+\eta') = (64.9 \pm 3.1) \times 10^{-6}$
- It is very large comparing to Br(K⁺π⁰) = (12.9 ± 0.6) × 10⁻⁶, Br(K⁺η) = (2.7 ± 0.3) × 10⁻⁶

• SU(3) relation derived $(\theta = -19.5^\circ)$: $Br(K\eta') : Br(K\eta) : Br(K\pi^0) = 3 : 0 : 1$

Theoretical investigations...

Anomaly diagram specific for $B \rightarrow K'$ Gronau & Rosner '97, Atwood & Soni '97

 Theoretical estimate still has a large error. • Estimate of $B \rightarrow \eta'$ form factor essential. $\langle \eta' | \bar{b} \gamma_{\mu} \gamma_{5} b | B \rangle$

> Ball, Jones '07, Pham '07, Charng, Kurimoto, Li '06

Estimate of η' decay constant and density matrix essential. $\langle 0|\bar{s}\gamma_{\mu}\gamma_{5}s|\eta'\rangle$ Kaiser, Leutwyler '98, Feldman, Kroll, Stech '98 $\langle 0|\bar{s}\gamma_{5}s|\eta\rangle$

Gerard, E.K. '07

Decay constant and density matrix from effective theory

• Effective Lagrangian at large Nc (NLO)

$$\mathcal{L} = \frac{f^2}{8} \langle \partial_{\mu} U \partial^{\mu} U^{\dagger} \rangle + \frac{m_0^2 f^2}{4N_c 8} \langle \ln U - \ln U^{\dagger} \rangle^2 + \frac{f^2}{8} r \langle m U^{\dagger} + U m \rangle$$

+
$$\frac{f^2}{8} \left[-\frac{r}{\Lambda^2} \langle m \partial^2 U^{\dagger} \rangle + \frac{r^2}{2\Lambda_1^2} \langle m U^{\dagger} m U^{\dagger} \rangle + \frac{r}{2\Lambda_2^2} \langle m U^{\dagger} \partial_{\mu} U \partial^{\mu} U^{\dagger} \rangle \right] + h.c.$$

- *η* η' and K/pi masses, mixing, K/pi decay constants fix all the input parameters (we find mixing angle as θ_p ≃ -22°).
 f_K/f_π 1 = (m²_K m²_π)(¹/_{Λ⁰₀} + ¹/_{2Λ²₂}) M²_K = m²_K [1 + m²_K(²/_{Λ¹₁} ¹/_{2Λ²₂})]
 Using these parameters, we can predict η η' decay constants and density matrix.
- $\Rightarrow \text{ Decay constant prediction coincides with the FKS values.} \\ \langle 0|\bar{s}\gamma_5 s|\eta^{(\prime)}\rangle, \ \langle 0|\bar{u}\gamma_5 u|\eta^{(\prime)}\rangle \xrightarrow[Feldman, Kroll, Stech '98]{}$

Decay constant and density matrix from effective theory

• Density matrix of K:

$$\begin{array}{rcl} \langle 0|\bar{d}\gamma_{\mu}\gamma_{5}s|K\rangle &=& if_{K}p_{\mu} \\ & & & \hline \partial^{\mu} \text{ and Eq. of motion} \\ \\ \langle 0|\bar{d}\gamma_{5}s|K\rangle &=& \frac{m_{K}^{2}}{m_{s}+m_{d}}f_{K} \end{array}$$

• Density matrix of

$$\partial^{\mu}(\bar{s}\gamma_{\mu}\gamma_{5}s) = 2im_{s}\bar{s}\gamma_{5}s + \frac{\alpha_{s}}{4\pi}G^{a}_{\mu\nu}\tilde{G}^{\mu\nu}_{a}$$

Decay constant and density matrix from effective theory

• Our numerical result:

$$\zeta \equiv \frac{\langle 0|\bar{s}\gamma_5 s|\eta\rangle}{\langle 0|\bar{d}\gamma_5 s|K\rangle}/\sin\phi, \quad \zeta' \equiv \frac{\langle 0|\bar{s}\gamma_5 s|\eta'\rangle}{\langle 0|\bar{d}\gamma_5 s|K\rangle}/\cos\phi$$

$$\phi = \theta - \theta_I + \pi/2$$

	our result	SU(3)	AG	BN
ζ	1.29 ± 0.19	1	1.38	1.34
ζ'	1.72 ± 0.26	1	1.12	1.07

Gerard, E.K. PRL '07

Ali & Greub ('98) Beneke & Neubert ('03)

• The SU(3) relation is modified as:

 $A(K\eta'): A(K\eta): A(K\pi^0) = -\sqrt{\frac{1}{3}}[1+2\zeta']: -\sqrt{\frac{2}{3}}[1-\zeta]: 1$

✓ Interpretation in terms of the distribution function, in progress

Conclusions

* Several puzzles exist in charmless B decays.
 Confrontation of the theoretical predictions to the experimental data continue.

* QCD based approaches (PQCD, QCDF, SCET, QCDSR, ChPTH ...) play important roles to distinguish new physics and hadronic uncertainties.