sin Status of CKM matrix elements

 from B-physics on the lattice
Why compute B-decays in lattice QCD?

- B-factories and Tevatron have been pouring out data to pin down the CKM matrix elements -TBABAR B lattice QCD calculations are needed to interpret may of their results

- In order to accurately describe weak interactions involving quarks, must include effects of confining quarks into hadrons:

- Absorb non-perturbative QCD effects into quantities such as decay constants, form factors, and bag-parameters
- Only way to calculate hadronic weak matrix elements with all systematic uncertainties under control is numerically using lattice QCD

Lattice QCD and the CKM unitarity triangle

- In the Standard Model, the CKM matrix is unitary
- Leads to relationships among matrix elements that can be expressed as the CKM unitarity triangle
- New quark flavor-changing interactions \& CP-violating phases would manifest themselves as apparent inconsistencies between experimental measurements that are predicted to be the same within the Standard Model framework
- Schematically, expt. $=\mathrm{CKM} \times$ lattice \times known factors

$\rightarrow \Rightarrow$ To test the Standard Model and observe new physics, need precise (few \% or better) lattice QCD calculations

Systematics in lattice calculations

- Lattice calculations typically quote the following sources of error:
(1) Monte carlo statistics \& fitting
(2) Tuning lattice spacing, a, and quark masses
(3) Matching lattice gauge theory to continuum QCD
* (Sometimes split up into relativistic errors, discretization errors, perturbation theory, ...)
(4) Chiral extrapolation to physical up, down quark masses
(5) Extrapolation to continuum
* (Often combined with chiral extrapolation)
- In order to verify understanding and control of systematic uncertainties in lattice calculations, COMPARE RESULTS FOR KNOWN QUANTITIES WITH EXPERIMENT
- Two such examples are the pion decay constant and the $\mathrm{D} \rightarrow \mathrm{K} \mathbb{V}$ form factor . .

The pion decay constant

- Tests:
* Dynamical (sea) quark effects
* Light quark formalism
* chiral and continuum extrapolation
- Because of limited computing resources, quark masses in lattice simulations are higher than those in the real world
- Must extrapolate lattice results to physical values of up, down quark mass
- Use expressions derived in chiral perturbation theory to extrapolate to the physical quark masses in a controlled way
[MIILC Lat'07 arXiv:0710.1118 [hep-lat]]

- Can also use symmetries of lattice action to incorporate discretization errors and extrapolate to the continuum
- Can compute $\mathrm{f}_{\pi} \mathrm{to} \mathbf{- 2 \%}$ accuracy and result agrees with experiment!

The $\mathrm{D} \rightarrow \mathrm{K} \mathrm{\ell v}$ form factor

- Also tests:
* Heavy-quark formalism
* Lattice operator matching
- Generic lattice quark action will have discretization errors $\propto\left(a m_{Q}\right)^{n}$
- Can use knowledge of the heavy quark or nonrelativistic quark limits of QCD to systematically eliminate HQ discretization errors order-by-order
- Requires tuning parameters of lattice
[Fermilala/MIILC; Phys.Rev.Lett.94:011601,2005]

* Typically calculate matching coefficients in lattice perturbation theory
- Estimate errors using knowledge of short-distance coefficients and power-counting
- Successfully predicted the shape and normalization of the $\mathbf{D} \rightarrow \mathrm{KI} \nu$ form factor!

Lattice calculations of B-meson quantities

CAVEAT: This talk will be restricted to three-flavor unquenched lattice calculations

- Currently two groups calculating heavy-light meson quantities with three dynamical quark flavors: Fermilab/MILC \& HPQCD
* Both use the publicly available " $2+1$ flavor" MILC configurations [Phys.Rev.D70:114501,2004] which have three flavors of improved staggered quarks:
* Two degenerate light quarks and one heavy quark ($\approx \mathrm{m}_{\mathrm{s}}$)
* Light quark mass ranges from $m_{s} / 10 \leq m_{I} \leq m_{s}$ (minimum $m_{\pi} \approx 240-330 \mathrm{MeV}$)
* Two or more lattice spacings with minimum $\mathrm{a} \approx 0.09 \mathrm{fm}$
- Groups use different heavy quark discretizations:
* Fermilab/MILC uses Fermilab quarks
* HPQCD uses nonrelativistic (NRQCD) heavy quarks

$\mathrm{B} \rightarrow \mathrm{D}^{*} \ell v$ decay and $\left|\mathrm{V}_{\mathrm{cb}}\right|$

-0.2	0.0	0.2	
			$\bar{\rho}$

$B \rightarrow D^{*} \mathcal{V}$ semileptonic decay

- Experiments can only measure the product (form factor) $\times\left|V_{c b}\right|$

$$
\left.\frac{d \Gamma(B \rightarrow D l \nu)}{d w}=\frac{G_{F}^{2}}{48 \pi^{3}} m_{D}^{3}\left(m_{B}+m_{D}\right)^{2}\left(w^{2}-1\right)^{3 / 2}\left|V_{c b}\right|^{2}\left|\mathcal{F}_{B \rightarrow D}(w)\right|^{2}\right\} \begin{aligned}
& \mathrm{w} \equiv \mathrm{v}^{\prime} \cdot \mathrm{v} \\
& \mathrm{w}=1 \\
& \text { at zero recoil }
\end{aligned}
$$

- Lattice QCD calculations needed to determine normalization and extract the CKM matrix element $\left|\mathrm{V}_{\mathrm{cb}}\right|$
- Only need one q^{2} point from lattice -- choose $\mathbf{w}=1$ because easiest to calculate

$\left|\mathrm{V}_{\mathrm{cb}}\right|$ normalizes the CKM unitarity triangle

- In order to make the base of the CKM triangle have unit length, the convention is to divide everything by $\left|\mathrm{V}_{\mathrm{cd}} \mathrm{V}_{\mathrm{cb}}{ }^{*}\right|$

$+\Rightarrow$ |Vobl enters all constraints on the apex of CKM unitarity triangle (not the angles) except for those from ratios
- $\sim 2 \%$ error in $\left|\mathrm{V}_{\mathrm{cb}}\right|$ already limits the constraint from neutral kaon mixing (the ε_{K} band) will ultimately limit other constraints if it is not reduced . . .

Calculation of the $\mathrm{B} \rightarrow \mathrm{D}^{*} \ell$ form factor and $\left|\mathrm{V}_{\mathrm{cb}}\right|$

$$
\mathcal{F}(1)=0.927(13)(20)
$$

[Fermilab/MILLC;

Phys. Rev. D 79, 014506 (2009)]

- Míld quarre mass dependence
- Largest uncertainties from statistics and discretization errors, and can be reduced in a straightforward manner:

* MILC has recently generated $4 \times$ the configurations on the $\mathrm{a} \approx 0.12 \mathrm{fm}$ lattices
* Configurations with $\mathrm{a} \approx 0.06 \mathrm{fm}, \mathrm{a} \approx 0.045 \mathrm{fm}$ still need to be analyzed
- Using the most recent experimental value of $\mathrm{F}(1) \times\left|\mathrm{V}_{\mathrm{cb}}\right|$ from the Heavy Flavor Averaging Group gives

$$
\left|V_{c b}\right| \times 10^{3}=38.3 \pm 0.5_{\text {exp. }} \pm 1.0_{\text {theo. }} .
$$

Comparison with other determinations

- Experiment updated since publication, with only slight change in $\left|\mathrm{V}_{\mathrm{cb}}\right|$
- Exclusive $\left|\mathrm{V}_{\mathrm{cb}}\right|$ approximately 2- σ lower than inclusive determinations (see talks by Schwanda, Tackmann)
\rightarrow Experiments not consistent for $B \rightarrow D^{*} \mathcal{V}$:
* Confidence level of HFAG global fit is 0.01%
- Calculation of $B \rightarrow D^{*} \mathbb{V}$ form factor at non-zero recoil could perhaps shed some light . . .

$\Delta m_{d} \& \Delta m_{s}$

$B \rightarrow \pi l v$ decay and $\left|V_{u b}\right|$

-0.2	0.0	0.2	
			$\overline{\mathrm{\rho}}$

$\mathrm{B} \rightarrow \pi \ell v$ semileptonic decay

- Experiments can only measure the product $f_{+}\left(\mathbf{q}^{2}\right) \times\left|\mathbf{V}_{u b}\right|$

$$
\frac{d \Gamma\left(B^{0} \rightarrow \pi^{-} \ell^{+} \nu\right)}{d q^{2}}=\frac{G_{F}^{2}}{192 \pi^{3} m_{B}^{3}}\left[\left(m_{B}^{2}+m_{\pi}^{2}-q^{2}\right)^{2}-4 m_{B}^{2} m_{\pi}^{2}\right]^{3 / 2}\left|V_{u b}\right|^{2}\left|f_{+}\left(q^{2}\right)\right|^{2}
$$

- Need lattice calculation of the $B \rightarrow \pi l v$ form factor to determine $\left|V_{u b}\right|$
- Few percent determination of $\left|\mathrm{V}_{\mathrm{ub}}\right|$ difficult because errors in experimental branching fraction smallest at low q^{2}, whereas errors in lattice form factor determination smallest at high q^{2}

$\left|V_{\mathrm{ub}}\right|$ and the CKM unitarity triangle

- $\left|\mathrm{V}_{\mathrm{ub}}\right|$ constrains the apex $(\bar{\rho}, \bar{\eta})$ of the unitarity triangle:

$$
\frac{\left|V_{u b}\right|}{\left|V_{c b}\right|}=\frac{\lambda}{1-\frac{\lambda^{2}}{2}} \sqrt{\bar{\rho}^{2}+\bar{\eta}^{2}}
$$

* $\lambda=\left|\mathrm{V}_{\text {us }}\right|$ known to $\sim 1 \%$
* $\left|\mathrm{V}_{\mathrm{cb}}\right|$ known to $\sim 2 \%$
- Width of green error ring dominated by uncertainty
 in $\left|V_{u b}\right|$
- $\sin (2 \beta)$ currently constrains the height to better than 4% and is still improving
- \therefore A precise determination of IVubl will allow a strong test of CKM unitarity

Calculation of the $\mathrm{B} \rightarrow \pi \ell$ form factor $\mathrm{f}_{+}\left(\mathrm{q}^{2}\right)$

- Compute the form factor at $12 \mathrm{q}^{2}$ values from $\approx 18 \mathrm{GeV}^{2}$ to $\mathrm{q}^{2}{ }_{\text {max }}=26.5 \mathrm{GeV}^{2}$
* Shape and normalization consistent with other 2+1 flavor determinations
* Errors smaller and more reliable due to use of second lattice spacing
[Fermillab/MillC; arXiv:0811.3640 [hep-lat]]

- Largest uncertainty from statistics and chiral extrapolation, and can be reduced with the following:
* MILC has recently generated $4 \times$ the configurations on the $a \approx 0.12 \mathrm{fm}$ lattices
* Configurations with larger spatial volumes exist and will allow lighter pion masses

Exclusive determination of $\left|\mathrm{V}_{\mathrm{ub}}\right|$ from $\mathrm{B} \rightarrow \pi \ell v$

- Standard method is to combine lattice form factor experimentally-measured $B \rightarrow \pi / v$ branching fraction and B-meson lifetime and integrate over q^{2} :

$$
\frac{\Gamma\left(q_{\min }\right)}{\left|V_{u b}\right|^{2}}=\frac{G_{F}^{2}}{192 \pi^{3} m_{B}^{3}} \int_{q_{\min }^{2}}^{q_{\max }^{2}} d q^{2}\left[\left(m_{B}^{2}+m_{\pi}^{2}-q^{2}\right)^{2}-4 m_{B}^{2} m_{\pi}^{2}\right]^{3 / 2}\left|f_{+}\left(q^{2}\right)\right|^{2}
$$

* Requires analytic parameterization of lattice form factor $f_{+}\left(q^{2}\right)$
- Standard functional form used to interpolate/extrapolate form factor data is the Becirevic-Kaidalov parameterization:

* Easy to use, but introduces hard-to-estimate model dependence due to choice of fit ansatz

z-expansion of semileptonic form factors

[Arnesen et. al. Phys. Rev. Lett. 95, 071802 (2005) and refs. therein]

- Consider mapping the variable q^{2} onto Consider mapping the variable q^{2} onto
a new variable, z, in the following way: $z=\frac{\sqrt{1-q^{2} / t_{+}}-\sqrt{1-t_{0} / t_{+}}}{\sqrt{1-q^{2} / t_{+}}+\sqrt{1-t_{0} / t_{+}}}$
- Choose the free parameter to to make the maximum $|z|$ in the region as small as possible -- choosing 0.65 t - maps z in the $\mathrm{B} \rightarrow \pi \ell v$ decay region onto $-0.34<z<0.22$
- In terms of z, semileptonic form factors have simple form:

$$
\begin{gathered}
P(t) \phi\left(t, t_{0}\right) f(t)=\sum_{k=0}^{\infty} a_{k}\left(t_{0}\right) z\left(t, t_{0}\right)^{k} \\
\begin{array}{c}
\text { Accounts for } \\
\text { subthreshold } \\
\text { (e.g. } \mathrm{B}^{*} \text {) poles }
\end{array} \\
\begin{array}{c}
\text { "Arbitrary" analytic function -- choice } \\
\text { only affects particular values of } \\
\text { coefficients (ak's) }
\end{array}
\end{gathered}
$$

- Unitarity constrains the size of the coefficients: $\sum_{k=0} a_{k}^{2} \leq 1 \quad$ for any value of N
- Thus, in combination with the small range of $|z|$, one needs only a small number of parameters to obtain the form factors to a high degree of accuracy

Heavy quark constraint on coefficients

- Unitarity bound on coefficients come from fact that the decay rate to the exclusive channel $B \rightarrow \pi l v$ must be less than the inclusive B-meson decay rate
- It is also true that, as the mass of B-meson increases, its branching fraction to any particular exclusive channel decreases
- The branching fraction for the semileptonic decay $B \rightarrow \pi l v$ as a power of $\Lambda_{\mathrm{QCD}} / \mathrm{m}_{\mathrm{B}}$ has been calculated by Becher and Hill
- It can be used to place an even fighter constraint on the coeffiecents of the z-expansion for the form factors:

$$
\sum_{k=0}^{N} a_{k}^{2} \sim\left(\frac{\Lambda}{m_{B}}\right)^{3} \approx 0.001
$$

- Implies that the unitarity bound is far from saturated, i.e. that the coefficients will be much less than one

Effect of z-remapping on $B \rightarrow \pi l v$ form factor

Striking curvature in $\mathrm{B} \rightarrow \pi / \mathrm{lv}$ form factor data versus q^{2}

No visible curvature
after remapping

- Curvature in data due to well-understood perturbative QCD effects
- Data completely described by a normalization and a slope, and constrains the size of possible curvature

The program for lattice and experiment

1. Fit experimental and lattice data in terms of z expansion
2. Determine and compare the slopes (and curvature) in z
3. If consistent, fit lattice and experimental data simultaneously with an unknown relative offset to determine $\left|\mathrm{V}_{\mathrm{ub}}\right|$

ADVANTAGES TO THIS APPROACH:

- Model-independent
- Can quantify the agreement between lattice and experiment using slope measurements
- Systematically improvable -- as data gets more precise can add more terms in z
- Minimizes error in IVubl by using all of the lattice and experimental data in a single fit

Hope is that this method will be more generally adopted by HFAG and others in the future!

Consistency check: separate z-fits

- Lattice data determines both the slope and curvature
- Experimental data consistent with zero curvature
- Lattice and experimental slope and curvature agree within uncertainties
\Rightarrow Proceed to simultaneous fit of lattice and experimental data

Simultaneous z-fit to determine $\left|\mathrm{V}_{\mathrm{ub}}\right|$

- Fit lattice and 12-bin BABAR experimental data [Phys. Rev. Lett. 98, 091801 (2007)] together to z-expansion leaving relative normalization factor $\left(\left|\mathrm{V}_{\mathrm{ub}}\right|\right)$ as a free parameter

Fit results

- The result of the 4-parameter combined z-fit is:

$$
\begin{aligned}
\left|V_{u b}\right| \times 10^{3} & =3.38 \pm 0.36 \\
a_{0} & =0.0218 \pm 0.0021 \\
a_{1} & =-0.0301 \pm 0.0063 \\
a_{2} & =-0.059 \pm 0.032 \\
a_{3} & =0.079 \pm 0.068
\end{aligned}
$$

- Coefficients are much smaller than 1, as expected from heavy-quark power-counting

$$
\sum a_{k}^{2} \sim 0.01
$$

* Result independent of constraint on coefficients
- $\left|\mathrm{V}_{\mathrm{ub}}\right|$ determined to -11% accuracy
- Improved uncertainty largely due to combined z-fit method:
* If perform separate z-fits of lattice and experimental data and take ratio of normalizations, only determine $\left|\mathrm{V}_{\mathrm{ub}}\right|$ to $\sim 16 \%$

Comparison with other determinations

FPCP 2009

- Exclusive $\left|\mathrm{V}_{\mathrm{ub}}\right| \sim$ 1-2 - σ below inclusive determinations (see talks by Barberio, Tackmann)
- Consistent with preferred values from unitarity triangle analyses

Neutral B-meson mixing

-0.2	0.0	0.2	
			$\bar{\rho}$

B-mixing constraint on the unitarity triangle

- Underlying quark flavor-changing weak interaction is proportional to:
* $\left|V^{*}{ }^{*} V_{\mathrm{td}}\right|$ for B_{d}-mixing
* $\left|\mathrm{V}^{*}{ }^{*} \mathrm{~V}_{\mathrm{tb}}\right|$ for B_{s}-mixing

- The ratio of B_{d} to B_{s} oscillation frequencies $\left(\Delta m_{q}\right)$ constrains the apex of the CKM unitarity triangle:

$$
\frac{\Delta m_{d}}{\Delta m_{s}}=\left(\frac{f_{B_{d}} \sqrt{\hat{B}_{B_{d}}}}{f_{B_{s}} \sqrt{\hat{B}_{B_{s}}}}\right)^{2} \frac{m_{B_{d}}}{m_{B_{s}}} \frac{\left|V_{t d}\right|^{2}}{\left|V_{t s}\right|^{2}}=\frac{1}{\xi^{2}} \frac{m_{B_{d}}}{m_{B_{s}}}\left(\frac{\lambda}{1-\lambda^{2} / 2}\right)^{2} \frac{\left((1-\bar{\rho})^{2}+\bar{\eta}^{2}\right)}{\left(1+\frac{\lambda^{2}}{1 \lambda^{2} / 2} \bar{\rho}\right)+\lambda^{4} \bar{\eta}^{2}}
$$

* $\Delta \mathrm{m}_{\mathrm{q}}$ measured to better than 1%
* $\lambda=\left|\mathrm{V}_{\text {us }}\right|$ known to $\sim 1 \%$
* Dominant error currently from uncertainty in lattice QCD calculation of the ratio ξ

Calculation of B-meson mixing parameters

[HPQCD; arXiv:0902.1815 [hep-lat]]

$$
\begin{aligned}
\xi & =1.258(33) \\
f_{B_{d}} \sqrt{\hat{B}_{B_{d}}} & =216(15) \mathrm{MeV} \\
f_{B_{s}} \sqrt{\hat{B}_{B_{s}}} & =266(18) \mathrm{MeV}
\end{aligned}
$$

- Almost no lattice spacing dependence in ξ

- Largest uncertainty in $\xi(2 \%)$ from statistics and chiral extrapolation and can be reduced:
* MILC has recently generated $4 \times$ the configurations on the $\mathrm{a} \approx 0.12 \mathrm{fm}$ lattices
* Configurations with larger spatial volumes exist and allow lighter pion masses

Comparison with other determinations

- Value of ξ consistent with preliminary $2+1$ flavor determination of Fermilab/MILC from Lattice 2008
- Leads to the following ratio of CKM matrix elements:

$$
\frac{\left|V_{t d}\right|}{\left|V_{t s}\right|}=0.214(1)_{\exp .}(5)_{\text {theo. }}
$$

- Also consistent with less precise determination from $B \rightarrow \rho \gamma / B \rightarrow K^{*} \gamma:\left|V_{t d} / V_{t s}\right|=0.203(20)$ (see talk by $\mathbb{E}^{\text {. Salvati) }}$

Neutral kaon mixing

-0.2	0.0	0.2	
			$\bar{\rho}$

Kaon mixing constraint on the unitarity triangle

- Underlying quark flavor-changing interaction proportional to $\left|\mathrm{V}_{\text {td }}^{*} \mathrm{~V}_{\text {ts }}\right|$

- Experimental measurement of direct CP-violation in the neutral kaon system (ε_{K}) constrains the apex of the CKM unitarity triangle:

$$
\left|\epsilon_{K}\right|=C_{\epsilon} B_{K} A^{2} \bar{\eta}\left\{-\eta_{1} S_{0}\left(x_{c}\right)\left(1-\lambda^{2} / 2\right)+\eta_{3} S_{0}\left(x_{c}, x_{t}\right)+\eta_{2} S_{0}\left(x_{t}\right) A^{2} \lambda^{2}(1-\bar{\rho})\right\}
$$

* ε_{κ} measured to better than 1%
* $\mathrm{A}=\left|\mathrm{V}_{\mathrm{cb}}\right|$ known to $\sim 2 \%$
* The hadronic matrix element B_{k} must be computed with lattice QCD

Calculation of B_{K}

[Aubin, Lailho, RV; arXiv:0905.3947 [hep-lat]]

$$
B_{K}^{\left.\overline{\mathrm{MS}}, \mathrm{NDR}^{(2 ~ G e V}\right)=0.527(6)(20), ~}
$$

- First unquenched lattice determination of B_{k} with data at two lattice spacings
- Mild lattice spacing dependence
- Largest uncertainty from matching lattice operator to continuum (3\%)
* Calculation of the 2-loop continuum perturbation theory formulae needed to match from the lattice $\mathrm{RI} / \mathrm{MOM}$ scheme to the continuum MS-bar scheme critical for a more reliable estimate of the truncation error

Comparison with other determinations

FPCP 2009

[couritesy of E. Lunghi]

- Both results higher than value of $\hat{B}_{K}=0.92 \pm 0.10$ preferred by the unitarity triangle fit including all other inputs
- Leads to $1.8-\sigma$ tension in global fit
- Indication of new physics in the quark flavor sector?

Summary and outlook

- Lattice QCD calculations of B-meson decays and mixing now allow reliable determinations of CKM matrix elements
- In the past year lattice QCD has produced:
(1) First $2+1$ flavor calculation of the $B \rightarrow D^{*} \mathbb{V}$ form factor and $\left|V_{c b}\right|$ exclusive
(2) Best $2+1$ flavor calculation of the $B \rightarrow \pi \ell \mathcal{V}$ form factor and $\left|V_{\text {ub }}\right|$ exclusive
(3) First $2+1$ flavor calculation of neutral B-meson mixing parameters and their ratio ξ
- Lattice QCD results will continue to improve with:
* Higher statistics, finer lattice spacings
* Improved heavy-quark actions
* Improved form factor data at nonzero q^{2}
- Lattice QCD will soon allow percent-level tests of the standard Model in the quark flavor sector and may eventually reveal new physics

