General theoretical introduction Hsiang-nan Li

Academia Sinica, Taiwan Presented at FPCP09 May 29, 2009

Outlines

- Introduction
- Factorization assumption
- QCD-improved factorization
- Perturbative QCD factorization
- Soft-collinear effective theory
- (Light-cone) QCD sum rules
- Quark diagram parametrization
- Summary

In this talk...

- Simple ideas only
- For data, Smith's talk
- For numbers, Stewart's talk
- For new physics, Kou's talk

Introduction

- Why B physics?

Constrain standard-model parameters
CKM matrix elements, weak phases
Explore heavy quark dynamics
Form factors, penguins, strong phases
Search for new physics
SUSY, 4th generation, Z'...

- Need critical comparison between data and QCD theories.

Hadronic B decays

- Involve three scales m_{w}, m_{b}, and Λ
- Scale m_{w} is integrated out. QCD dynamics is organized into weak effective Hamiltonian $\mathrm{H}=\mathrm{V}_{\text {СКм }}{ }^{\Sigma} \mathrm{C}_{\mathrm{i}}(\mu) \mathrm{O}_{\mathrm{i}}(\mu)$, $\mathrm{m}_{\mathrm{b}}<\mu<\mathrm{m}_{\mathrm{w}}$
- C_{i} : Wilson coefficients
- O_{i} : 4-fermion operators
- Their μ dependence cancels.

penguin operator

Factorization assumption

Decay amplitude

$$
\left.\mathrm{A}=\langle\mathrm{D} \pi| \mathrm{H}_{\mathrm{eff}}|\mathrm{~B}\rangle \sim \mathrm{C}(\mu)<\mathrm{D} \pi|\mathrm{O}(\mu)| \mathrm{B}\right\rangle
$$

FA was proposed to deal with the hadronic matrix element (Bauer, Stech, Wirbel 85).

Color-allowed

Color-suppressed
$A(B \rightarrow D \pi) \propto a_{1} f_{\pi} F^{B D}+a_{2} f_{D} F^{B \pi}$
a_{1}, a_{2} : Wilson coefficients or fitting parameters

Color transparency

 B D

Lorentz contraction small color dipole
 from the BD system

large corrections in color-suppressed modes due to heavy D, large color dipole

Incompleteness of FA

- Form factor and decay constant are physical, independent of μ. Predictions depend on μ through $a_{1,2}(\mu)$.
- Nonfactorizable contributions must exist, especially in color-suppressed modes. They may be small in color-allowed decays, which are insensitive to μ.
- Power corrections, like strong phases, are crucial for CP violation.
- FA can not be a complete model.

Beyond FA?

- Generalized naïve factorization, beyond FA phenomenologically (Ali et al, Ching et al)
- Parameterize nonfactorizable correction

$$
a_{1} \rightarrow a_{1}+\chi_{1}, \quad a_{2} \rightarrow a_{2}+\chi_{2}
$$

- Fine tune mode-dependent parameters χ
- Equivalently, effective number of colors in

$$
a_{1(2)}=C_{2(1)}+C_{1(2)} / N_{C} \quad N_{C} \rightarrow N_{C}^{e f f}=2 \sim 6
$$

- Strong phase from BSS only and important source?
- Go beyond FA theoretically

QCD-improved factorization

QCD corrections to FA

Higher-order corrections

- Color transparency hints addition of (nonfactorizable) hard gluons
- In terms of Feynman diagrams,

- Soft divergences cancel
- These diagrams weaken μ dependence in Wilson coefficients, and generate strong phases

More higher-order diagrams

- Hard gluons can also be added to form the following nonfactorizable diagrams

- Feynman rules of these two diagrams (quark and anti-quark propagators) differ by a minus sign in soft region

Higher-power corrections in $1 / m_{B}$

- Annihilation contribution

- Twist-3 nonfactorizable contribution
- They contain end-point singularity, not calculable, despite of the appearance of coupling constant in their parameterization

$$
x_{C}=\alpha_{S} \ln \frac{m_{B}}{\bar{\Lambda}}\left(1+\rho_{H} e^{i \delta_{H}}\right), \quad \alpha_{S} \ln \frac{m_{B}}{\bar{\Lambda}}\left(1+\rho_{A} e^{i \delta_{A}}\right)
$$

- Predictions (default) or fitting (S1,S2, .., G)?

End-point singularity

- Application of collinear factorization to B meson transition form factor gives endpoint singularity

$\mathrm{k} \quad \mathrm{XP}_{\pi}$

$$
\int{ }_{0}^{1} d x \frac{\phi_{\pi}(x)}{x^{2}} \rightarrow \infty, \quad \phi_{\pi}(x) \propto x(1-x)
$$

- End-point singularities in annihilation and nonfactorizable contributions have the same origin

PQCD factorization

starting from factorization theorem motivated by removing end-point singularity

Factorization theorem

- With hard scattering (large energy release)
time
soft gluon exchange? 3-parton hard scattering small probability
- $\overline{9}$
 distribution
soft gluon exchange? color transparency soft cancellation

soft cancellation

Factorization assumption vs factorization theorem

- FA
- of process
- $A\left(B->M_{1} M_{2}\right) \sim f_{M 2} F^{B M 1}$
- Vac->M $M_{2}, B->M_{1}$
- Factorizable: in the above form
- Nonfactorizable: not in the above form
- This nonfactorizable amplitude is factorizable (calculable).

k_{T} factorization

- Singularity implies small x. Parton k_{T} not negligible. Develop k_{T} factorization.
- Many gluon exchanges generate k_{T}

$$
\int_{0}^{1} d X \frac{\psi_{\pi}(X)}{X^{2} m_{B}^{2}} \rightarrow \int_{0}^{1} d X \frac{\varphi_{\pi}(X)}{X\left(X M_{B}^{2}+K_{T}^{2}\right)}
$$

- k_{T} distribution governed by Sudakov factor

Imaginary annihilation

principle value $\frac{1}{x m_{B}^{2}-k_{T}^{2}+i \epsilon}=\frac{P}{x m_{B}^{2}-k_{T}^{2}}-i \pi \delta\left(x m_{B}^{2}-k_{T}^{2}\right)$.
loop line can go on-shell

strong phase

Bander-Silverman-Soni mechanism, strong phase source in FA
loop with the weight factor from k_{T} distribution

Soft-collinear effective theory

based on collinear factorization but formulated via OPE

B $->\pi$ form factor

- Kinematics

- Soft spectator in $B, r \sim \Lambda$
- If $p_{2} \sim m_{b}, p_{g}{ }^{2}=\left(p_{2}-r\right)^{2}=-2 r . p_{2} \sim O\left(m_{b} \Lambda\right)$
- Then the internal quark is off-shell by
$\left(m_{b} v+k+p_{g}\right)^{2}-m_{b}{ }^{2} \sim O\left(m_{b}{ }^{2}\right)$
- Two scales below $m_{w}: m_{b} \Lambda$ and $m_{b}{ }^{2}$, separate matching at these two scales

SCET

- Full theory -> SCET $_{i}$: integrate out the lines off-shell by $\mathrm{m}_{\mathrm{b}}{ }^{2}$

Hard-collinear
gluon, mass $\mathrm{O}\left(\mathrm{m}_{\mathrm{b}} \Lambda\right)$
$\frac{!}{\sum^{\prime}}+\frac{!}{\square^{\prime}}=\mathrm{T}\left(\mu_{0}\right) \mathrm{J}^{(1)}\left(\mu_{0}\right)$
$1 / m_{b}$ suppressed
current

$\mathrm{SCET}_{\text {II }}$

- SCET $_{1}->$ SCET $_{11}$: integrate out the lines off-shell by $\mathrm{m}_{\mathrm{b}} \Lambda$ Jet=Wilson coeff of SCET ${ }_{\|}$

$\Rightarrow \mathrm{T}\left(\mu_{0}\right) \mathrm{J}\left(\mu_{0}, \mu\right) \phi_{\mathrm{M}}(\mu) \phi_{\mathrm{B}}(\mu)$

Sandypiched by the light meson and B meson states

Charming penguin (Bauer et al)

- At leading power, no large source of strong phases in SCET (no annihilation).
- Long-distance $O\left(1 / m_{b}\right)$ charming penguin is introduced, parameterized as Acc.

- With nonperturbative Acc, apply SCET as QCD-improved parametrization.

(Light-cone) QCD sum rules

based on quark-hadron duality different from factorization

Quark-hadron duality

- "Nonperturbative" averaged over duality interval s0 = "perturbative"
- Light-cone QSR ${ }_{\text {quark (OPE) }}$ approximates QSR by local current \Rightarrow nonlocal current on light cone

p_{1}^{2}, p_{2}^{2}

Quark-diagram parametrization

also different from factorization

Quark amplitudes

2 color traces $\Rightarrow \mathrm{N}_{\mathrm{c}}{ }^{2}$

Color-allowed tree T

QCD penguin P

1 color trace $\Rightarrow \mathrm{N}_{\mathrm{c}}$

Color-suppressed tree C

Electroweak penguin P_{ew}

$\pi \pi$ parametrization

$$
\begin{aligned}
& \sqrt{2} A\left(B^{+} \rightarrow \pi^{+} \pi^{0}\right)=-T\left[1+\frac{C}{T}+\frac{P_{e w}}{T} e^{i \phi_{2}}\right], \\
& A\left(B_{d}^{0} \rightarrow \pi^{+} \pi^{-}\right)=-T\left(1+\frac{P}{T} e^{i \phi_{2}}\right), \\
& \sqrt{2} A\left(B_{d}^{0} \rightarrow \pi^{0} \pi^{0}\right)=T\left[\left(\frac{P}{T}-\frac{P_{e w}}{T}\right) e^{i \phi_{2}}-\frac{C}{T}\right], \\
& \frac{P}{T} \sim \lambda, \quad \frac{C}{T} \sim \lambda, \quad \frac{P_{e w}}{T} \sim \lambda^{2} . \\
& \Uparrow \\
& \left(\mathrm{C}_{4} / \mathrm{C}_{2}\right)\left(\mathrm{V}_{\mathrm{td}} \mathrm{~V}_{\mathrm{tb}} / \mathrm{V}_{\mathrm{ud}} \mathrm{~V}_{\mathrm{ub}}\right) / 1 \sim\left(\lambda^{2} / 1\right)\left(\lambda^{3} / \lambda^{4}\right) \sim \lambda
\end{aligned}
$$

$K \pi$ parametrization

$$
\begin{aligned}
& A\left(B^{+} \rightarrow K^{0} \pi^{+}\right)=P^{\prime} \\
& A\left(B_{d}^{0} \rightarrow K^{+} \pi^{-}\right)=-P^{\prime}\left(1+\frac{T^{\prime}}{P^{\prime}} e^{i \phi_{3}}\right) \\
& \sqrt{2} A\left(B^{+} \rightarrow K^{+} \pi^{0}\right)=-P^{\prime}\left[1+\frac{P_{e w}^{\prime}}{P^{\prime}}+\left(\frac{T^{\prime}}{P^{\prime}}+\frac{C^{\prime}}{P^{\prime}}\right) e^{i \phi_{3}}\right] \\
& \sqrt{2} A\left(B_{d}^{0} \rightarrow K^{0} \pi^{0}\right)=P^{\prime}\left(1-\frac{P_{e w}^{\prime}}{P^{\prime}}-\frac{C^{\prime}}{P^{\prime}} e^{i \phi_{3}}\right) \\
& \frac{T^{\prime}}{P^{\prime}} \sim \lambda, \quad \frac{P_{e w}^{\prime}}{P^{\prime}} \sim \lambda, \quad \frac{C^{\prime}}{P^{\prime}} \sim \lambda^{2} \\
&\left(\mathrm{C}_{2} / \mathrm{C}_{4}\right)\left(\mathrm{V}_{\mathrm{us}} \mathrm{~V}_{\mathrm{ub}} / \mathrm{V}_{\mathrm{ts}} \mathrm{~V}_{\mathrm{tb}}\right) \sim\left(1 / \lambda^{2}\right)\left(\lambda^{5} / \lambda^{2}\right) \sim \lambda
\end{aligned}
$$

Flavor symmetry

- Predictive power from flavor symmetry
- SU(3) relates u,d,s interchange

$$
\begin{aligned}
& q=u, d, s \\
& q^{\prime}=\mathrm{d}, \mathrm{~s}
\end{aligned}
$$

$\xrightarrow[\text { relates } \mathrm{d}, \mathrm{s} \text { interchange }]{\mathrm{q}}$

$$
\begin{aligned}
& B_{d}^{0} \rightarrow K^{+} \pi^{-} \text {and } B_{s}^{0} \rightarrow \pi^{+} K^{-} \\
& B_{s}^{0} \rightarrow K^{+} K^{-} \text {and } B_{d}^{0} \rightarrow \pi^{+} \pi^{-}
\end{aligned}
$$

- Difficult to estimate symmetry breaking

Summary

- Able to go beyond factorization assumption by including QCD corrections.
- No end-point singularity in PQCD (k_{T} factorization) and SCET (zero-bin subtraction), so transition form factors, and $1 / m_{B}$ contributions are calculable.
- External lines are off-shell on OPE side of QSR. Soft contribution in QSR has a definition different from those in factorization approaches.

Summary

- Predictive power of factorization approaches comes from universality of nonperturbative inputs (meson wave functions), but that of quark diagram parametrization from flavor symmetry.

Back-up

Effective theory

- An effective theory by integrating out high energy (E) modes.
- Effective degrees of freedom: collinear fields, soft fields,...
- Express an amplitude in 1/E in terms of the effective operators.
- The Wilson coefficients of these operators are the hard kernels.
- The matrix element of the (nonlocal) operators are DAs or form factors.
- Convenient for deriving factorization theorem.

Wilson coefficients

- Is $J\left(\alpha_{s}\left(m_{b} \Lambda\right)\right)$, the Wilson coefficient of SCET „, calculable?
- No from Bauer, Pirjol, Rothstein, Stewart, but yes from Beneke and Yang.
\Rightarrow Different phenomenological applications of SCET
- C, T (Wilson coefficients of SCET ${ }_{1}$) and J have been computed up to NLO. See Beneke and Yang, hep-ph/0508250.

Decay amplitude

- SCET factotrization formula for $\mathrm{B}->\mathrm{M}_{1} \mathrm{M}_{2}$ Wilson coeff of SCET,

Color-suppressed
$\times \int_{0}^{1} d u T_{2 \zeta}(u) \phi^{M_{2}}(u)+f_{M_{1}} \zeta^{B M_{2}} \int_{0}^{1} d u T_{1 \zeta}(u) \phi^{M_{1}}(u)$
$+\frac{f_{B} f_{M_{1}} f_{M_{2}}}{m_{b}} \int_{0}^{1} d u \int_{0}^{1} d x \int_{0}^{1} d z \int_{0}^{\infty} d k_{+} J\left(z, x, k_{+}\right)$Jet function $T_{2 J}(u, z)$
$\left.\left.\times \phi^{M_{1}}(x) \phi^{M_{2}}(u)+T_{1 J}(u, z) \phi^{M_{2}}(x) \phi^{M_{1}}(u)\right]_{B}^{+}\left(k_{+}\right)\right\}$,
factorizable
Wilson coeff of SCET

Annihilation in QCDF, SCET $_{0}$, PQCD

- Applied to charmless nonleptonic decays, scalar penguin annihilation is treated as:
- Parameter in QCDF due to end-point singularity (nonfactorizable), $X_{A}=\ln \left(m_{B} / \Lambda\right)\left[1+\rho_{A} \exp \left(\right.\right.$ i $\left.\left._{A}\right)\right]$
- What mechanism generates ϕ_{A} ?
- Factorizable in SCET ${ }_{0}$, but real (ALRS 06). Strong phase appears at $\alpha_{\mathrm{s}}{ }^{2} \Lambda / m_{b}$.
- Phase generated without k_{T} expansion (Chay, Li, Mishima)

