General theoretical introduction Hsiang-nan Li Academia Sinica, Taiwan Presented at FPCP09 May 29, 2009

Outlines

- Introduction
- Factorization assumption
- QCD-improved factorization
- Perturbative QCD factorization
- Soft-collinear effective theory
- (Light-cone) QCD sum rules
- Quark diagram parametrization
- Summary

In this talk...

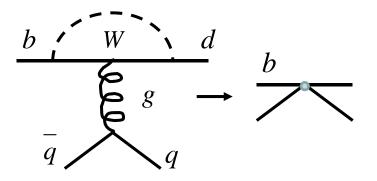
- Simple ideas only
- For data, Smith's talk
- For numbers, Stewart's talk
- For new physics, Kou's talk

Introduction

- Why B physics? Constrain standard-model parameters CKM matrix elements, weak phases Explore heavy quark dynamics Form factors, penguins, strong phases Search for new physics SUSY, 4th generation, Z'...
- Need critical comparison between data and QCD theories.

Hadronic B decays

- Involve three scales m_W , m_b , and Λ
- Scale m_W is integrated out. QCD dynamics is organized into weak effective Hamiltonian $H=V_{CKM}\Sigma_iC_i(\mu)O_i(\mu)$, $m_h < \mu < m_W$
- C_i: Wilson coefficients
- O_i: 4-fermion operators
- Their μ dependence cancels.



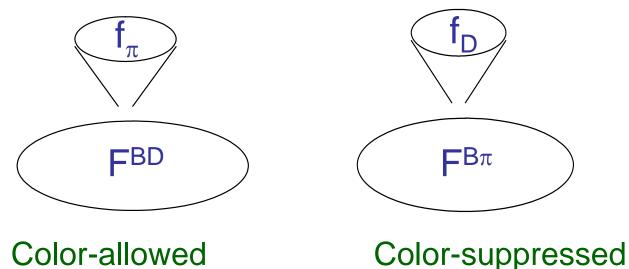
penguin operator

Factorization assumption

Decay amplitude

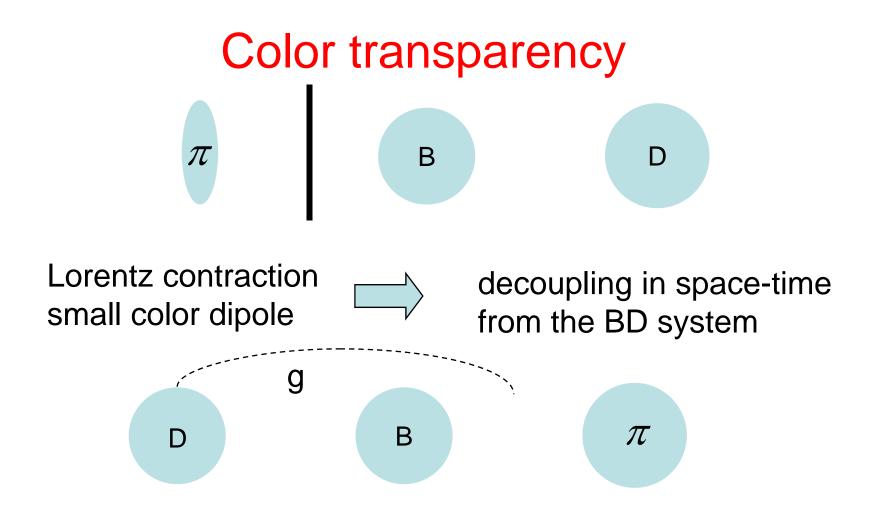
 $A = \langle D\pi | H_{eff} | B \rangle \sim C(\mu) \langle D\pi | O(\mu) | B \rangle$

FA was proposed to deal with the hadronic matrix element (Bauer, Stech, Wirbel 85).



 $A(B \rightarrow D\pi) \propto a_1 f_{\pi} F^{BD} + a_2 f_D F^{B\pi}$

 a_1, a_2 : Wilson coefficients or fitting parameters



large corrections in color-suppressed modes due to heavy D, large color dipole

Incompleteness of FA

- Form factor and decay constant are physical, independent of μ. Predictions depend on μ through a_{1.2}(μ).
- Nonfactorizable contributions must exist, especially in color-suppressed modes. They may be small in color-allowed decays, which are insensitive to μ.
- Power corrections, like strong phases, are crucial for CP violation.
- FA can not be a complete model.

Beyond FA?

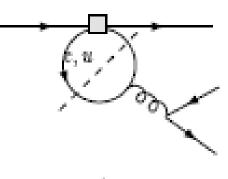
- Generalized naïve factorization, beyond FA phenomenologically (Ali et al, Cheng et al)
- Parameterize nonfactorizable correction

 $a_1 \rightarrow a_1 + \chi_1, \quad a_2 \rightarrow a_2 + \chi_2$

- Fine tune mode-dependent parameters ${\mathcal X}$
- Equivalently, effective number of colors in

 $a_{1(2)} = C_{2(1)} + C_{1(2)} / N_C \qquad N_C \rightarrow N_C^{eff} = 2 \sim 6$

- Strong phase from BSS only and important source?
- Go beyond FA theoretically

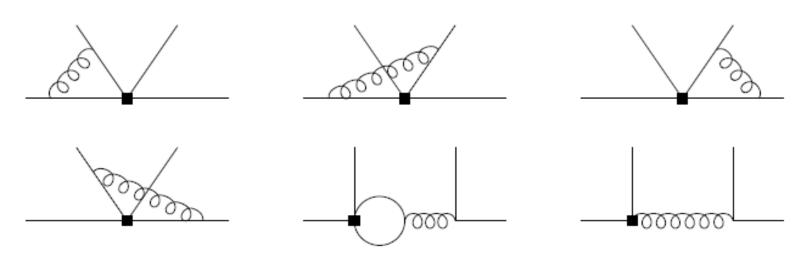


QCD-improved factorization

QCD corrections to FA

Higher-order corrections

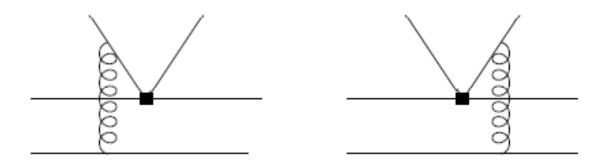
- Color transparency hints addition of (nonfactorizable) hard gluons
- In terms of Feynman diagrams,



- Soft divergences cancel
- These diagrams weaken μ dependence in Wilson coefficients, and generate strong phases

More higher-order diagrams

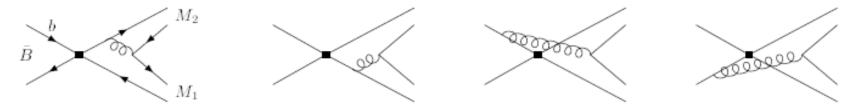
• Hard gluons can also be added to form the following nonfactorizable diagrams



 Feynman rules of these two diagrams (quark and anti-quark propagators) differ by a minus sign in soft region

Higher-power corrections in 1/m_B

Annihilation contribution



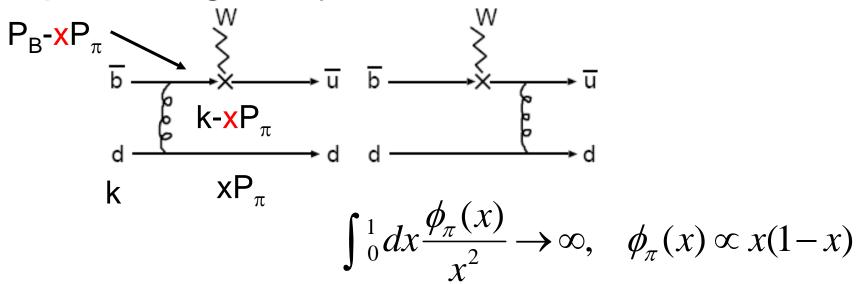
- Twist-3 nonfactorizable contribution
- They contain end-point singularity, not calculable, despite of the appearance of coupling constant in their parameterization

$$x_{C} = \alpha_{S} \ln \frac{m_{B}}{\overline{\Lambda}} \left(1 + \rho_{H} e^{i\delta_{H}} \right), \quad \alpha_{S} \ln \frac{m_{B}}{\overline{\Lambda}} \left(1 + \rho_{A} e^{i\delta_{A}} \right)$$

• Predictions (default) or fitting (S1,S2,...,G)?

End-point singularity

 Application of collinear factorization to B meson transition form factor gives endpoint singularity



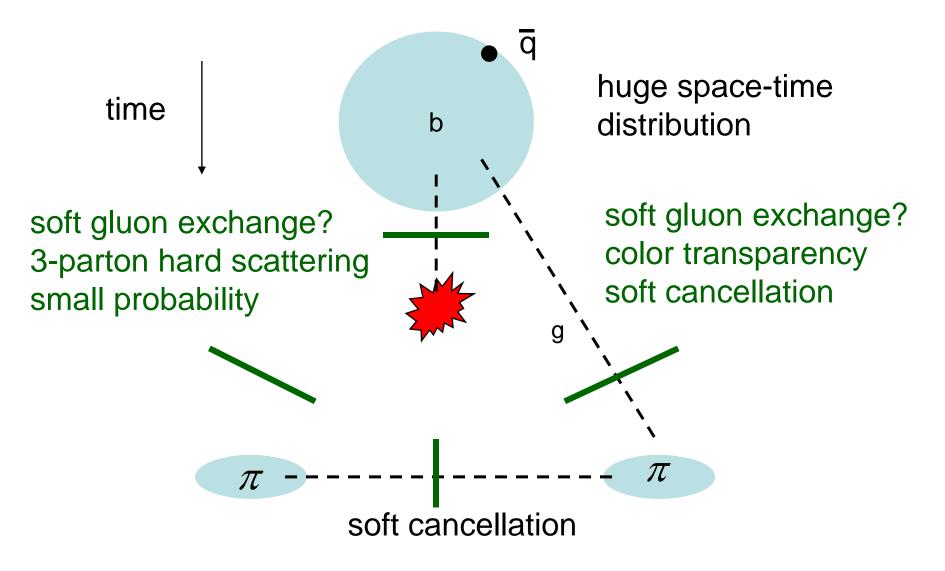
 End-point singularities in annihilation and nonfactorizable contributions have the same origin

PQCD factorization

starting from factorization theorem motivated by removing end-point singularity

Factorization theorem

• With hard scattering (large energy release)



Factorization assumption vs factorization theorem

- FA
- of process
- $A(B \rightarrow M_1M_2) \sim f_{M2}F^{BM1}$

• Vac-> M_2 , B-> M_1

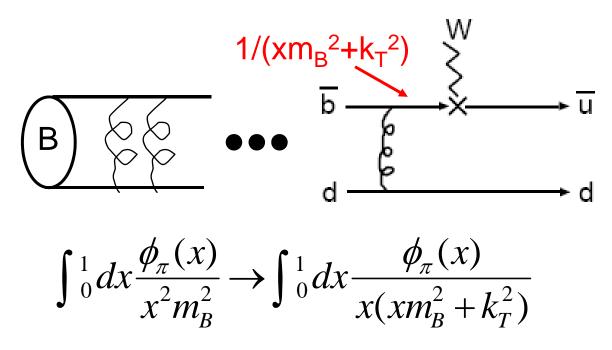
of dynamics

FT

- ~ $\phi_{B}^{*}\phi_{M1}^{*}\phi_{M2}^{*}H$ nonpert pert
- Factorizable: in the above form
- Nonfactorizable: not in the above form
- This nonfactorizable amplitude is factorizable (calculable).

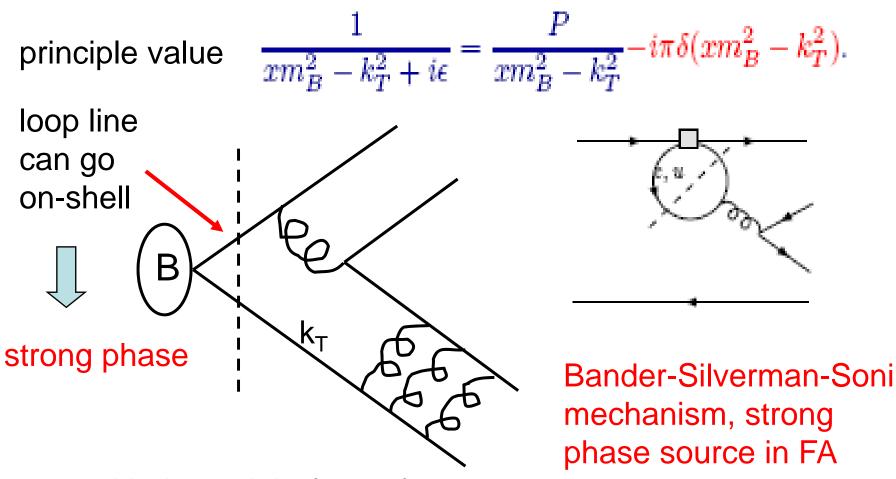
k_T factorization

- Singularity implies small x. Parton k_T not negligible. Develop k_T factorization.
- Many gluon exchanges generate k_T



• k_T distribution governed by Sudakov factor

Imaginary annihilation



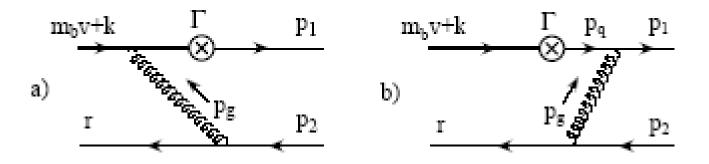
loop with the weight factor from k_{T} distribution function

Soft-collinear effective theory

based on collinear factorization but formulated via OPE

B -> π form factor

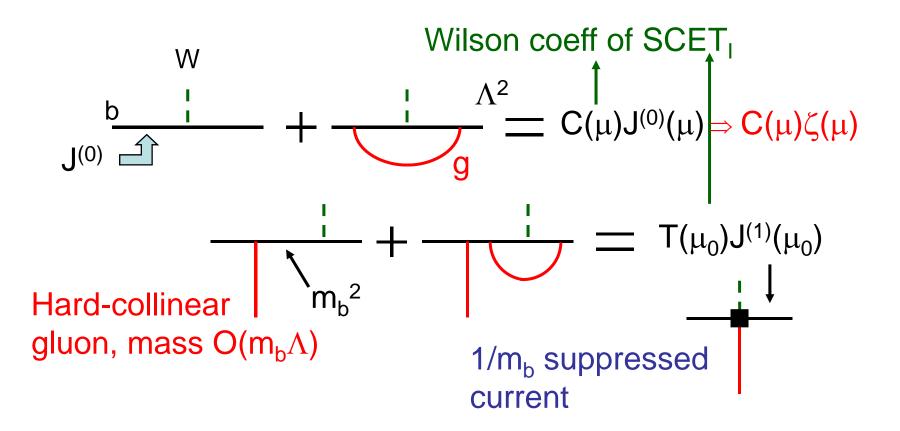
• Kinematics



- Soft spectator in B, r ~ Λ
- If $p_2 \sim m_b$, $p_g^2 = (p_2 r)^2 = -2r.p_2 \sim O(m_b \Lambda)$
- Then the internal quark is off-shell by (m_bv+k+p_g)²-m_b² ~ O(m_b²)
- Two scales below $m_w : m_b \Lambda$ and m_b^2 , separated matching at these two scales

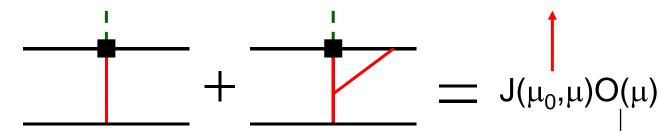
SCET

 Full theory -> SCET_I: integrate out the lines off-shell by m_b²

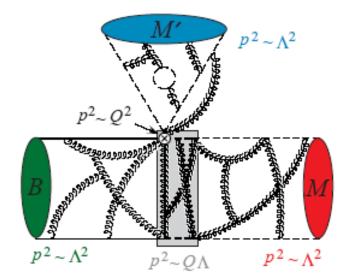


SCET

• SCET_I -> SCET_{II}: integrate out the lines off-shell by $m_b \Lambda$ Jet=Wilson coeff of SCET_{II}



 $\Rightarrow \mathsf{T}(\mu_0)\mathsf{J}(\mu_0,\mu)\phi_\mathsf{M}(\mu)\phi_\mathsf{B}(\mu)$

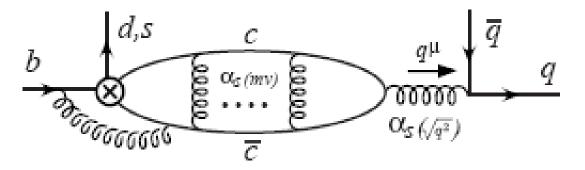


Sandwiched by the light meson and B meson states

 Λ^2

Charming penguin (Bauer et al)

- At leading power, no large source of strong phases in SCET (no annihilation).
- Long-distance O(1/m_b) charming penguin is introduced, parameterized as Acc.



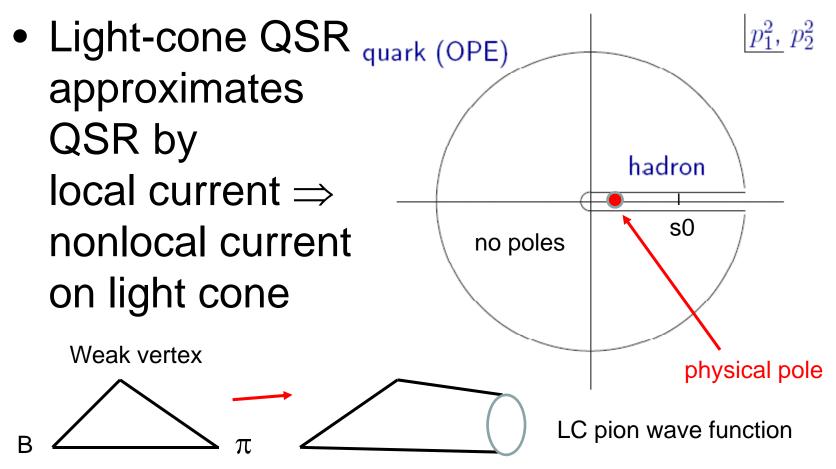
• With nonperturbative Acc, apply SCET as QCD-improved parametrization.

(Light-cone) QCD sum rules

based on quark-hadron duality different from factorization

Quark-hadron duality

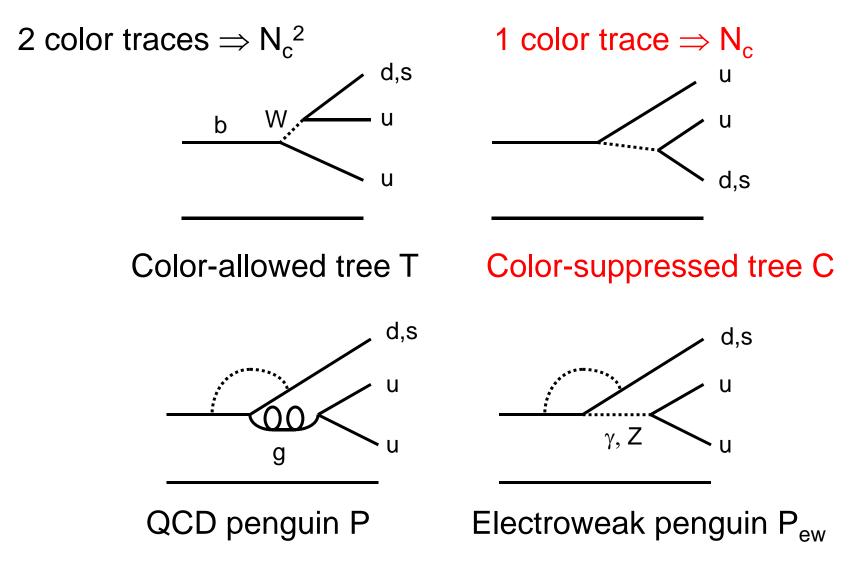
 "Nonperturbative" averaged over duality interval s0 = "perturbative"



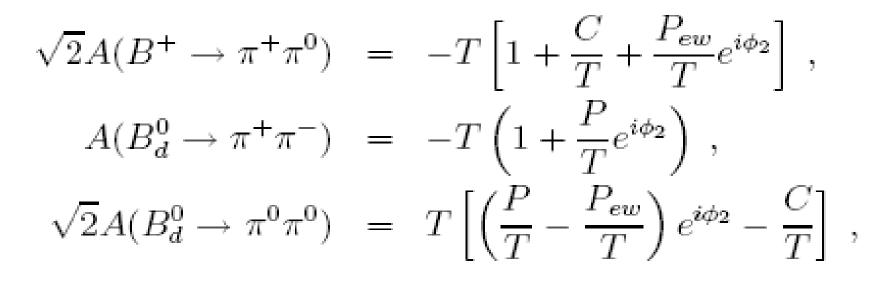
Quark-diagram parametrization

also different from factorization

Quark amplitudes



$\pi\pi$ parametrization



$$\begin{split} \frac{P}{T} &\sim \lambda \ , \quad \frac{C}{T} \sim \lambda \ , \quad \frac{P_{ew}}{T} \sim \lambda^2 \ . \quad \text{tree-dominant} \\ & 1 \\ (C_4/C_2)(V_{td}V_{tb}/V_{ud}V_{ub})/1 \sim (\lambda^2/1)(\lambda^3/\lambda^4) \sim \lambda \end{split}$$

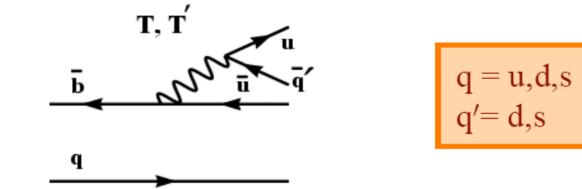
$K\pi$ parametrization

$$\begin{split} A(B^+ \to K^0 \pi^+) &= P' ,\\ A(B^0_d \to K^+ \pi^-) &= -P' \left(1 + \frac{T'}{P'} e^{i\phi_3} \right) ,\\ \sqrt{2}A(B^+ \to K^+ \pi^0) &= -P' \left[1 + \frac{P'_{ew}}{P'} + \left(\frac{T'}{P'} + \frac{C'}{P'} \right) e^{i\phi_3} \right] \\ \sqrt{2}A(B^0_d \to K^0 \pi^0) &= P' \left(1 - \frac{P'_{ew}}{P'} - \frac{C'}{P'} e^{i\phi_3} \right) ,\\ \frac{T'}{P'} \sim \lambda , \quad \frac{P'_{ew}}{P'} \sim \lambda , \quad \frac{C'}{P'} \sim \lambda^2 \\ \left(\mathsf{C}_2/\mathsf{C}_4)(\mathsf{V}_{us}\mathsf{V}_{ub}/\mathsf{V}_{ts}\mathsf{V}_{tb}) \sim (1/\lambda^2)(\lambda^5/\lambda^2) \sim \lambda \end{split}$$

2

Flavor symmetry

- Predictive power from flavor symmetry
- SU(3) relates u,d,s interchange



• U-spin relates d,s interchange

$$B_d^0 \to K^+ \pi^-$$
 and $B_s^0 \to \pi^+ K^-$

 $B_s^0 \to K^+ K^-$ and $B_d^0 \to \pi^+ \pi^-$

Difficult to estimate symmetry breaking

Summary

- Able to go beyond factorization assumption by including QCD corrections.
- No end-point singularity in PQCD (k_T factorization) and SCET (zero-bin subtraction), so transition form factors, and $1/m_B$ contributions are calculable.
- External lines are off-shell on OPE side of QSR. Soft contribution in QSR has a definition different from those in factorization approaches.

Summary

 Predictive power of factorization approaches comes from universality of nonperturbative inputs (meson wave functions), but that of quark diagram parametrization from flavor symmetry.

Back-up

Effective theory

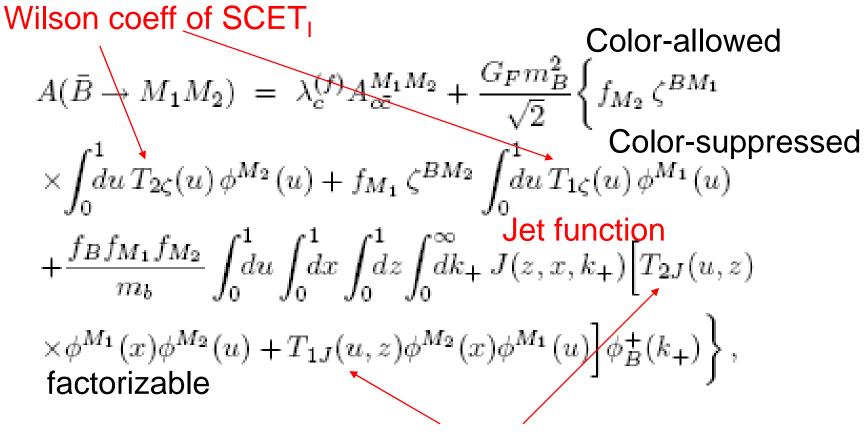
- An effective theory by integrating out high energy (E) modes.
- Effective degrees of freedom: collinear fields, soft fields,...
- Express an amplitude in 1/E in terms of the effective operators.
- The Wilson coefficients of these operators are the hard kernels.
- The matrix element of the (nonlocal) operators are DAs or form factors.
- Convenient for deriving factorization theorem.

Wilson coefficients

- Is $J(\alpha_s(m_b\Lambda))$, the Wilson coefficient of SCET_{II}, calculable?
- No from Bauer, Pirjol, Rothstein, Stewart, but yes from Beneke and Yang.
- ⇒Different phenomenological applications of SCET
- C, T (Wilson coefficients of SCET_I) and J have been computed up to NLO. See Beneke and Yang, hep-ph/0508250.

Decay amplitude

SCET factotrization formula for B->M₁M₂



Wilson coeff of SCET_I

Annihilation in QCDF, SCET_O, PQCD

- Applied to charmless nonleptonic decays, scalar penguin annihilation is treated as:
- Parameter in QCDF due to end-point singularity (nonfactorizable), $X_A = ln(m_B/\Lambda)[1+\rho_A \exp(i\phi_A)]$
- What mechanism generates ϕ_A ?
- Factorizable in SCET_O, but real (ALRS 06). Strong phase appears at $\alpha_s^2 \Lambda/m_b$.
- Phase generated without k_T expansion (Chay, Li, Mishima)