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Why is Factorization Important?

Outline:

•

Theory Comparison: QCDF vs. pQCD vs. SCET•

•

•

•
•

•

Nonleptonic Predictions

Penguin!ology

Global fits & uncertainties

Outlook

B → PP B → PV
B → V V

, ,

Kπ
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Isospin currently yields a 5"  measurement of 
α = 89.0◦ ± 4.3◦

α
when we combine ρρ/ρπ/ππ

Are we done? What can be gained from other analyses?

:

agrees well with global CKM fitdiscrete ambiguities reduced significantly

3



What precisely are we testing when we make 
measurements of     or     with di#erent methods?

Using CKM unitarity of the standard model we can write:

where          are complex, CP even,  “hadronic amplitudes”.

Consider an arbitrary new physics contribution to this channel, 
 and write:

ASM (B̄ →M1M2) = S1 + S2e
−iγ

S1,2

ANP (B̄ →M1M2) = Neiφ = N1 + N2e
−iγ Botella 

& Silva

S1 → S1 + N1

N1,2 are complex and CP even. ImN1 =
sin(γ + φ)

sin(γ)
Im(N)eg.

•

•

• Thus new physics in the decay simply shifts hadronic amplitudes:

, S2 → S2 + N2

Measurements test relations between SM amplitudes       which
may be violated by new physics.

Si

β γ

Ne−iφ = N1 + N2e
iγ&
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Applied to the Isospin Analysis:

5 amplitude parameters for B → ρρ

Definitions:

A New Method for Determining γ from B → ππ Decays
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Factorization based on the soft-collinear effective theory (SCET) can be used to reduce the number
of hadronic parameters in an isospin analysis of B → ππ decays by one. This gives a theoretically
precise method for determining the CP violating phase γ by fitting to the B → ππ data without
Cπ0π0 . SCET predicts that γ lies close to the isospin bounds. With the current world averages we
find γ = 75◦ ± 2◦+9◦

−13◦ , where the uncertainties are theoretical, then experimental. The estimated
theory error shown here is obtained from assuming ΛQCD/Eπ ∼ 0.2 power corrections to our analysis.

I. INTRODUCTION

The standard model (SM) successfully explains all of
the CP violation observed to date in laboratory decays.
Possible hints for physics beyond the SM include the
amount of CP violation required for (non-lepto) baryo-
genesis, and observations in b → sqq̄ channels like B →
η′KS [1]. Standard model measurements of CP violation
in B-decays are usually expressed in terms of the angles
α, β, γ. It is important to remember that the goal is
not just to have a single accurate measurement of these
angles, but rather to test the SM picture of CP violation
and look for inconsistencies by making measurements of
the parameters in as many decay channels as possible.

Important observables for measuring γ (or α) are
the CP asymmetries and branching fractions in B →
ππ decays. Unfortunately, hadronic uncertainties and
“penguin-pollution” make the data difficult to interpret.
Gronau and London (GL) [2] have shown that using
isospin, Br(B̄ → π+π−), Br(B+ → π+π0), Br(B̄ →
π0π0), and the CP asymmetries Cπ+π−, Sπ+π−, Cπ0π0 ,
one can eliminate the hadronic uncertainty and deter-
mine γ. Thus data is used to determine the 5 hadronic
isospin parameters. This year Babar and Belle [3] re-
ported a first observation of Cπ0π0 bringing the GL anal-
ysis from the drawing board to reality. Unfortunately,
the uncertainties in Cπ0π0 and Br(B → π0π0) are still
too large to give strong constraints, leaving a four-fold
discrete ambiguity and a ±29◦ window of uncertainty in
γ (at 1-σ) near the SM preferred value.

In this letter we observe that the soft-collinear effec-
tive theory (SCET) [5] predicts that one hadronic pa-
rameter vanishes at leading order in a power expansion
in ΛQCD/Eπ, and that this provides a robust new method
for determining γ. The parameter is ε = Im(C/T ), where
T and C are ”tree” and ”color suppressed” amplitudes
(defined below). From the SCET analysis of B → ππ [6]
we know that ε vanishes to all orders in αs(

√
EπΛQCD)

since the “jet-function” does not involve a strong phase,
and so ε receives corrections suppressed by ΛQCD/Eπ or
αs(mb). Our method does not rely on a power expan-
sion for any of the other isospin parameters. Thus, is-

sues like the size of charm penguins and whether “hard-
scattering” or “soft” contributions dominate the B → π
form factors [6–10, 12] are irrelevant here. Our analy-
sis also remains robust if so-called “chirally enhanced”
power corrections [8] are included. It differs from the
QCDF [8] and pQCD [12] analyses; for example we work
to all orders in ΛQCD/mb for most quantities and do not
use QCD sum rules to obtain hadronic parameters.

The world averages for the CP averaged branching ra-
tios and the CP asymmetries are currently [3, 4]

Br× 106 Cππ Sππ

π+π− 4.6 ± 0.4 −0.37± 0.11 −0.61± 0.13
π0π0 1.51± 0.28 −0.28± 0.39
π+π0 5.61± 0.63

(1)

For later convenience we define the ratios

Rc =
Br(B0 → π+π−)τB−

2Br(B− → π0π−)τB0
= 0.446± 0.064 ,

Rn =
Br(B0 → π0π0)τB−

Br(B− → π0π−)τB0
= 0.293± 0.064 , (2)

and quote the product Rn Cπ0π0 = 0.082± 0.116.
To obtain general expressions for these observables, we

use isospin and unitarity of the CKM matrix to write

A(B̄0 → π+π−) = e−iγ |λu|T − |λc|P
A(B̄0 → π0π0) = e−iγ |λu|C + |λc|P√

2A(B− → π0π−) = e−iγ |λu| (T + C)
(3)

Here λu = VubV
∗
ud, λc = VcbV

∗
cd. The CP conjugate am-

plitudes are obtained from (3) with γ → −γ. With our
convention for the π0π0 amplitude one includes a 1/2 for
identical particles in the rate. The amplitudes T , C, P
are complex, as are the electroweak penguin amplitudes
P 1

ew and P 2
ew.

The amplitude P ew
2 is related to T and C by

isospin [13]. An additional relation for P ew
1 can be

obtained using SCET at lowest order in Λ/Eπ and

|λc,u| = CKM factors

B → ππ5 amplitude parameters for 

P,  “penguins”,   T  “tree”, 
               

C,  “color suppressed tree amplitude”
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Applied to the Isospin Analysis:

• implies there are small penguins in

B → π0π−B → ρ0ρ− ,

       can’t see new physics in             amplitudesI = 0
Baek, Botella, London, Silva

•

so we don’t want 
to stop here!

and that electroweak penguins are not 
anomalously large

• does not untangle new physics that

treats       and      di#erentlyπ ρ

5 amplitude parameters for B → ρρ

Ideally we should test each measurable property of the nonleptonic 
amplitudes, and do so channel by channel.  All amplitudes would 
be “related” by standard model Lagrangian parameters,  but...
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In practice relations between SM amplitudes are 
  approximate, and are always based on expansions of 

B

!

!
Weak

Observable = O(0) + ε O(1) + ε2O(2) + . . .

... Hadronic Uncertainties ...

ε! 1

The role of factorization is to yield new relations between SM 
amplitudes, and hence additional tests for new physics. 

LSM

More SM
Input

More tests
for new 
physics

More precision 
$more trust%

of SM results

It is worth testing
every prediction from
factorization, taking 
into account the 
expected precision.
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Expansion

• mW ,mt ! mb Hweak =
GF√

2

∑

i

λiCi(µ)Oi(µ) ε2 =
m2

b

m2
W

∼ 0.003

 Parameter

• Heavy Quark Effective Theory

• SU(3) or U-spin

• Factorization for 
Nonleptonic decays

ε =
Λ
mb

∼ 0.1

ε =
Λ
Eπ

∼ 0.2

ε =
ms

Λ
∼ 0.3

mb ! Λ

Eπ ! Λ

Λ! ms,d,u

• SU(2) ie. isospin ε =
mu,d

Λ
∼ 0.02Λ! mu,d

• λ2 ! 1
V =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



 ε2 = λ2 ∼ 0.04∼




1 λ λ3

λ 1 λ2

λ3 λ2 1
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mW

?

mb

ΛQCD

mc

ms

mu,d

E

√
ΛE

}
Q

hard-scale

electroweak-scale

dynamic scale

hadronic scale

BPRS 
(SCET)

BBNS 
(QCDF) KLS (pQCD)

Beneke,Buchalla,
Neubert, 
Sachrajda Bauer, Pirjol, 

Rothstein, I.S.

Keum, Li, Sanda

2a) Input Parameters

2b) Formal Questions 

1) Factorization at mb

Factorization
at
√

ΛE

Factorization is a Separation of Distance Scales

Approaches usually agree on predictions 
that only rely on factorization at this scale
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mW

?

mb

ΛQCD

mc

ms

mu,d

E

√
ΛE

}
Q hard-scale

intermediate-scale

hadronic-scale

}
treated as 
hadronic 

parameters

SCETIFactorization at mb

expansion in αs(mb) ! 0.22

Beneke & Jager (tree & penguin)
Jain, Rothstein, I.S. (penguin)

O(αs(mb))
matching complete.

in BPRS approach
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B

!

!

Factorization at mb

Nonleptonic

A(B →M1M2) = Acc̄+N

{
fM2ζ

BM1

∫
duT2ζ(u)φM2(u)+fM2

∫
dudzT2J(u, z)ζBM1

J (z)φM2(u)+(1↔ 2)
}

B →M1M2

All the LO terms are factorized into
two types of form factors

hard form 
factor

soft form 
factor

twist-2
distn.

twist-2
distn.

pseudoscalar: f+, f0, fT

vector: V , A0, A1, A2, T1, T2, T3

B →
B →Form Factors

f(E) =
∫

dz T (z,E) ζBM
J (z,E)

+ C(E) ζBM (E)

B → π"ν̄

B → K
∗
!
+
!
−

B → ργ

,
,

, ...

Same form factors
at large E

no endpoint 
singularities here
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f+(0) =
(
0.19 ± 0.01

∣∣
exp

± 0.05
∣∣
thy

)(3.8× 10−3

|Vub|

)
Tree amplitudes + Factorization yield form factors

Agrees with Semileptonics: 

fFNAL
+ (0) = 0.23± 0.03

Nonleptonic data and         can be used to extract 
Tree amplitudes

β, γ,1)

B→ ππ :

B→ ρρ :

(2008 Fermilab/MILC lattice 
+dispersion fit to expt. spectrum)

-A‖(0) =
(
0.31± 0.02

∣∣
exp
± 0.06

∣∣
thy

)(
3.8×10−3

|Vub|

)

The simplest prediction from factorization works.

−A‖
0 = 0.30± 0.03

(2005 Ball and Zwicky,
 Light Cone Sum Rules)

(all approaches)
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Im
(C

T

)

∼ O

(

αs(mb),
Λ

Eπ

)

small strong phase between 
color suppressed and tree amplitudes 

1I)

Can use this to do isospin analysis without                Cπ0π0

Bauer et.al.
$2008 update%$expt. and theory errors%

B → ππ

γππ
2nd = 27.7◦+9.9

−7.3

∣∣∣
exp

+10
−4.5

∣∣∣
thy

there is a 2nd solution:

γππ = 73.9◦+7.5
−10.3

∣∣∣
exp

+1.0
−2.5

∣∣∣
thy

B → ρρ large errorsγρρ = 77.5◦+7.4
−28

∣∣∣
exp

+1.0
−5.2

∣∣∣
thy

(2009)

(2008)γUTfit.
global = 65.6◦ ! 3.3◦

Agreement here further 
constrains ew. penguins & 
bounds imaginary
terms from top/up penguins

here we fit 4 amplitude parameters,

agrees
at 1-σ
with

Cexpt.avg.
π0π0 = −0.43± 0.25but caution:

γCKMfit.
global = 67.8◦+4.2◦

−3.9◦

(LO, all approaches)

C here
π0π0 = 0.5± 0.3

Br(π0π0) fits fine

if instead of fitting we use hadronic inputs, then Br(π0π0) is several σ low

analog:

which is the situation for default parameters in BBNS and pQCD
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mW

?

mb

ΛQCD

mc

ms

mu,d

E

√
ΛE

}
Q hard-scale

intermediate-scale

hadronic-scale

}
treated as 
hadronic 

parameters

SCETIIFactorization at
√

EΛ

used for trees and penguins 
in BBNS & pQCD approaches

Intermediate scale µi
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ζBM
J (z) = fMfB

∫ 1

0
dx

∫ ∞

0
dk+J(z, x, k+, E)φM (x)φB(k+)

Factorization at
√

EΛ

ζBM = ?

Beneke, Feldmann; Bauer, Pirjol, I.S.

Becher, Hill, Lange, Neubert

-- BBNS:  left as a form factor with counting

is factorization of form factors

expansion in αs(
√

mbΛ) " 0.35

has endpoint singularities

ζBM
J =

∫
dz ζBM

J (z) = 4παs(µi)
fBfM

mb

〈x−1〉φM

3

〈k−1
+ 〉φ+

B

3
> 0

tree 
level

ζBM
J /ζBM ∼ αs

-- BPRS:  left as a form factor, but counting is ζBM
J /ζBM ∼ 1

-- in pQCD  use       dependence to factorize ζBM
J /ζBM ∼ 1k⊥

 without singularities, get

φ(x, k⊥) ‘s Keum, Li, Sanda

sign expectations can be
used to remove discrete 

ambiguities in isospin
analysis (eg. Buchalla, Safir;

Lunghi et.al.)

p2!!QCDmb
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Differences between Phenomenological 
Approaches to Applying Factorization
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5

no SCET SCET
expn.

SU(2) SU(3)
+SU(2) +SU(3)

B → ππ 11 7/5 4

B → Kπ 15 11
15/13

+5(6)
4

B → KK̄ 11 11 +4/0 +3(4) +0

TABLE II: Number of real hadronic parameters from differ-
ent expansions in QCD. The first column shows the number of
theory inputs with no approximations, while the next columns
show the number of parameters using only SU(2), using only
SU(3), using SU(2) and SCET, and using SU(3) with SCET.
For the cases with two numbers, #/#, the second follows
from the first after neglecting the small penguin coefficients,
ie setting C7,8 = 0. In SU(2) + SCET B → Kπ has 6 pa-
rameters, but 1 appears already in B → ππ, hence the +5(6).
The notation is analogous for the +3(4) for B → KK̄.

ruled out by Bose symmetry). This leaves 2 reduced
matrix elements for each CKM structure, 〈0||1/2||1/2〉
and 〈2||3/2||1/2〉. For B → Kπ decays the electroweak
Hamiltonian has either ∆I = 0 or ∆I = 1. The Kπ
system is either in an I = 1/2 or I = 3/2 state thus
there are three reduced matrix elements per CKM struc-
ture, 〈3/2||1||1/2〉, 〈1/2||1||1/2〉 and 〈1/2||0||1/2〉. Fi-
nally, KK̄ is either an I = 0 or I = 1, and there are
again three reduced matrix elements per CKM structure,
〈0||1/2||1/2〉, 〈1||1/2||1/2〉, and 〈1||3/2||1/2〉.

The SU(3) flavor symmetry relates not only the decays
B → ππ and B → Kπ, B → KK, but also B → πη8,
B → η8K and Bs decays to two light mesons. The de-
composition of the amplitudes in terms of SU(3) reduced
matrix elements can be obtained from [50, 51, 52]. The
Hamiltonian can transform either as a 3

s
, 3

a
, 6 or 15.

Thus, there are 7 reduced matrix elements per CKM
structure, 〈1||3s||3〉, 〈1||3a||3〉, 〈8||3s||3〉, 〈8||3a||3〉,
〈8||6s||3〉, 〈8||15

s||3〉 and 〈27||15
s||3〉. The 3

a
and 3

s

come in a single linear combination so this leaves 20
hadronic parameters to describe all these decays minus 1
overall phase (plus additional parameters for singlets and
mixing to properly describe η and η′). Of these hadronic
parameters, only 15 are required to describe B → ππ
and B → Kπ decays (16 minus an overall phase). If we
add B → KK decays then 4 more paramaters are needed
(which are solely due to electroweak penguins). This is
discussed further in section II D.

The number of parameters that occur at leading order
in different expansions of QCD are summarized in Ta-
ble II, including the SCET expansion. Here by SCET
we mean after factorization at mb but without using any
information about the factorization at

√
EΛ. The SCET

results are discussed further in section III, but we sum-
marize them here. The parameters with isospin+SCET
are

ππ : {ζBπ+ζBπ
J , βπζBπ

J , Pππ} , (11)

Kπ : {ζBπ+ζBπ
J , βK̄ζBπ

J , ζBK̄ + ζBK̄
J , βπζBK̄

J , PKπ} ,

KK̄ : {ζBK̄ + ζBK̄
J , βKζBK̄

J , PKK̄} .

Here PM1M2
are complex penguin amplitudes and the re-

maining parameters are real.1 In B → ππ the moment
parameter βπ is not linearly independent from the pa-
rameters ζBπ and ζBπ

J , and only the product βπζBπ
J was

counted as a parameter. In any case it is fairly well known
from fits to γ∗γ → π0 [53] 3βπ ≡ 〈x−1〉π & 3.2 ± 0.2. In
isospin + SCET B → Kπ has 6 parameters, but the first
one listed in (11) appears already in B → ππ, hence the
+5 in Table II. If the ratio βK/βπ was known from else-
where then one more parameter can be removed for Kπ
(leaving +4). For B → KK̄ we have 4 SCET parame-
ters. One of these appears already in B → Kπ, hence
the +3, and if βK/βK̄ is known from other processes it
would become +2.

Taking SCET + SU(3) we have the additional relations
ζBπ = ζBK = ζBK̄ , ζBπ

J = ζBK
J = ζBK̄

J , βπ = βK = βK̄ ,
and Aππ

cc = AKπ
cc = AKK̄

cc which reduces the number of
parameters considerably.

Note that there are good indications that the param-
eters ζBM and ζBM

J are positive numbers in the SCET
factorization theorem. (βK , βπ, βK̄ are also positive.)
This follows from: i) the fact that ζBM +ζBM

J are related
to form factors for heavy-to-light transitions which with
a suitable phase convention one expects are positive for
all q2, ii) that ζBM

J is positive (from the relatively safe as-
sumption that radiative corrections at the scale

√
EΛ do

not change the sign of ζM1M2

J and that ζJ ∝ βπλB > 0),
and finally iii) that the fit to B → ππ data gives
ζBπ, ζBπ

J > 0 so that SU(3) implies ζBK , ζBK
J > 0. We

will see that this allows some interesting predictions to
be made even without knowing the exact values of the
parameters.

In using the expansions in (3) it is important to keep
in mind the hierarchy of CKM elements, and the rough
hierarchy of the Wilson coefficients

C1
>∼ C2 ) C3−6 ) C9,10

>∼ C7,8 . (12)

Some authors attempt to exploit the numerical values of
the Wilson coefficients in the electroweak Hamiltonian
to further reduce the number of parameters. A common
example is the neglect of the coefficients C7,8 relative to
C9,10. In Eq. (10) the electroweak penguin operators O9

and O10 were written as linear combinations of O1−4.
This implies that if one neglects the electroweak penguin
operators Q7 and Q8, then no new operators are required
to describe the EW penguin effects. In some cases this
leads to additional simplifications. One can show that for
B → ππ decays the ∆I = 3/2 amplitudes multiplying the
CKM structures λu and λc are identical [23, 24]. Thus,

1 The penguin amplitudes are kept to all orders in Λ/mb since so
far there is no proof that the charm mass mc does not spoil fac-
torization, with large αs(2mc)v contributions competing with
αs(mb) hard-charm loop corrections [32]. This is controver-
sial [34, 35]. Our analysis treats these contributions in the most
conservative possible manner.

BPRS/ BPRS/

Input Parameters:

when pert. corrections are included, BPRS models shapes

BBNS: input model for                                        φM (x) φB(k+), ζBM,
 (use eg. light-cone sum rules for gegenbauer moments)

KLS: model wavefunctions

Fit Parameters:
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Charm Loops

BBNS

KLS

BPRS

charm loops

perturbative

perturbative

nonperturbative fit 
parameters, may have 
large strong phases 

as in: Ciuchini et al 
               (charming penguin),

 Colangelo et al

sion does not cut off soft contributions efficiently enough
before one enters the non-perturbative regime.] There-
fore π1 cannot always be represented by its light-cone
distribution amplitude. At leading power in ΛQCD/mb,
we find that the soft interactions can be absorbed into
the B → π1 form factor. On the other hand, any interac-
tion of the spectator quark with the quarks of π2 is hard
at leading power and can be written as a convolution of
three light-cone distribution amplitudes. This discussion
can be summarized by the factorization formula

〈π(p′)π(q)|Qi|B̄(p)〉 = fB→π(q2)
∫ 1

0
dx T I

i (x)Φπ(x)

+
∫ 1

0
dξdxdyT II

i (ξ, x, y)ΦB(ξ)Φπ(x)Φπ(y), (3)

which is valid up to corrections of relative order
ΛQCD/mb. Here fB→π(q2) is a B → π form factor eval-
uated at q2 = m2

π ≈ 0, and Φπ (ΦB) are leading-twist
light-cone distribution amplitudes of the pion (B meson),
normalized to 1. The T I,II

i denote hard-scattering ker-
nels, which are calculable in perturbation theory. T I

i

starts at O(α0
s); at higher order in αs it contains ‘non-

factorizable’ gluon exchange, including penguin topolo-
gies, see the first two rows of Fig. 1 for the corrections
at order αs. Hard, ‘non-factorizable’ interactions in-
volving the spectator quark are part of T II

i (last row
of Fig. 1). Annihilation topologies also exist, but are
power-suppressed in ΛQCD/mb. The significance of the
factorization formula is that all the non-perturbative ef-
fects in the B → ππ amplitudes can be absorbed into the
form factor and the light-cone wave functions.

FIG. 1. Order αs corrections to the hard scattering kernels
T I

i (first two rows) and T II
i (last row). In the case of T I

i , the
spectator quark does not participate in the hard interaction
and is not drawn. The two lines directed upwards represent
the two quarks that make up π2.

The following comments are in order:
(i) When αs corrections are neglected T II

i is zero and
T I

i is an x-independent constant. Conventional factor-
ization in terms of the form factor and the pion decay
constant is then recovered as a rigorous prediction in the

infinite quark mass limit. The perturbative corrections
are process-dependent, but calculable. Their inclusion
cancels the scale-dependence of the leading-order factor-
ization result.

(ii) The infrared finiteness of the hard scattering am-
plitude follows because the infrared divergences in the
first four diagrams of Fig. 1 cancel in their sum. This
cancellation is the technical manifestation of Bjorken’s
colour transparency argument [3]. Colour transparency
does not apply to hard gluon interactions. These, how-
ever, are suppressed by αs and are calculable.

(iii) The hard scattering contribution to the B → π
form factor is suppressed by one power of αs relative to
the soft contribution, in which the B meson spectator
undergoes no hard interaction. As a consequence the as-
sumption that B → ππ can be treated entirely in the
hard scattering picture of [1] would miss the leading con-
tribution in the heavy quark limit.

(iv) The decay amplitude acquires an imaginary part
through the hard scattering kernels. In the heavy quark
limit, the strong interaction phases can therefore be com-
puted as expansions in αs. In terms of hadronic inter-
mediate states that saturate the unitarity relation this
implies systematic cancellations among many intermedi-
ate states with potentially large individual rescattering
phases. An estimate of rescattering effects on the basis
of Regge theory is not compatible with the picture that
emerges in the heavy quark limit.

(v) The factorization formula (3) generalizes to the de-
cays into a heavy-light final state, if the heavy particle
absorbs the B meson spectator quark. In this case the
second line in (3) is power-suppressed and only the form
factor term survives. An expression of this form has been
used by Politzer and Wise to compute the 1-loop correc-
tions to the decay rate ratio Γ(B̄ → D∗π)/Γ(B̄ → Dπ)
[4]. The factorization formula does not hold for heavy-
light final states, in which the light meson absorbs the B
meson spectator quark, or for a heavy-heavy final state.
In this case, conventional factorization can also not be
justified.

The result of an explicit calculation of the B̄ → ππ
decay amplitudes at order αs can be compactly expressed
as 〈ππ|Heff |B̄〉 = GF /

√
2
∑

p=u,c λp〈ππ|Tp|B̄〉, where

Tp = ap
1(ππ) (ūb)V −A ⊗ (d̄u)V −A

+ ap
2(ππ) (d̄b)V −A ⊗ (ūu)V −A

+ a3(ππ) (d̄b)V −A ⊗ (q̄q)V −A

+ ap
4(ππ) (q̄b)V −A ⊗ (d̄q)V −A

+ a5(ππ) (d̄b)V −A ⊗ (q̄q)V +A

+ ap
6(ππ) (−2)(q̄b)S−P ⊗ (d̄q)S+P . (4)

The symbol ⊗ is defined through 〈ππ|j1 ⊗ j2|B̄〉 ≡
〈π|j1|B̄〉〈π|j2|0〉. A summation over q = u, d is implied.
Note that the term proportional to ap

6(ππ) results in a
power correction that should be dropped in the heavy

2

c
c

charm is relatively heavy and may be more 
sensitive to nonperturbative effects

BPRS (SCET)

BBNS 
(QCDF) pQCD

Key issues:

• Treatment of hadronic parameters appearing at LO in the expansion

• Treatment of annihilation

Beneke,Buchalla,Neubert,

  Sachrajda,(BBNS);

Chay, Kim;

Bauer, Pirjol, Rothstein, I.S.
(BPRS)

Keum, Li, Sanda (pQCD);
Lu et al.;

Ciuchini et al 
               (charming penguin),

charming
penguins

Treatment of perturbation theory at scales•
!! Λ2EΛQ2

} }αs(Q2) αs(EΛ)

• Treatment of         endpoint singularities1/x2

∫ 1

0
dx

φπ(x)
x2

∼
∫

0

dx

x
=∞

Treatment of charm loops•
!s(q )2

c

c

b
d,s

q

q

....
q µ

!s (mv)
threshold 

NRQCD region

∼ Λ
mb

Recent work:

Beneke et.al.  0902.4446

argue that duality violation in 

B → Xs!
+!!

does not apply for nonleptonics.

(Smearing argument assumes factorization.)
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Endpoint Singularities eg.  annihilation

M1M2 H(x, y)

π−K(∗)+, ρ−K(∗)+ −ãd
4(y, x)

π0K(∗)0, ρ0K(∗)0 1√
2

ãd
4(y, x)

π−π+, π−ρ+, ρ−π+, ρ−ρ+ −ãs
1(x, y) − ãs

3(x, y) − ãs
3(y, x)

π0π0, π0ρ0, ρ0ρ0
[

1
2 ãs

1(x, y) + ãs
3(x, y)

]

+
[

x ↔ y
]

K(∗)−K(∗)+ −ãs
1(x, y) − ãs

4(y, x) − ãs
3(x, y) − ãs

3(y, x)

K̄(∗)0K(∗)0 ãs
3(x, y) + ãs

3(y, x) + ãs
4(y, x)

TABLE III: Hard functions for B̄s decays for the annihilation amplitude A(1)
Lann in Eq. (23).

n

na) b) c) d)

soft

x
x

y
y

FIG. 2: Tree level annihilation graphs for B → M1M2 decays. Here soft, n, n̄ denote quarks that
are soft, n-collinear, and n̄-collinear respectively.

where the ø-notation and term involving the Wilson coefficient d(µ±) are discussed below.

Note that the coefficients a3u,3c,4u,4c,7,8 are polluted in the sense of Ref. [5], meaning that

O(α2
s) matching results proportional to the large coefficients C1,2 could compete numerically.

The others are not polluted: a1u,2u involve C1,2 at O(αs), while a1c,2c,5,6 only get contributions

from electroweak penguins. Our results for the diagrams in Fig. 2 agree with Refs. [7, 10].

This includes the appearance of the combinations of momentum fractions in the functions

F (x, y) and F (ȳ, x̄), up to ø-distribution and d-term. For later convenience we define moment

parameters which convolute the hard coefficients with the distributions

βM1M2

iu =

∫ 1

0

dx dy [aiu(x, y)+κai+4(x, y)] φM1(y)φM2(x) ,

βM1M2

ic =

∫ 1

0

dx dy [aic(x, y)+κai+4(x, y)] φM1(y)φM2(x) . (26)

In Eq. (25) the subscript ø denotes the fact that singular terms in convolution integrals

are finite in SCET due to the MS-factorization which involves convolution integrals such as

∑

x, x′ $=0

∫

dxr dx′
r δ(1−x−x′)

φM(x, x′, µ)

x̄2
, (27)

where x(′) and x(′)
r correspond to label and residual momenta [18]. Implementing x $= 0 and

x′ $= 0 requires zero-bin subtractions and divergences in the rapidity must also be regulated.

14

singular
x̄→ 0

∫ 1

0
dx

φπ(x)
x̄2

pQCD: 
1

m2
b x̄− k2

T + i0 singularity regulated by kT

The annihilation singularity has to do with a potential double counting
Arnesen et.al.

SCET:

BBNS: Introduce hadronic parameters

∫ 1

0
dx/x→ XA

XA = (1 + ρAeiφA) ln(mB/500 MeV)

Same QCD topology appears twice.

19



n!collinear

n!collinear

soft

hard

soft

soft

soft

n!collinear

n!h.c.

n!h.c.

soft

n!collinear

x̄→ 0

This hard scattering term 
is real.

This soft rescattering term 
is complex.

∼ αs(mb)
Λ
mb

∼ α2
s(
√

mΛ)
Λ
mb

conclude:
“LO 

Annihilation 
is real”

Naive
counting:

Proper:  the two graphs are factored at a high scale where all alphas’ 
are equal. To determine the dominance one needs an RGE $which 
has not been derived for these rapidity cuto# amplitudes%.

In SCET a rapidity cuto# is needed to distinguish these two terms  
$and zero bin subtractions%

20



BPRS BBNS KLS

Expansion in 
!s$"i%?

No Yes Yes

T, P if Singular 
convolution

N/A
New 

parameters
uses kT

Annihilation
Real at “LO”,

complex “NLO”
Complex,

new parameters
perturbative,
large phases

Charm Loop?
Non!

perturbative
Perturbative Perturbative

Number of fit 
parameters Most Middle N/A

Comparison Summary
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A few Applications
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5

no SCET SCET
expn.

SU(2) SU(3)
+SU(2) +SU(3)

B → ππ 11 7/5 4

B → Kπ 15 11
15/13

+5(6)
4

B → KK̄ 11 11 +4/0 +3(4) +0

TABLE II: Number of real hadronic parameters from differ-
ent expansions in QCD. The first column shows the number of
theory inputs with no approximations, while the next columns
show the number of parameters using only SU(2), using only
SU(3), using SU(2) and SCET, and using SU(3) with SCET.
For the cases with two numbers, #/#, the second follows
from the first after neglecting the small penguin coefficients,
ie setting C7,8 = 0. In SU(2) + SCET B → Kπ has 6 pa-
rameters, but 1 appears already in B → ππ, hence the +5(6).
The notation is analogous for the +3(4) for B → KK̄.

ruled out by Bose symmetry). This leaves 2 reduced
matrix elements for each CKM structure, 〈0||1/2||1/2〉
and 〈2||3/2||1/2〉. For B → Kπ decays the electroweak
Hamiltonian has either ∆I = 0 or ∆I = 1. The Kπ
system is either in an I = 1/2 or I = 3/2 state thus
there are three reduced matrix elements per CKM struc-
ture, 〈3/2||1||1/2〉, 〈1/2||1||1/2〉 and 〈1/2||0||1/2〉. Fi-
nally, KK̄ is either an I = 0 or I = 1, and there are
again three reduced matrix elements per CKM structure,
〈0||1/2||1/2〉, 〈1||1/2||1/2〉, and 〈1||3/2||1/2〉.

The SU(3) flavor symmetry relates not only the decays
B → ππ and B → Kπ, B → KK, but also B → πη8,
B → η8K and Bs decays to two light mesons. The de-
composition of the amplitudes in terms of SU(3) reduced
matrix elements can be obtained from [50, 51, 52]. The
Hamiltonian can transform either as a 3

s
, 3

a
, 6 or 15.

Thus, there are 7 reduced matrix elements per CKM
structure, 〈1||3s||3〉, 〈1||3a||3〉, 〈8||3s||3〉, 〈8||3a||3〉,
〈8||6s||3〉, 〈8||15

s||3〉 and 〈27||15
s||3〉. The 3

a
and 3

s

come in a single linear combination so this leaves 20
hadronic parameters to describe all these decays minus 1
overall phase (plus additional parameters for singlets and
mixing to properly describe η and η′). Of these hadronic
parameters, only 15 are required to describe B → ππ
and B → Kπ decays (16 minus an overall phase). If we
add B → KK decays then 4 more paramaters are needed
(which are solely due to electroweak penguins). This is
discussed further in section II D.

The number of parameters that occur at leading order
in different expansions of QCD are summarized in Ta-
ble II, including the SCET expansion. Here by SCET
we mean after factorization at mb but without using any
information about the factorization at

√
EΛ. The SCET

results are discussed further in section III, but we sum-
marize them here. The parameters with isospin+SCET
are

ππ : {ζBπ+ζBπ
J , βπζBπ

J , Pππ} , (11)

Kπ : {ζBπ+ζBπ
J , βK̄ζBπ

J , ζBK̄ + ζBK̄
J , βπζBK̄

J , PKπ} ,

KK̄ : {ζBK̄ + ζBK̄
J , βKζBK̄

J , PKK̄} .

Here PM1M2
are complex penguin amplitudes and the re-

maining parameters are real.1 In B → ππ the moment
parameter βπ is not linearly independent from the pa-
rameters ζBπ and ζBπ

J , and only the product βπζBπ
J was

counted as a parameter. In any case it is fairly well known
from fits to γ∗γ → π0 [53] 3βπ ≡ 〈x−1〉π & 3.2 ± 0.2. In
isospin + SCET B → Kπ has 6 parameters, but the first
one listed in (11) appears already in B → ππ, hence the
+5 in Table II. If the ratio βK/βπ was known from else-
where then one more parameter can be removed for Kπ
(leaving +4). For B → KK̄ we have 4 SCET parame-
ters. One of these appears already in B → Kπ, hence
the +3, and if βK/βK̄ is known from other processes it
would become +2.

Taking SCET + SU(3) we have the additional relations
ζBπ = ζBK = ζBK̄ , ζBπ

J = ζBK
J = ζBK̄

J , βπ = βK = βK̄ ,
and Aππ

cc = AKπ
cc = AKK̄

cc which reduces the number of
parameters considerably.

Note that there are good indications that the param-
eters ζBM and ζBM

J are positive numbers in the SCET
factorization theorem. (βK , βπ, βK̄ are also positive.)
This follows from: i) the fact that ζBM +ζBM

J are related
to form factors for heavy-to-light transitions which with
a suitable phase convention one expects are positive for
all q2, ii) that ζBM

J is positive (from the relatively safe as-
sumption that radiative corrections at the scale

√
EΛ do

not change the sign of ζM1M2

J and that ζJ ∝ βπλB > 0),
and finally iii) that the fit to B → ππ data gives
ζBπ, ζBπ

J > 0 so that SU(3) implies ζBK , ζBK
J > 0. We

will see that this allows some interesting predictions to
be made even without knowing the exact values of the
parameters.

In using the expansions in (3) it is important to keep
in mind the hierarchy of CKM elements, and the rough
hierarchy of the Wilson coefficients

C1
>∼ C2 ) C3−6 ) C9,10

>∼ C7,8 . (12)

Some authors attempt to exploit the numerical values of
the Wilson coefficients in the electroweak Hamiltonian
to further reduce the number of parameters. A common
example is the neglect of the coefficients C7,8 relative to
C9,10. In Eq. (10) the electroweak penguin operators O9

and O10 were written as linear combinations of O1−4.
This implies that if one neglects the electroweak penguin
operators Q7 and Q8, then no new operators are required
to describe the EW penguin effects. In some cases this
leads to additional simplifications. One can show that for
B → ππ decays the ∆I = 3/2 amplitudes multiplying the
CKM structures λu and λc are identical [23, 24]. Thus,

1 The penguin amplitudes are kept to all orders in Λ/mb since so
far there is no proof that the charm mass mc does not spoil fac-
torization, with large αs(2mc)v contributions competing with
αs(mb) hard-charm loop corrections [32]. This is controver-
sial [34, 35]. Our analysis treats these contributions in the most
conservative possible manner.

Counting parameters   VP,  VV  modes 

Wang, Wang, Yang, Lu
(arXiv:0801.3123)PP, PV with isosinglets

+4πη, ηη, Kη′, . . .

(2 solutions)

ρπ,ωπ,K∗K, ρη, . . . +8
Global Fit

BPRS/BPRS/

Comparison with pQCD and QCDF

23
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TABLE I: Branching ratios (in units of 10−6) of B → V P decays induced by the b → d (∆S = 0) transition: the first solution

(This work 1) and the second solution (This work 2). In both cases, we have included the chiraly enhanced penguin in B → V P

decay amplitudes. We also cite the experimental data and theoretical results given in QCDF [10] and PQCD [46, 52, 54, 57]

approach to make a comparison.

Channel Exp. QCDF PQCD This work 1 This work 2

B−
→ ρ−π0 10.9+1.4

−1.5 14.0+6.5+5.1+1.0+0.8
−5.5−4.3−0.6−0.7 6-9 8.8+0.2+1.0

−0.1−1.0 11.0+0.6+1.0
−0.6−0.9

B−
→ ρ0π− 8.7+1.0

−1.1 11.9+6.3+3.6+2.5+1.3
−5.0−3.1−1.2−1.1 10.4+3.3

−3.4 ± 2.1 10.8+0.7+1.0
−0.7−0.9 7.9+0.1+0.8

−0.0−0.8

B−
→ ωπ− 6.9 ± 0.5 8.8+4.4+2.6+1.8+0.8

−3.5−2.2−0.9−0.9 11.3+3.3
−2.9 ± 1.4 6.7+0.4+0.7

−0.3−0.6 8.6+0.4+0.8
−0.3−0.8

B−
→ K∗0K− < 1.1 0.30+0.11+0.12+0.09+0.57

−0.09−0.10−0.09−0.19 0.31+0.12
−0.08 0.48+0.25+0.09

−0.20−0.08 0.51+0.18+0.07
−0.15−0.06

B−
→ K∗−K0 0.30+0.08+0.41+0.08+0.58

−0.07−0.18−0.07−0.17 1.83+0.68
−0.47 0.54+0.26+0.10

−0.21−0.08 0.51+0.21+0.08
−0.17−0.07

B−
→ φπ− < 0.24 ≈ 0.005 ≈ 0.003 0.003

B̄0
→ ρ−π+

B̄0
→ ρ+π−

o

24.0 ± 2.5 36.5+18.2+10.3+2.0+3.9
−14.7− 8.6−3.5−2.9 18-45 13.1+0.6+1.2

−0.5−1.2 16.8+0.5+1.6
−0.4−1.5

B0/B̄0
→ ρ+π− 24-34 12.5+1.9+1.2

−1.7−1.1 16.0+1.6+1.5
−1.5−1.4

B0/B̄0
→ ρ−π+ 24-34 13.8+1.9+1.3

−1.8−1.2 17.7+1.6+1.6
−1.7−1.5

B̄0
→ ρ+π−a 8.9 ± 2.5 15.4+8.0+5.5+0.7+1.9

−6.4−4.7−1.3−1.3 5.7+0.5+0.5
−0.5−0.5 6.7+0.2+0.7

−0.1−0.7

B̄0
→ ρ−π+a 13.9 ± 2.7 21.2+10.3+8.7+1.3+2.0

− 8.4−7.2−2.3−1.6 7.4+0.2+0.8
−0.1−0.8 10.1+0.4+0.9

−0.4−0.9

B̄0
→ ρ0π0 1.8+0.6

−0.5 0.4+0.2+0.2+0.9+0.5
−0.2−0.1−0.3−0.3 0.07-0.11 2.6+0.2+0.2

−0.1−0.2 1.4+0.1+0.1
−0.1−0.1

B̄0
→ ωπ0 < 1.2 0.01+0.00+0.02+0.02+0.03

−0.00−0.00−0.00−0.00 0.10-0.28 0.003+0.047+0.000
−0.000−0.000 0.025+0.036+0.002

−0.004−0.002

B̄0
→ K∗0K̄0 0.26+0.08+0.10+0.08+0.46

−0.07−0.09−0.08−0.15 0.45+0.24+0.09
−0.19−0.07 0.47+0.17+0.06

−0.14−0.05

B̄0
→ K̄∗0K0 < 1.9 0.29+0.10+0.39+0.08+0.60

−0.09−0.17−0.07−0.17 0.51+0.24+0.09
−0.20−0.08 0.48+0.20+0.07

−0.16−0.06

B̄0
→ K∗0K̄0

B̄0
→ K̄∗0K0

o

≈ 1.96 0.96+0.34+0.18
−0.27−0.15 0.95+0.26+0.14

−0.22−0.12

B0/B̄0
→ K∗0K̄0 0.96+0.34+0.18

−0.27−0.15 0.95+0.26+0.14
−0.22−0.12

B0/B̄0
→ K̄∗0K0 0.96+0.34+0.18

−0.27−0.15 0.95+0.26+0.14
−0.22−0.12

B̄0
→ φπ0 < 0.28 ≈ 0.002 0.002 0.001

B−
→ ρ−η 5.4 ± 1.2 9.4+4.6+3.6+0.7+0.7

−3.7−3.0−0.4−0.7 8.5+3.0+0.8+0.4+1.2
−2.1−0.7−0.4−0.2

b 3.9+2.0+0.4
−1.7−0.4 3.0+1.8+0.3

−1.5−0.3

B−
→ ρ−η′ 9.1+3.7

−2.8 6.3+3.1+2.4+0.5+0.5
−2.5−2.0−0.3−0.5 8.7+3.0+0.7+0.5+1.1

−2.2−0.9−0.7−0.3
b 0.37+2.51+0.08

−0.22−0.07 0.36+2.59+0.06
−0.18−0.05

B̄0
→ ρ0η < 1.5 0.03+0.02+0.16+0.02+0.05

−0.01−0.10−0.01−0.02 0.024+0.012+0.004+0.002+0.102
−0.007−0.002−0.002−0.005

b 0.03+0.18+0.00
−0.02−0.00 0.17+0.36+0.02

−0.16−0.02

B̄0
→ ρ0η′ < 1.3 0.01+0.01+0.11+0.02+0.03

−0.00−0.06−0.00−0.01 0.061+0.030+0.004+0.003+0.114
−0.018−0.003−0.003−0.009

b 0.37+2.37+0.04
−0.11−0.05 1.3+3.8+0.1

−1.1−0.1

B̄0
→ ωη < 1.9 0.31+0.14+0.16+0.35+0.22

−0.12−0.11−0.14−0.16 0.27+0.11
−0.10 0.98+0.69+0.10

−0.51−0.10 1.3+0.8+0.1
−0.6−0.1

B̄0
→ ωη′ < 2.2 0.20+0.10+0.15+0.25+0.15

−0.08−0.05−0.10−0.11 0.075+0.037
−0.033 0.20+1.46+0.04

−0.09−0.03 3.1+4.8+0.3
−2.6−0.3

B̄0
→ φη < 0.6 ≈ 0.001 0.0063+0.0033

−0.0019 0.0004 0.0008

B̄0
→ φη′ < 0.5 ≈ 0.001 0.0073+0.0035

−0.0026 0.0001 0.0007

aWe quote the branching ratios for B̄0
→ ρ+π− and B̄0

→ ρ+π− from Ref. [59].
bFor B → ρη decays, there are two different predictions given in Ref. [52] according to the different mixing angles between η and η′. We

quote the results in which θP = −10◦ is used. There are not too many changes for the other predictions as the value for the mixing angle

θP = −17◦ is very close to the first one.

where Ac is from the charming penguin term. The decomposition is over complete since the unitarity property of

CKM matrix can be used to eliminate one of the three combinations of CKM matrix elements. We keep all of them

according to the different dynamics in the corresponding amplitudes. The values for CKM matrix elements:

|VubV
∗
ud| = 3.48 × 10−3, |VcbV

∗
cd| = 9.17 × 10−3, |VtbV

∗
td| = 8.60 × 10−3 (57)

Branching Ratios
Wang et.al.
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TABLE III: Branching ratios (in units of 10−6) for ∆s = 1 processes: the first solution (This work 1) and the second solution

(This work 2). In both solutions, we have included the chiraly enhanced penguin in B → V P decay amplitudes. We also cite

the experimental data and theoretical results given in QCDF [10] and PQCD [51, 55] to make a comparison.

Channel Exp. QCDF PQCD This work 1 This work 2

B−
→ K∗−π0 6.9 ± 2.3 3.3+1.1+1.0+0.6+4.4

−1.0−0.9−0.6−1.4 4.3+5.0
−2.2 4.1+2.2+0.8

−1.7−0.7 6.5+1.9+0.7
−1.6−0.7

B−
→ K̄∗0π− 10.7 ± 0.8 3.6+0.4+1.5+1.2+7.7

−0.3−1.4−1.2−2.3 6.0+2.8
−1.5 8.5+4.6+1.7

−3.6−1.4 9.9+3.4+1.3
−2.9−1.1

B−
→ ρ0K− 4.25+0.55

−0.56 2.6+0.9+3.1+0.8+4.3
−0.9−1.4−0.6−1.2 5.1+4.1

−2.8 6.6+2.7+1.0
−2.2−0.9 4.7+1.8+0.7

−1.5−0.6

B−
→ ρ−K̄0 8.0+1.5

−1.4 5.8+0.6+7.0+1.5+10.3
−0.6−3.3−1.3− 3.2 8.7+6.8

−4.4 9.3+4.7+1.7
−3.7−1.4 10.0+4.0+1.5

−3.3−1.3

B−
→ ωK− 6.7 ± 0.5 3.5+1.0+3.3+1.4+4.7

−1.0−1.6−0.9−1.6 10.6+10.4
−5.8 5.1+2.4+0.9

−1.9−0.8 5.9+2.1+0.8
−1.7−0.7

B−
→ φK− 8.30 ± 0.65 4.5+0.5+1.8+1.9+11.8

−0.4−1.7−2.1− 3.3 7.8+5.9
−1.8 9.7+4.9+1.8

−3.9−1.5 8.5+3.2+1.2
−2.7−1.0

B̄0
→ K̄∗0π0 0.0+1.3

−0.1 0.7+0.1+0.5+0.3+2.6
−0.1−0.4−0.3−0.5 2.0+1.2

−0.6 4.6+2.3+0.9
−1.8−0.7 3.6+1.4+0.5

−1.2−0.4

B̄0
→ K̄∗−π+ 9.8 ± 1.1 3.3+1.4+1.3+0.8+6.2

−1.1−1.2−0.8−1.6 6.0+6.8
−2.6 8.3+4.3+1.6

−3.4−1.3 9.5+3.2+1.2
−2.7−1.1

B̄0
→ ρ0K̄0 5.4+0.9

−1.0 4.6+0.5+4.0+0.7+6.1
−0.5−2.1−0.7−2.1 4.8+4.3

−2.3 3.5+2.0+0.7
−1.5−0.6 5.8+2.1+0.8

−1.8−0.7

B̄0
→ ρ+K− 15.3+3.7

−3.5 7.4+1.8+7.1+1.2+10.7
−1.9−3.6−1.1− 3.5 8.8+6.8

−4.5 9.8+4.5+1.7
−3.7−1.4 10.2+3.8+1.5

−3.2−1.2

B̄0
→ ωK̄0 5.0 ± 0.6 2.3+0.3+2.8+1.3+4.3

−0.3−1.3−0.8−1.3 9.8+8.6
−4.9 4.1+2.1+0.8

−1.7−0.6 4.9+1.9+0.7
−1.6−0.6

B̄0
→ φK̄0 8.3+1.2

−1.0 4.1+0.4+1.7+1.8+10.6
−0.4−1.6−1.9− 3.0 7.3+5.9

−1.8 9.1+4.5+1.7
−3.6−1.4 8.0+2.9+1.1

−2.5−0.9

B−
→ K∗−η 19.3 ± 1.6 10.8+1.9+8.1+1.8+16.5

−1.7−4.4−1.3− 5.5 22.13+0.26
−0.27 17.9+5.4+3.5

−5.3−2.9 18.6+4.5+2.6
−4.6−2.2

B−
→ K∗−η′ 4.9+2.1

−1.9 5.1+0.9+7.5+2.1+6.7
−1.0−3.8−3.0−3.3 6.38 ± 0.26 4.4+6.5+0.9

−3.8−0.8 4.1+4.9+0.7
−3.3−0.6

B̄0
→ K̄∗0η 15.9 ± 1.0 10.7+1.1+7.8+1.4+16.2

−1.0−4.3−1.2− 5.5 22.31+0.28
−0.29 16.6+5.1+3.2

−5.0−2.7 16.5+4.1+2.3
−4.2−2.0

B̄0
→ K̄∗0η′ 3.8 ± 1.2 3.9+0.4+6.6+1.8+6.2

−0.4−3.3−2.5−2.9 3.35+0.29
−0.27 4.1+6.1+0.9

−3.6−0.7 3.8+4.8+0.6
−3.3−0.5

Compared with the results given in Eq. (50) and Eq. (54), we find penguin operators are smaller than charming

penguins. According to the size of charming penguins, we expect the relation BR(B− → ρ−K̄0) ∼ BR(B− → π−K̄∗0).

This is well consistent with the experimental data.

From table IV, we can see the direct CP asymmetries of B− → K̄∗0π−, B− → K̄0ρ−, B− → K−φ and B− → K̄0φ

are zero. In these channels, tree operators do not contribute. The weak phases for penguin operators and charming

penguins are equal to each other, which can not induce any direct CP violations. CP asymmetries in other channels

are not large, because the strong phases of charming penguins are either close to 0◦ or 180◦ and imaginary parts are

accordingly small. The PQCD results for most B → K∗π and B → ρK channels are much larger than ours, since

they have more large imaginary part from annihilation diagrams. The QCDF results are small and comparable with

ours but with a relative minus sign. We have to wait for the experiment data to resolve this disagreements.

D. B Decays involving η or η′

As we can see from table I, there is about 3.1σ deviation for our prediction on the branching ratio of B− → ρ−η′

from the experimental data. Contributions from penguin operators are suppressed by the CKM matrix elements

as given in Eq. (57) and the dominant contribution is from the tree operator. This kind of contribution is either

proportional to B → ηq or B → ηs form factor. Utilizing results given in Eq. (50) and Eq. (54), we obtain B → ηq

and B → ηs form factors as follows:

FB→ηq = (ζP + ζP
J + 2ζg + 2ζJg) = (0.053± 0.015) [(0.095 ± 0.018)] ,

FB→ηs = (ζg + ζJg) = (−0.076± 0.007)[(−0.050± 0.006)], (61)

Wang et.al.
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TABLE III: Branching ratios (in units of 10−6) for ∆s = 1 processes: the first solution (This work 1) and the second solution

(This work 2). In both solutions, we have included the chiraly enhanced penguin in B → V P decay amplitudes. We also cite

the experimental data and theoretical results given in QCDF [10] and PQCD [51, 55] to make a comparison.

Channel Exp. QCDF PQCD This work 1 This work 2

B−
→ K∗−π0 6.9 ± 2.3 3.3+1.1+1.0+0.6+4.4

−1.0−0.9−0.6−1.4 4.3+5.0
−2.2 4.1+2.2+0.8

−1.7−0.7 6.5+1.9+0.7
−1.6−0.7

B−
→ K̄∗0π− 10.7 ± 0.8 3.6+0.4+1.5+1.2+7.7

−0.3−1.4−1.2−2.3 6.0+2.8
−1.5 8.5+4.6+1.7

−3.6−1.4 9.9+3.4+1.3
−2.9−1.1

B−
→ ρ0K− 4.25+0.55

−0.56 2.6+0.9+3.1+0.8+4.3
−0.9−1.4−0.6−1.2 5.1+4.1

−2.8 6.6+2.7+1.0
−2.2−0.9 4.7+1.8+0.7

−1.5−0.6

B−
→ ρ−K̄0 8.0+1.5

−1.4 5.8+0.6+7.0+1.5+10.3
−0.6−3.3−1.3− 3.2 8.7+6.8

−4.4 9.3+4.7+1.7
−3.7−1.4 10.0+4.0+1.5

−3.3−1.3

B−
→ ωK− 6.7 ± 0.5 3.5+1.0+3.3+1.4+4.7

−1.0−1.6−0.9−1.6 10.6+10.4
−5.8 5.1+2.4+0.9

−1.9−0.8 5.9+2.1+0.8
−1.7−0.7

B−
→ φK− 8.30 ± 0.65 4.5+0.5+1.8+1.9+11.8

−0.4−1.7−2.1− 3.3 7.8+5.9
−1.8 9.7+4.9+1.8

−3.9−1.5 8.5+3.2+1.2
−2.7−1.0

B̄0
→ K̄∗0π0 0.0+1.3

−0.1 0.7+0.1+0.5+0.3+2.6
−0.1−0.4−0.3−0.5 2.0+1.2

−0.6 4.6+2.3+0.9
−1.8−0.7 3.6+1.4+0.5

−1.2−0.4

B̄0
→ K̄∗−π+ 9.8 ± 1.1 3.3+1.4+1.3+0.8+6.2

−1.1−1.2−0.8−1.6 6.0+6.8
−2.6 8.3+4.3+1.6

−3.4−1.3 9.5+3.2+1.2
−2.7−1.1

B̄0
→ ρ0K̄0 5.4+0.9

−1.0 4.6+0.5+4.0+0.7+6.1
−0.5−2.1−0.7−2.1 4.8+4.3

−2.3 3.5+2.0+0.7
−1.5−0.6 5.8+2.1+0.8

−1.8−0.7

B̄0
→ ρ+K− 15.3+3.7

−3.5 7.4+1.8+7.1+1.2+10.7
−1.9−3.6−1.1− 3.5 8.8+6.8

−4.5 9.8+4.5+1.7
−3.7−1.4 10.2+3.8+1.5

−3.2−1.2

B̄0
→ ωK̄0 5.0 ± 0.6 2.3+0.3+2.8+1.3+4.3

−0.3−1.3−0.8−1.3 9.8+8.6
−4.9 4.1+2.1+0.8

−1.7−0.6 4.9+1.9+0.7
−1.6−0.6

B̄0
→ φK̄0 8.3+1.2

−1.0 4.1+0.4+1.7+1.8+10.6
−0.4−1.6−1.9− 3.0 7.3+5.9

−1.8 9.1+4.5+1.7
−3.6−1.4 8.0+2.9+1.1

−2.5−0.9

B−
→ K∗−η 19.3 ± 1.6 10.8+1.9+8.1+1.8+16.5

−1.7−4.4−1.3− 5.5 22.13+0.26
−0.27 17.9+5.4+3.5

−5.3−2.9 18.6+4.5+2.6
−4.6−2.2

B−
→ K∗−η′ 4.9+2.1

−1.9 5.1+0.9+7.5+2.1+6.7
−1.0−3.8−3.0−3.3 6.38 ± 0.26 4.4+6.5+0.9

−3.8−0.8 4.1+4.9+0.7
−3.3−0.6

B̄0
→ K̄∗0η 15.9 ± 1.0 10.7+1.1+7.8+1.4+16.2

−1.0−4.3−1.2− 5.5 22.31+0.28
−0.29 16.6+5.1+3.2

−5.0−2.7 16.5+4.1+2.3
−4.2−2.0

B̄0
→ K̄∗0η′ 3.8 ± 1.2 3.9+0.4+6.6+1.8+6.2

−0.4−3.3−2.5−2.9 3.35+0.29
−0.27 4.1+6.1+0.9

−3.6−0.7 3.8+4.8+0.6
−3.3−0.5

Compared with the results given in Eq. (50) and Eq. (54), we find penguin operators are smaller than charming

penguins. According to the size of charming penguins, we expect the relation BR(B− → ρ−K̄0) ∼ BR(B− → π−K̄∗0).

This is well consistent with the experimental data.

From table IV, we can see the direct CP asymmetries of B− → K̄∗0π−, B− → K̄0ρ−, B− → K−φ and B− → K̄0φ

are zero. In these channels, tree operators do not contribute. The weak phases for penguin operators and charming

penguins are equal to each other, which can not induce any direct CP violations. CP asymmetries in other channels

are not large, because the strong phases of charming penguins are either close to 0◦ or 180◦ and imaginary parts are

accordingly small. The PQCD results for most B → K∗π and B → ρK channels are much larger than ours, since

they have more large imaginary part from annihilation diagrams. The QCDF results are small and comparable with

ours but with a relative minus sign. We have to wait for the experiment data to resolve this disagreements.

D. B Decays involving η or η′

As we can see from table I, there is about 3.1σ deviation for our prediction on the branching ratio of B− → ρ−η′

from the experimental data. Contributions from penguin operators are suppressed by the CKM matrix elements

as given in Eq. (57) and the dominant contribution is from the tree operator. This kind of contribution is either

proportional to B → ηq or B → ηs form factor. Utilizing results given in Eq. (50) and Eq. (54), we obtain B → ηq

and B → ηs form factors as follows:

FB→ηq = (ζP + ζP
J + 2ζg + 2ζJg) = (0.053± 0.015) [(0.095 ± 0.018)] ,

FB→ηs = (ζg + ζJg) = (−0.076± 0.007)[(−0.050± 0.006)], (61)

Wang et.al.
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TABLE II: Direct CP asymmetries involving b → d (∆S = 0) transitions: the first solution (This work 1) and the second

solution (This work 2). In both solutions, we have included the chiraly enhanced penguin in B → V P decay amplitudes. We

also cite the experimental data and theoretical results given in QCDF [10] and PQCD [46, 52, 54, 57] approach to make a

comparison.

Channel Exp. QCDF PQCD This work 1 This work 2

B−
→ ρ−π0 2 ± 11 −4.0+1.2+1.8+0.4+17.5

−1.2−2.2−0.4−17.7 0-20 8.3+17.8+0.8
−18.9−0.8 5.4+9.7+0.4

−10.0−0.5

B−
→ ρ0π−

−7+12
−13 4.1+1.3+2.2+0.6+19.0

−0.9−2.0−0.7−18.8 −20-0 −5.7+13.0+0.5
−12.8−0.4 −8.4+15.6+0.8

−14.5−0.8

B−
→ ωπ−

−4 ± 6 −1.8+0.5+2.7+0.8+2.1
−0.5−3.3−0.7−2.2 ∼ 0 −5.0+19.7+0.5

−19.3−0.5 −5.8+13.7+0.5
−12.9−0.6

B−
→ K∗0K− ... −23.5+6.9+7.8+5.5+25.2

−5.7−9.0−6.5−36.8 −20 ± 5 ± 2 −0.8+5.8+0.1
−5.6−0.1 −0.4+4.1+0.0

−4.1−0.0

B−
→ K∗−K0 ... −13.4+3.7+7.8+4.2+27.4

−3.0−3.5−4.7−36.7 −49+7+7
−3−7 −1.3+2.6+0.1

−2.4−0.1 −1.1+1.7+0.1
−1.6−0.1

B̄0
→ ρ+π−

−53 ± 30 0.6+0.2+1.3+0.1+11.5
−0.1−1.6−0.1−11.7 −8.6+17.4+0.8

−17.0−0.6 −11.0+17.4+1.0
−15.3−1.1

B̄0
→ ρ−π+

−15 ± 8 −1.5+0.4+1.2+0.2+8.5
−0.4−1.3−0.3−8.4 2.6+19.1+0.3

−19.7−0.2 0.9+10.0+0.1
−10.1−0.1

B̄0
→ ρ0π0

−30 ± 38 −15.7+4.8+12.3+11.0+19.8
−4.7−14.0−12.9−25.8 −75-0 5.5+20.8+0.5

−21.8−0.5 9.7+21.5+0.9
−22.5−0.9

B̄0
→ ωπ0 ... ... −20-75 −58.4+150.1+4.2

−0.0−4.1 −72.9+179.1+4.7
−32.9−4.8

B̄0
→ K∗0K̄0 ... −26.7+7.4+7.2+5.7+10.9

−5.7−9.0−6.9−13.4 −0.8+5.8+0.1
−5.6−0.1 −0.4+4.1+0.0

−4.1−0.0

B̄0
→ K̄∗0K0 ... −13.1+3.8+5.4+4.5+5.8

−3.0−2.9−5.2−7.4 −1.3+2.6+0.1
−2.4−0.1 −1.1+1.7+0.1

−1.6−0.1

B−
→ ρ−η 1 ± 16 −2.4+0.7+6.3+0.4+0.2

−0.7−6.3−0.4−0.2 −13+1.2+2
−0.5−14 −11.7+22.0+1.1

−21.0−1.2 9.1+17.7+0.9
−17.3−0.9

B−
→ ρ−η′

−4 ± 28 4.1+1.2+7.9+0.5+7.0
−1.1−6.9−0.8−7.0 −18+3.0+1

−1.6−14 −18.0+65.9+2.6
−44.1−2.9 6.6+66.6+0.8

−119.9−0.9

B̄0
→ ρ0η ... ... −13+1.2+2

−0.5−14 −76.0+189.5+2.9
−33.3−4.5 −28.2+55.0+2.4

−76.6−2.6

B̄0
→ ρ0η′ ... ... −18+3.0+1

−1.6−14 −59.5+112.2+3.4
−40.1−4.2 −57.5+68.6+4.4

−16.1−4.6

B̄0
→ ωη ... −33.4+10.0+65.3+20.9+19.2

− 9.5−55.8−21.4−20.8 −69.1+15.1
−13.4 −16.1+30.2+1.5

−28.7−1.6 9.5+18.3+0.9
−18.0−0.9

B̄0
→ ωη′ ... 0.2+0.1+53.0+11.6+19.2

−0.1−76.5−11.5−20.1 13.9+4.1
−3.5 −55.4+104.1+4.9

−37.0−5.5 35.6+38.9+2.9
−19.7−3.0

will definitely character the branching fractions and CP asymmetries.

B̄0 → π±ρ∓ are dominated by tree operators which has the CKM matrix elements: VubV ∗
ud. To illustrate the

situation, we will use the second kind of inputs given in Eq. (54) and take B̄0 → ρ+π− as an example (in units of

GeV):

|Au(B̄0 → ρ+π−)| = 0.131× (1.03ζV + 0.77ζV
J ) ∼ 260 × 10−4,

|Ac(B̄
0 → ρ+π−)| = |APV

cc | ∼ (30 ∼ 40) × 10−4,

|At(B̄
0 → ρ+π−)| = |0.131(−0.0015ζV − 0.007ζV

J )| ∼ 5 × 10−4. (58)

Our predictions on branching fractions of B̄0 → π±ρ∓ decays are smaller than those in QCDF [10]. Neglecting

the small terms, the main reason is our smaller B → P and B → V form factors: QCDF uses much larger form

factors FB→π = 0.28 ± 0.05 and AB→ρ
0 = 0.37 ± 0.06. In the present framework, BR(B̄0 → ρ+π−) is smaller than

BR(B̄0 → ρ−π+). In the first solution, the fitted B → V form factor A0 = 0.229 is almost equal with the B → P

form factor F = 0.206. Since the decay constant of ρ meson is much larger than that of π: 0.209/0.131 ∼ 1.5, we

expect BR(B̄0 → ρ+π−) is only one half of BR(B̄0 → ρ−π+). Charming penguins AV P
cc and APV

cc can slightly change

the ratio: the charming penguin APV
cc in B̄0 → ρ+π− gives a destructive contribution, while AV P

cc in B̄0 → ρ−π+

gives a constructive contribution. In the second solution, contributions proportional to form factors are almost equal

with each other, as the B → V form factor AB→V
0 = 0.293 is much larger than FB→P = 0.196 which can compensate

differences caused by decay constants. But unlike in the first solution, the role of charming penguin totally changes: the

charming penguin in B̄0 → ρ+π− gives a constructive contribution, while AV P
cc in B̄0 → ρ−π+ can give a destructive

CP Asymmetries
Wang et.al.
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TABLE IV: Direct CP asymmetries (in %) for ∆s = 1 processes: the first solution (This work 1) and the second solution (This

work 2). In both solutions, we have included the chiraly enhanced penguin in B → V P decay amplitudes. We also cite the

experimental data and theoretical results given in QCDF [10] and PQCD [51, 55] to make a comparison.

Channel Exp. QCDF PQCD This work 1 This work 2

B−
→ K∗−π0 4 ± 29 8.7+2.1+5.0+2.9+41.7

−2.6−4.3−3.4−44.2 −32+21
−28 −4.0+29.2+0.5

−27.8−0.5 −1.1+11.8+0.1
−11.8−0.1

B−
→ K̄∗0π−

−8.5 ± 5.7 1.6+0.4+0.6+0.5+2.5
−0.5−0.5−0.4−1.0 −1+1

−0 0 0

B−
→ ρ0K− 31+11

−10 −13.6+4.5+6.9+3.7+62.7
−5.7−4.4−3.1−55.4 71+25

−35 8.0+15.4+0.6
−16.1−0.6 14.3+20.8+1.1

−22.5−1.4

B−
→ ρ−K̄0

−12 ± 17 0.3+0.1+0.3+0.2+1.6
−0.1−0.4−0.1−1.3 1 ± 1 0 0

B−
→ ωK− 2 ± 5 −7.8+2.6+5.9+2.4+39.8

−3.0−3.6−1.9−38.0 32+15
−17 10.1+18.5+1.0

−20.5−0.9 11.1+16.8+0.8
−17.3−1.0

B−
→ φK− 3.4 ± 4.4 1.6+0.4+0.6+0.5+3.0

−0.5−0.5−0.3−1.2 1+0
−1 0 0

B̄0
→ K̄∗0π0 ... −12.8+4.0+4.7+2.7+31.7

−3.2−7.0−4.0−35.3 −11+7
−5 1.1+8.0+0.1

−8.3−0.1 0.4+4.8+0.0
−4.8−0.0

B̄0
→ K̄∗−π+

−5 ± 14 2.1+0.6+8.2+5.1+62.5
−0.7−7.9−5.8−64.2 −60+32

−19 −2.5+18.5+0.3
−17.8−0.3 −1.0+11.4+0.1

−11.4−0.1

B̄0
→ ρ0K̄0

−2 ± 27 ± 8 ± 6 7.5+1.7+2.3+0.7+8.8
−2.1−2.0−0.4−8.7 7+8

−5 −5.9+11.9+0.7
−10.1−0.8 −3.1+4.9+0.2

−4.8−0.2

B̄0
→ ρ+K− 22 ± 23 −3.8+1.3+4.4+1.9+34.5

−1.4−2.7−1.6−32.7 64+24
−30 6.0+11.1+0.6

−12.1−0.6 8.7+13.1+0.6
−13.6−0.8

B̄0
→ ωK̄0 21 ± 19 −8.1+2.5+3.0+1.7+11.8

−2.0−3.3−1.4−12.9 −3+2
−3 4.7+8.4+0.5

−9.5−0.5 3.4+5.2+0.3
−5.4−0.3

B̄0
→ φK̄0 1 ± 12 1.7+0.4+0.6+0.5+1.4

−0.5−0.5−0.3−0.8 3+1
−2 0 0

B−
→ K∗−η 2 ± 6 3.5+0.9+1.9+0.8+20.7

−0.9−2.7−0.8−20.5 −24.57+0.72
−0.27 −0.9+5.3+0.1

−5.5−0.1 −4.6+3.4+0.3
−3.4−0.3

B−
→ K∗−η′ 30+33

−37 −14.2+4.7+ 8.5+ 4.9+27.5
−4.2−13.8−14.6−26.1 4.60+1.16

−1.32 2.6+29.1+0.3
−20.9−0.3 −0.7+36.4+0.1

−34.5−0.1

B̄0
→ K̄∗0η 19 ± 5 3.8+0.9+1.1+0.2+3.8

−1.1−0.8−0.2−3.5 0.57 ± 0.011 −0.4+2.3+0.0
−2.4−0.0 −1.6+1.1+0.1

−1.1−0.1

B̄0
→ K̄∗0η′

−8 ± 25 −5.5+1.6+3.1+1.8+6.2
−1.3−5.1−5.9−7.0 −1.30 ± 0.08 10.2+8.7+1.3

−10.3−1.3 −9.8+4.5+0.9
−6.4−0.9

where the results in (out) the square brackets are predictions using the second (first) kind of inputs. In equation (61),

we can see: after taking the gluonic form factors into account, the FB→ηq and FB→ηs form factors are in the similar

size but with different signs in both kinds of inputs. In B− → ρ−ηq, another tree operator contributes in which ηq is

emitted. Although this contribution is color-suppressed, terms proportional to ζV
J give a sizable contribution. It can

be estimated by using a larger effective B → ηq form factor. Recalling that physical states η and η′ are mixtures of

ηq and ηs as in Eq. (22), one obtains the expressions for B → η(′) form factors:

FB→η =
FB→ηq

√
2

cos(θ) − FB→ηs sin(θ),

FB→η′

=
FB→ηq

√
2

sin(θ) + FB→ηs cos(θ). (62)

The mixing angle between ηq and ηs has been determined as θ = (39.3 ± 1.0)◦ [33, 34, 35] which is very close to 45◦,

thus we can obtain very small B → η′ form factors and relatively large B → η form factors. Thus the branching

fraction of B− → ρ−η′ is relatively suppressed for this flavor structure. In QCDF and PQCD approaches, the form

factors are different: FB→ηq $ FB→ηs . Thus the predicted branching ratio of B− → ρ−η is comparable with

BR(B− → ρ−η′) in these two approaches.

As in B̄0 → π0ρ0 process, our predictions on branching fractions of B̄0 → ρ0η(′) and B̄0 → ωη(′) are much larger

than the results evaluated in QCDF and PQCD approach. These channels are the so-called color-suppressed decays,

as the contributions from terms proportional to ζ and ζg are small due to the small Wilson coefficients. But in the

present framework, the hard-spectating form factors ζJ and ζJg are comparable with ζ and ζg. Moreover, the Wilson

coefficients for these form factors are large. Thus branching ratios of B̄0 → ρ0η(′) and B̄0 → ωη(′) are much larger.

Similar with B → K∗π and B → ρK decays, B → K∗η(η′) are also induced by b → s transitions in which charming

penguins provide most important contributions. But compared with B → K∗π and B → ρK decays, there are

CP Asymmetries
Wang et.al.
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TABLE V: CP -averaged branching ratios (×10−6) of Bs → PV decays: the first solution (This work 1) and the second solution

(This work 2). In both solutions, we have included the chiraly enhanced penguin in B → V P decay amplitudes. We also cite

theoretical results evaluated in QCDF [10] and PQCD [58] to make a comparison.

Modes QCDF PQCD This work 1 This work 2

B̄0
s → K+K∗− 4.1+1.7+1.5+1.0+9.2

−1.5−1.3−0.9−2.3 6.0+1.7+1.7+0.7
−1.5−1.2−0.3 8.3+4.3+1.6

−3.4−1.3 9.5+3.2+1.2
−2.7−1.1

B̄0
s → K∗+K− 5.5+1.3+5.0+0.8+14.2

−1.4−2.6−0.7− 3.6 4.7+1.1+2.5+0.0
−0.8−1.4−0.0 9.8+4.6+1.7

−3.7−1.4 10.3+3.8+1.5
−3.2−1.2

B̄0
s → K0K

∗0
3.9+0.4+1.5+1.3+10.4

−0.4−1.4−1.4− 2.8 7.3+2.5+2.1+0.0
−1.7−1.3−0.0 7.9+4.3+1.6

−3.4−1.3 9.3+3.2+1.2
−2.7−1.0

B̄0
s → K∗0K

0
4.2+0.4+4.6+1.1+13.2

−0.4−2.2−0.9− 3.2 4.3+0.7+2.2+0.0
−0.7−1.4−0.0 8.7+4.4+1.6

−3.5−1.3 9.3+3.7+1.4
−3.1−1.2

B0
s/B̄0

s → K+K∗− 17.3+6.5+3.2
−5.1−2.7 18.8+5.1+2.5

−4.5−2.2

B0
s/B̄0

s → K∗+K− 18.8+6.8+3.3
−5.4−2.8 20.8+5.3+2.7

−4.7−2.3

B̄0
s → K∗+K−

B̄0
s → K∗−K+

o

18.1+6.3+3.3
−5.0−2.7 19.8+4.9+2.6

−4.2−2.2

B0
s/B̄0

s → K0K
∗0

16.6+6.1+3.2
−4.8−2.7 18.6+4.9+2.6

−4.1−2.2

B0
s/B̄0

s → K∗0K
0

16.6+6.1+3.2
−4.8−2.7 18.6+4.9+2.6

−4.1−2.2

B̄0
s → K∗0K̄0

B̄0
s → K̄∗0K0

o

16.6+6.1+3.2
−4.8−2.7 18.6+4.9+2.6

−4.1−2.2

B̄0
s → π0φ 0.12+0.03+0.04+0.01+0.02

−0.02−0.04−0.01−0.01 0.16+0.06+0.02+0.00
−0.05−0.02−0.00 0.07+0.00+0.01

−0.00−0.01 0.09+0.00+0.01
−0.00−0.01

B̄0
s→π−K∗+ 8.7+4.6+3.5+0.7+0.8

−3.7−2.9−1.0−0.7 7.6+2.9+0.4+0.5
−2.2−0.5−0.3 5.8+0.5+0.5

−0.5−0.5 6.8+0.2+0.7
−0.1−0.7

B̄0
s→π0K∗0 0.25+0.08+0.10+0.32+0.30

−0.08−0.06−0.14−0.14 0.07+0.02+0.04+0.01
−0.01−0.02−0.01 0.90+0.07+0.10

−0.00−0.11 0.99+0.16+0.10
−0.15−0.08

B̄0
s→ρ−K+ 24.5+11.9+9.2+1.8+1.6

−9.7−7.8−3.0−1.6 17.8+7.7+1.3+1.1
−5.6−1.6−0.9 7.4+0.2+0.8

−0.1−0.8 10.1+0.4+0.9
−0.4−0.9

B̄0
s→ρ0K0 0.61+0.33+0.21+1.06+0.56

−0.26−0.15−0.38−0.36 0.08+0.02+0.07+0.01
−0.02−0.03−0.00 2.1+0.2+0.2

−0.2−0.2 0.79+0.02+0.08
−0.00−0.09

B̄0
s → K0ω 0.51+0.20+0.15+0.68+0.40

−0.18−0.11−0.23−0.25 0.15+0.05+0.07+0.02
−0.04−0.03−0.01 0.94+0.05+0.10

−0.00−0.11 1.3+0.1+0.1
−0.1−0.1

B̄0
s → K0φ 0.27+0.09+0.28+0.09+0.67

−0.08−0.14−0.06−0.18 0.16+0.04+0.09+0.02
−0.03−0.04−0.01 0.44+0.23+0.08

−0.18−0.07 0.54+0.21+0.08
−0.17−0.07

B̄0
s → ρ0η 0.17+0.03+0.07+0.02+0.02

−0.03−0.06−0.02−0.01 0.06+0.03+0.01+0.00
−0.02−0.01−0.00 0.08+0.04+0.01

−0.03−0.01 0.06+0.03+0.00
−0.02−0.00

B̄0
s → ρ0η′ 0.25+0.06+0.10+0.02+0.02

−0.05−0.08−0.02−0.02 0.13+0.06+0.02+0.00
−0.04−0.02−0.01 0.003+0.089+0.000

−0.000−0.000 0.15+0.24+0.02
−0.12−0.01

B̄0
s → ωη 0.012+0.005+0.010+0.028+0.025

−0.004−0.003−0.006−0.006 0.04+0.03+0.05+0.00
−0.01−0.02−0.00 0.04+0.04+0.00

−0.02−0.00 0.007+0.010+0.001
−0.002−0.001

B̄0
s → ωη′ 0.024+0.011+0.028+0.077+0.042

−0.009−0.006−0.010−0.015 0.44+0.18+0.15+0.00
−0.13−0.14−0.01 0.002+0.108+0.000

−0.000−0.000 0.22+0.35+0.02
−0.18−0.02

B̄0
s → φη 0.12+0.02+0.95+0.54+0.32

−0.02−0.14−0.12−0.13 3.6+1.5+0.8+0.0
−1.0−0.6−0.0 0.40+1.40+0.08

−0.51−0.07 1.2+2.1+0.2
−1.2−0.2

B̄0
s → φη′ 0.05+0.01+1.10+0.18+0.40

−0.01−0.17−0.08−0.04 0.19+0.06+0.19+0.00
−0.01−0.13−0.00 7.7+7.8+1.6

−5.5−1.3 4.2+5.2+0.7
−3.5−0.6

B̄0
s → K∗0η 0.26+0.15+0.49+0.15+0.57

−0.13−0.22−0.05−0.15 0.17+0.04+0.10+0.03
−0.04−0.06−0.01 1.7+0.3+0.2

−0.3−0.1 0.55+0.13+0.07
−0.12−0.07

B̄0
s → K∗0η′ 0.28+0.04+0.46+0.23+0.29

−0.04−0.24−0.10−0.15 0.09+0.02+0.03+0.01
−0.02−0.02−0.01 0.66+0.34+0.12

−0.26−0.11 0.77+0.33+0.09
−0.30−0.08

The system of four decay modes defines five asymmetry parameters, Cf , Sf , Cf̄ , Sf̄ together with the global charge

asymmetry related to the overall normalization:

ACP =
|Af |2 + |Āf |2 − |Af̄ |2 − |Āf̄ |2

|Af |2 + |Āf |2 + |Af̄ |2 + |Āf̄ |2
. (74)

One can also use the parameters C ≡ 1
2 (Cf + Cf̄ ), S ≡ 1

2 (Sf + Sf̄ ), ∆C ≡ 1
2 (Cf − Cf̄ ), ∆S ≡ 1

2 (Sf − Sf̄ ). If there

is no direct CP violation, only two independent decay amplitudes squared are left. Thus ACP = 0, Cf = −Cf̄ and

Sf = −Sf̄ which also implies C = 0 and S = 0. If we recall that the CP invariance conditions at the decay amplitudes

level are Af = Āf̄ and Af̄ = Āf , one can study the following two parameters:

Aff̄ =
|Āf̄ |2 − |Af |2

|Āf̄ |2 + |Af |2
, Af̄f =

|Āf |2 − |Af̄ |2

|Āf |2 + |Af̄ |2
. (75)

Bs Decays Branching Ratios
Wang et.al.
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b→ cc̄s b→ qq̄svs.  Theory Uncertainty
(from factorization)

Beneke
Buchalla,Hiller

Nir, Raz
Zupan,

Williamson
Dominant

fCP

SM predictions for (−ηfCP SfCP − sin 2β)
sin 2βeffprocess estimates∗ B.H.N.R. Beneke

b→ cc̄s ψKS < 0.01 +0.687± 0.032
b→ sq̄q η′K0 < 0.05 +0.01+0.01

−0.02 +0.01+0.01
−0.01 +0.48± 0.09

φK0 < 0.05 +0.02+0.01 +0.02+0.01
−0.01 +0.47± 0.19

K+K−KS ∼ 0.15 +0.51± 0.17
KSKSKS ∼ 0.15 +0.61± 0.23

π0KS ∼ 0.15 +0.06+0.04
−0.03 +0.07+0.05

−0.04 +0.31± 0.26
f0KS ∼ 0.25 +0.75± 0.24
ωKS ∼ 0.25 +0.19+0.06

−0.14 +0.13+0.08
−0.08 +0.63± 0.30

Dominant
fCP

SM predictions for (−ηfCP SfCP − sin 2β)
sin 2βeffprocess estimates∗ B.H.N.R. Beneke

b→ cc̄s ψKS < 0.01 +0.687± 0.032
b→ sq̄q η′K0 < 0.05 +0.01+0.01

−0.02 +0.01+0.01
−0.01 +0.48± 0.09

φK0 < 0.05 +0.02+0.01 +0.02+0.01
−0.01 +0.47± 0.19

K+K−KS ∼ 0.15 +0.51± 0.17
KSKSKS ∼ 0.15 +0.61± 0.23

π0KS ∼ 0.15 +0.06+0.04
−0.03 +0.07+0.05

−0.04 +0.31± 0.26
f0KS ∼ 0.25 +0.75± 0.24
ωKS ∼ 0.25 +0.19+0.06

−0.14 +0.13+0.08
−0.08 +0.63± 0.30

Dominant
fCP

SM predictions for (−ηfCP SfCP − sin 2β)
sin 2βeffprocess estimates∗ B.H.N.R. Beneke

b→ cc̄s ψKS < 0.01 +0.687± 0.032
b→ sq̄q η′K0 < 0.05 +0.01+0.01

−0.02 +0.01+0.01
−0.01 +0.48± 0.09

φK0 < 0.05 +0.02+0.01 +0.02+0.01
−0.01 +0.47± 0.19

K+K−KS ∼ 0.15 +0.51± 0.17
KSKSKS ∼ 0.15 +0.61± 0.23

π0KS ∼ 0.15 +0.06+0.04
−0.03 +0.07+0.05

−0.04 +0.31± 0.26
f0KS ∼ 0.25 +0.75± 0.24
ωKS ∼ 0.25 +0.19+0.06

−0.14 +0.13+0.08
−0.08 +0.63± 0.30

Dominant
fCP

SM predictions for (−ηfCP SfCP − sin 2β)
sin 2βeffprocess estimates∗ B.H.N.R. Beneke

b→ cc̄s ψKS < 0.01 +0.687± 0.032
b→ sq̄q η′K0 < 0.05 +0.01+0.01

−0.02 +0.01+0.01
−0.01 +0.48± 0.09

φK0 < 0.05 +0.02+0.01 +0.02+0.01
−0.01 +0.47± 0.19

K+K−KS ∼ 0.15 +0.51± 0.17
KSKSKS ∼ 0.15 +0.61± 0.23

π0KS ∼ 0.15 +0.06+0.04
−0.03 +0.07+0.05

−0.04 +0.31± 0.26
f0KS ∼ 0.25 +0.75± 0.24
ωKS ∼ 0.25 +0.19+0.06

−0.14 +0.13+0.08
−0.08 +0.63± 0.30

Dominant
fCP

SM predictions for (−ηfCP SfCP − sin 2β)
sin 2βeffprocess estimates∗ B.H.N.R. Beneke

b→ cc̄s ψKS < 0.01 +0.687± 0.032
b→ sq̄q η′K0 < 0.05 +0.01+0.01

−0.02 +0.01+0.01
−0.01 +0.48± 0.09

φK0 < 0.05 +0.02+0.01 +0.02+0.01
−0.01 +0.47± 0.19

K+K−KS ∼ 0.15 +0.51± 0.17
KSKSKS ∼ 0.15 +0.61± 0.23

π0KS ∼ 0.15 +0.06+0.04
−0.03 +0.07+0.05

−0.04 +0.31± 0.26
f0KS ∼ 0.25 +0.75± 0.24
ωKS ∼ 0.25 +0.19+0.06

−0.14 +0.13+0.08
−0.08 +0.63± 0.30

Dominant
fCP

SM predictions for (−ηfCP SfCP − sin 2β)
sin 2βeffprocess estimates∗ B.H.N.R. Beneke

b→ cc̄s ψKS < 0.01 +0.687± 0.032
b→ sq̄q η′K0 < 0.05 +0.01+0.01

−0.02 +0.01+0.01
−0.01 +0.48± 0.09

φK0 < 0.05 +0.02+0.01 +0.02+0.01
−0.01 +0.47± 0.19

K+K−KS ∼ 0.15 +0.51± 0.17
KSKSKS ∼ 0.15 +0.61± 0.23

π0KS ∼ 0.15 +0.06+0.04
−0.03 +0.07+0.05

−0.04 +0.31± 0.26
f0KS ∼ 0.25 +0.75± 0.24
ωKS ∼ 0.25 +0.19+0.06

−0.14 +0.13+0.08
−0.08 +0.63± 0.30

Dominant
fCP

SM predictions for (−ηfCP SfCP − sin 2β)
sin 2βeffprocess estimates∗ B.H.N.R. Beneke

b→ cc̄s ψKS < 0.01 +0.687± 0.032
b→ sq̄q η′K0 < 0.05 +0.01+0.01

−0.02 +0.01+0.01
−0.01 +0.48± 0.09

φK0 < 0.05 +0.02+0.01 +0.02+0.01
−0.01 +0.47± 0.19

K+K−KS ∼ 0.15 +0.51± 0.17
KSKSKS ∼ 0.15 +0.61± 0.23

π0KS ∼ 0.15 +0.06+0.04
−0.03 +0.07+0.05

−0.04 +0.31± 0.26
f0KS ∼ 0.25 +0.75± 0.24
ωKS ∼ 0.25 +0.19+0.06

−0.14 +0.13+0.08
−0.08 +0.63± 0.30

Dominant
fCP

SM predictions for (−ηfCP SfCP − sin 2β)
sin 2βeffprocess estimates∗ B.H.N.R. Beneke

b→ cc̄s ψKS < 0.01 +0.687± 0.032
b→ sq̄q η′K0 < 0.05 +0.01+0.01

−0.02 +0.01+0.01
−0.01 +0.48± 0.09

φK0 < 0.05 +0.02+0.01 +0.02+0.01
−0.01 +0.47± 0.19

K+K−KS ∼ 0.15 +0.51± 0.17
KSKSKS ∼ 0.15 +0.61± 0.23

π0KS ∼ 0.15 +0.06+0.04
−0.03 +0.07+0.05

−0.04 +0.31± 0.26
f0KS ∼ 0.25 +0.75± 0.24
ωKS ∼ 0.25 +0.19+0.06

−0.14 +0.13+0.08
−0.08 +0.63± 0.30

−0.01± 0.02

+0.07± 0.03

Constructive interference of penguins give a large • Br(B → η′K0)
(to agree with data), and simultaneously a small uncertainty above

• Determination of hadronic parameters dominates factorization uncertainties
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P̂0 ∼
(
C3,4+

αs(mb)C1,2,8g

π

)
ζBMφM ′

+
(
C3,4+

αs(mb)C1,2,8g

π

)
ζBM
J φM ′

+C1,2 αs(2mc)vÂBMM ′

cc̄

+
(
C5,6+

αs(mb)C1,2,8g

π

)[µM ′

mb
ζBMφM ′

pp +
µM ′

mb
ζBM
J φM ′

pp

]
+

(
C3,4+

αs(mb)C1,2,8g

π

)µM

mb
ζBM
χ φM ′

+
αs(mb)

mb

(
C3,4fBφMφM ′

+ C5,6fBφ+
Bφ3MφM ′

)

+C5,6
αs(mb)µM

m2
b

fBφM
ppφM ′

,

+P new−physics

Non.Pert. Charm Penguin Ciuchini et al,
Colangelo et al

Chiral Enh. 
terms BBNS

LO 
terms

Beneke, Jager;  Jain et.al.

Arnesen et al.

singular
∫

0

dx

x
= ?

Annihilation
terms

Keum, Li,
Sanda

What does a Penguin Amplitude look like if 
we try to compute it?

+ . . .

theory: αs ≡ αs(mb)

∫
dx

φpp
π (x)

x(1− x)
∼ 6

P̂ ζJ
ππ + P̂χζJ

ππ

∣∣∣
C3−10

∼ fπζBπ
J

(
28 + 215

µπ

3mB

)
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P̂LO×104 P̂ χ×104 P̂ ann×104 P̂ total×104 P̂ expt
ispin×104 P̂ expt

ispin×104 P̂ expt
TF ×104

(γ = 59◦) (γ = 74◦) (γ = 59◦-74◦)

B → ππ
(8.10±0.63) (10.2±2.9) −1.31 ± 5.08 (16.9 ± 5.9) (18±9) (44±6)

+i(1.61±0.21) +i(1.10±0.39) +i(2.71 ± 0.45) −i(29±6) −i(29±6)

B → Kπ
(9.34 ± 1.00) (13.8 ± 3.9) 0.46 ± 8.03 (23.6 ± 9.0) ±(48 ± 4 ± 10)

+i(2.08 ± 0.25) +i(1.49 ± 0.57) +i(3.57 ± 0.62) −i(22 ± 7 ± 4)

B → ρρ
22.4+3.7

−2.3 — 0.87+0.67
−0.29 23.3+3.7

−2.4 −(29 ± 26) (38 ± 23)

+i 5.68+2.45
−1.07 — +i 5.68+2.45

−1.07 −i(8 ± 18) −i(8 ± 18)

TABLE IV: Numerical predictions for the short-distance penguin amplitudes at leading power, P̂ LO, from chiraly enhanced
terms P̂ χ, and from the annihilation amplitudes in Refs. [28, 29]. The sum of these contributions P̂ total, is the total short-
distance result from the factorization theorems discussed in the text (long-distance terms are discussed in the text). The last
three columns show current experimental data. Comparing them with P̂ total shows an order of magnitude short-fall for the
imaginary part.

values are not precisely the mean from table III, due to
small non-linearity e  ects in the parameter dependences.
The correlation in input parameter uncertainties must
be taken into account to get the errors shown here. The
three amplitudes in the first three columns of table IV
are then added together to get the total theoretical con-
tribution, P̂ total . These total values can be compared to
the experimental values in the last three columns. The
uncertainty shown only includes the variation of param-
eters from the Gaussian scans. For the first column the
displayed errors are dominated by the uncertainties in
aπ

2 + aπ
4 , aK

1,2,  B π ,  B π
J , and for B    those in a  ,

 B  , and  B  
J . The e  ect of other parameter uncertain-

ties is quite small. Even the dominant uncertainties are
small due to our proper account of parameter correla-
tions and use of experimental data. Also due to our fit
procedure the errors from  and  J will decrease with im-
proved measurements of the tree amplitudes (which come
from improved branching ratios and CP-asymmetries).
In P̂ total the uncertainty from the parameters in the chi-
ral enhanced annihilation by far dominate the errors for
B  ππ and B  K π.

In addition we can estimate the uncertainty from deter-
mining the hard coe  cients by varying µ  [mb / 2, 2mb].
For the real parts this gives an additional + 7%

− 9% uncer-
tainty for P̂ total

π π , + 15%
− 12% uncertainty for P̂ total

K π , and + 9%
− 10%

uncertainty for P̂ total
  . For the imaginary parts we find an

additional + 25%
− 19% uncertainty for P̂ total

π π , + 26%
− 19% uncertainty

for P̂ total
K π , and + 30%

− 22% uncertainty for P̂ total
  . Finally we as-

sign a generic 20% uncertainty to the final P̂ total results
to account for the fact that we have given only a par-
tial treatment of 1 /mb corrections, but do not foresee a
reason why the untreated corrections should be enhanced
over the power counting estimate. Thus with an estimate

for all theoretical uncertainties we find

P̂ total
π π = (16.9 ± 5.9 + 1.0

− 1.7 ± 2.0 ± 3.4)

+ i(2.71 ± 0.38 + .68
− .51 ± 0.33 ± 0.54) ,

P̂ total
K π = (23.6 ± 9.0 + 3.5

− 2.8 ± 2.8 ± 4.7)

+ i(3.57 ± 0.53 + .93
− .68 ± 0.43 ± 0.71) ,

P̂ total
  = (23.3 + 3.7

− 2.4
+ 2.1
− 2.3 ± 2.8 ± 4.7)

+ i(5.68 + 2.81
− 1.75

+ 1.70
− 1.25 ± 0.68 ± 1.14) . (139)

The first errors are from input parameters and are dom-
inated by chiral-enhanced annihilation for B  ππ, K π.
The second errors are our estimates of higher order per-
turbative corrections (the µ-variation). The third terms
are errors from |Vub| which propagate through the form
factors and hence can be added as a ±12% uncertainty.4

Finally the fourth errors are a generic 20% that we add
for unknown power corrections.

For ππ the real part of the amplitude in Eq. (139)
agrees with the data in table IV for  = 59  . However,
the same is not true for K π, nor even for ππ if  =
74  (which is the value preferred by SU(3) and SCET
power counting which predicts P̂π π  P̂K π [15]). Here
the disagreement with data in the real part is at the level
of factor of two.

On the other hand the imaginary part of the short-
distance prediction for P̂ π π and P̂ K π are much smaller
than the corresponding experimental values and have the
opposite sign. Due to a numerical enhancement P̂   

M1 M2

and P̂   J

M1 M2
are of same size as the leading power contri-

butions to the amplitude, but as we have demonstrated
by deriving an SCET I factorization theorem, these terms
are real at zeroth order in  s. After taking into account
all theoretical uncertainties in our analysis, we conclude
that it is not possible to match the P̂ imaginary parts

4 We have increased the 7% error on |Vub| quoted by HFAG [1],
which we consider to be overly optimistic.

phase
relative to

TM+
1 M−

2
All terms directly related to Trees have SMALL imaginary parts

Jain et.al. (BPRS)

Possible Imaginary contributions:

• new physics without long-distance penguins?  
very unlikely.  A large imaginary part requires that the new physics 
have a large strong phase Ne−iφ = N1 + N2e

iγ

|Im(N1,2)| ≤
|Im(N)|

sin γ

• complex annihilation

• complex charm penguins
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Figure 6: Comparing the PP , PV , V P , and V V penguin amplitudes to data. The figures
in the upper row show theory predictions for α̂c

4(M1M2)/(α1(ππ)+α2(ππ)); those in the
lower row show α̂c

4(M1M2)/(α1(ρρ) + α2(ρρ)). Where available, the ranges for modulus
and phase extracted from data are also depicted. See text for explanations.
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Beneke & Jager $BBNS%:   imaginary part is from 
annihilation 
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In all approaches, the terms used to bring the penguins into 
agreement with data depend on model parameters AND are 

the least well understood / agreed upon:

Charm Penguins or Annihilation
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B→ Kπ

Within Factorization there is an interesting correlation in the CP-
asymmetries:   (any of:  BBNS or KLS or BPRS or  Williamson et.al.)

LO: AK+π0 < AK+π−

The “usual largest” power corrections (chiral enhanced annihilation, 
chiral enhanced amplitudes, charming penguins) do not explain this, 
since they contribute equally to both amplitudes.

Power correction scan.  Significant corrections to color suppressed 
amplitudes yield results compatible with the data.

AK+π0 = 0.050± 0.025

HFAG’08

Br are reproduced IF penguin is reproduced

∼ 1.5− 2.5σ deviation
(with theory error estimate from
hadronic parameters and power corr.)

Ciuchini, Franco, Martinelli, Pierini, Silvestrini (arXiv: 0811.0341)

Li and Mishima (arXiv: 0901.1272)
violations of kT factorization due to soft divergence can give a phase to color 
suppressed amplitude for pions, yielding a dynamical mechanism to explain 
the data (also is a power corr. in collinear fact).  Simultaneously this improves 
the agreement for 

AK+π− = −0.098± 0.012

Br(π0π0), Br(π0ρ0), and Sπ0KS
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Path to finding New Physics in the presence of  
Hadronic Parameters/Expansions $best we can do?%

I%  use as much form factor information from semileptonic decays
      as possible $synergy is like                                                   %B → Xsγ with B → Xueν̄

δ ≡ 1− (m2
B −m2

π)
f+(0)

(
df+

dq2

∣∣∣∣
q2=0

− df0

dq2

∣∣∣∣
q2=0

)
=

2ζBπ
J

ζBπ
J + ζBπ

[
1 +O

(
αs(mb),

Λ
E

)]

 shape parameter  Hill

eg.
Lattice analysis of form factors $with fit to future 
spectra% can distinguish between 

ζBM
J /ζBM ∼ αs ζBM

J /ζBM ∼ 1BBNS: BPRS:

B → π"ν̄

using
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Path to finding New Physics in the presence of  
Hadronic Parameters/Expansions $best we can do?%

I%  use as much form factor information from semileptonic decays
      as possible $synergy is like                                                   %B → Xsγ with B → Xueν̄

II%  use global fits which combine Factorization and SU$3% to look 
       for interesting channels with large deviations

III%  use Factorization and SU$2% for individual channels, to obtain 
   more precise predictions $at the expense of additional fit parameters%

IV%  use SU$3% fits as a cross!check on the hadronic uncertainties     
      $supplementing II and III%

VI%  build a new!physics model that correlates and explains the
      deviations in several channels

V%  include THEORY uncertainty when discussing any deviations
      $power corrections, model parameters, etc.%

The End
37


