Factorization for Nonleptonic Decays: pQCD, QCDF, SCET

Iain Stewart MIT

FPCP

Lake Placid, June 2009

Outline:

- Why is Factorization Important?
- Theory Comparison: QCDF vs. pQCD vs. SCET
- Nonleptonic Predictions $\quad B \rightarrow P P, B \rightarrow P V$,
- Global fits \& uncertainties

$$
B \rightarrow V V
$$

- Penguin-ology
- $K \pi$
- Outlook

Isospin currently yields a 5% measurement of α

 when we combine $\rho \rho / \rho \pi / \pi \pi: \alpha=89.0^{\circ} \pm 4.3^{\circ}$
discrete ambiguities reduced significantly

agrees well with global CKM fit

Are we done?

What can be gained from other analyses?

What precisely are we testing when we make measurements of β or γ with different methods?

- Using CKM unitarity of the standard model we can write:

$$
A^{S M}\left(\bar{B} \rightarrow M_{1} M_{2}\right)=S_{1}+S_{2} e^{-i \gamma}
$$

where $S_{1,2}$ are complex, CP even, "hadronic amplitudes".

- Consider an arbitrary new physics contribution to this channel, and write:

$$
\begin{array}{r}
A^{N P}\left(\bar{B} \rightarrow M_{1} M_{2}\right)=N e^{i \phi}=N_{1}+N_{2} e^{-i \gamma} \\
\& \quad N e^{-i \phi}=N_{1}+N_{2} e^{i \gamma}
\end{array}
$$

$$
N_{1,2} \text { are complex and CP even. eg. } \operatorname{Im} N_{1}=\frac{\sin (\gamma+\phi)}{\sin (\gamma)} \operatorname{Im}(N)
$$

- Thus new physics in the decay simply shifts hadronic amplitudes:

$$
S_{1} \rightarrow S_{1}+N_{1}, \quad S_{2} \rightarrow S_{2}+N_{2}
$$

Measurements test relations between SM amplitudes S_{i} which may be violated by new physics.

Applied to the Isospin Analysis:

5 amplitude parameters for $B \rightarrow \rho \rho$ 5 amplitude parameters for $B \rightarrow \pi \pi$ Definitions:

$$
\begin{aligned}
A\left(\bar{B}^{0} \rightarrow \pi^{+} \pi^{-}\right) & =e^{-i \gamma}\left|\lambda_{u}\right| T-\left|\lambda_{c}\right| P \\
A\left(\bar{B}^{0} \rightarrow \pi^{0} \pi^{0}\right) & =e^{-i \gamma}\left|\lambda_{u}\right| C+\left|\lambda_{c}\right| P \\
\sqrt{2} A\left(B^{-} \rightarrow \pi^{0} \pi^{-}\right) & \left.=e^{-i \gamma}\left|\lambda_{u}\right|(T)+C\right)
\end{aligned}
$$

$\left|\lambda_{c, u}\right|=$ CKM factors
P, "penguins", T "tree",
C, "color suppressed tree amplitude"

Applied to the Isospin Analysis:

5 amplitude parameters for $B \rightarrow \rho \rho$

- implies there are small penguins in

$$
B \rightarrow \rho^{0} \rho^{-}, B \rightarrow \pi^{0} \pi^{-}
$$

and that electroweak penguins are not anomalously large

- does not untangle new physics that treats π and ρ differently

so we don't want to stop here!
- can't see new physics in $I=0$ amplitudes

Baek, Botella, London, Silva

Ideally we should test each measurable property of the nonleptonic amplitudes, and do so channel by channel. All amplitudes would be "related" by standard model Lagrangian parameters, but...
... Hadronic Uncertainties ...

In practice relations between SM amplitudes are

 approximate, and are always based on expansions of $\mathcal{L}^{\mathrm{SM}}$$$
\text { Observable }=O^{(0)}+\epsilon O^{(1)}+\epsilon^{2} O^{(2)}+\ldots \quad \epsilon \ll 1
$$

The role of factorization is to yield new relations between SM amplitudes, and hence additional tests for new physics.

It is worth testing every prediction from factorization, taking into account the expected precision.

Expansion

Parameter

$\epsilon^{2}=\frac{m_{b}^{2}}{m_{W}^{2}} \sim 0.003$

- $\lambda^{2} \ll 1 \quad V=\left(\begin{array}{ccc}V_{u d} & V_{u s} & V_{u b} \\ V_{c d} & V_{c s} & V_{c b} \\ V_{t d} & V_{t s} & V_{t b}\end{array}\right) \sim\left(\begin{array}{ccc}1 & \lambda & \lambda^{3} \\ \lambda & 1 & \lambda^{2} \\ \lambda^{3} & \lambda^{2} & 1\end{array}\right)$

$$
\epsilon^{2}=\lambda^{2} \sim 0.04
$$

- $\Lambda \gg m_{u, d}$
$S U(2)$ ie. isospin
- $m_{b} \gg \Lambda$

Heavy Quark Effective Theory

- $E_{\pi} \gg \Lambda$

Factorization for
Nonleptonic decays
$\epsilon=\frac{m_{u, d}}{\Lambda} \sim 0.02$
$\epsilon=\frac{\Lambda}{m_{b}} \sim 0.1$

- $\Lambda \gg m_{s, d, u} \quad \mathrm{SU}(3)$ or U-spin
$\epsilon=\frac{\Lambda}{E_{\pi}} \sim 0.2$
$\epsilon=\frac{m_{s}}{\Lambda} \sim 0.3$

Factorization at m_{b}

All the LO terms are factorized into two types of form factors

Nonleptonic $\quad B \rightarrow M_{1} M_{2}$

$$
\begin{array}{cc}
A\left(B \rightarrow M_{1} M_{2}\right)=A^{c \bar{c}}+N\left\{f_{M_{2}} \zeta^{B M_{1}} \int d u T_{2 \zeta}(u) \phi^{M_{2}}(u)+f_{M_{2}} \int d u d z T_{2 J}(u, 2) \zeta_{J}^{B M_{1}}(z) \phi^{M_{2}}(u)+(1 \leftrightarrow 2)\right\} \\
\text { no endpoint } & \text { soft form } \\
\text { factor } & \text { twist-2 } \\
\text { distn. } & \text { hard form }
\end{array}
$$

Form Factors $\quad B \rightarrow$ pseudoscalar: f_{+}, f_{0}, f_{T} $B \rightarrow$ vector: $V, A_{0}, A_{1}, A_{2}, T_{1}, T_{2}, T_{3}$

Same form factors at large E

$$
\begin{array}{rlrl}
f(E)=\int d z T(z, E) \zeta_{J}^{B M}(z, E) & & B \rightarrow \pi \ell \bar{\nu} \\
& B \rightarrow K^{*} \ell^{+} \ell^{-} \\
& +C(E) \zeta^{B M}(E) & & B \rightarrow \rho \gamma, \ldots
\end{array}
$$

I) Nonleptonic data and β, γ, can be used to extract Tree amplitudes
(all approaches)
Tree amplitudes + Factorization yield form factors
$\mathrm{B} \rightarrow \pi \pi:$

$$
f_{+}(0)=\left(0.19 \pm\left. 0.01\right|_{\exp } \pm\left. 0.05\right|_{\text {thy }}\right)\left(\frac{3.8 \times 10^{-3}}{\left|V_{u b}\right|}\right)
$$

$\mathrm{B} \rightarrow \rho \rho: \quad-\mathrm{A}_{\|}(0)=\left(0.31 \pm\left. 0.02\right|_{\exp } \pm\left. 0.06\right|_{\text {thy }}\right)\left(\frac{3.8 \times 10^{-3}}{\left|V_{u b}\right|}\right)$
Agrees with Semileptonics:

$$
\begin{array}{lr}
f_{+}^{\text {FNAL }}(0)=0.23 \pm 0.03 & -A_{0}^{\|}=0.30 \pm 0.03 \\
\text { (2008 Fermilab/MILC lattice } & \text { (2005 Ball and Zwicky, } \\
\text { +dispersion fit to expt. spectrum) } & \text { Light Cone Sum Rules) }
\end{array}
$$

The simplest prediction from factorization works.

(LO, all approaches)

II) small strong phase between color suppressed and tree amplitudes

$$
\operatorname{Im}\left(\frac{C}{T}\right) \sim \mathcal{O}\left(\alpha_{s}\left(m_{b}\right), \frac{\Lambda}{E_{\pi}}\right)
$$

Can use this to do isospin analysis without $C_{\pi^{0} \pi^{0}}$ here we fit 4 amplitude parameters, $\operatorname{Br}\left(\pi^{0} \pi^{0}\right)$ fits fine

agrees at $1-\sigma$	$\gamma_{\text {global }}^{\text {CKMfit. }}=67.8^{\circ}+4.2^{\circ} 9^{\circ}$		(2009)
with	$\gamma_{\text {global }}^{\text {UTfit. }}=65.6^{\circ}$	$3.3{ }^{\circ}$	(2008)

Agreement here further constrains ew. penguins \& bounds imaginary terms from top/up penguins but caution: $\quad C_{\pi^{0} \pi^{0}}^{\text {here }}=0.5 \pm 0.3 \quad C_{\pi^{0} \pi^{0}}^{\text {expt.avg. }}=-0.43 \pm 0.25$
if instead of fitting we use hadronic inputs, then $\operatorname{Br}\left(\pi^{0} \pi^{0}\right)$ is several σ low which is the situation for default parameters in BBNS and pQCD
analog: $\quad B \rightarrow \rho \rho \quad \gamma^{\rho \rho}=\left.\left.77.5_{-28}^{+7.44}\right|_{\exp }{ }^{+5.2}\right|_{\text {thy }} ^{+5.0} \quad$ large errors

Factorization at $\sqrt{E \Lambda}$

is factorization of form factors
expansion in $\alpha_{s}\left(\sqrt{m_{b} \Lambda}\right) \simeq 0.35$

$$
\zeta_{J}^{B M}(z)=f_{M} f_{B} \int_{0}^{1} d x \int_{0}^{\infty} d k^{+} J\left(z, x, k^{+}, E\right) \phi_{M}(x) \phi_{B}\left(k^{+}\right)
$$

tree $\quad \zeta_{J}^{B M}=\int d z \zeta_{J}^{B M}(z)=4 \pi \alpha_{s}\left(\mu_{i}\right) \frac{f_{B} f_{M}}{m_{b}} \frac{\left\langle x^{-1}\right\rangle_{\phi_{M}}}{3} \frac{\left\langle k_{+}^{-1}\right\rangle_{\phi_{B}^{+}}}{3}>0$
$\zeta^{B M}=$? has endpoint singularities
-- BBNS: left as a form factor with counting
-- BPRS: left as a form factor, but counting is
-- in pQCD use k_{\perp} dependence to factorize

Beneke, Feldmann; Bauer, Pirjol, I.S.

Becher, Hill, Lange, Neubert

sign expectations can be used to remove discrete ambiguities in isospin analysis (eg. Buchalla, Safir; Lunghi et.al.)

$$
\begin{aligned}
& \zeta_{J}^{B M} / \zeta^{B M} \sim \alpha_{s} \\
& \zeta_{J}^{B M} / \zeta^{B M} \sim 1 \\
& \zeta_{J}^{B M} / \zeta^{B M} \sim 1
\end{aligned}
$$ without singularities, get

$$
\phi\left(x, k_{\perp}\right) \quad \text { 's Keum, Li, Sanda }
$$

Differences between Phenomenological Approaches to Applying Factorization

Fit Parameters:

BPRS/ BPRS/

	no expn.	$\mathrm{SU}(2)$	$\mathrm{SU}(3)$	SCET $+\mathrm{SU}(2)$	SCET $+\mathrm{SU}(3)$
$B \rightarrow \pi \pi$	11	$7 / 5$	$15 / 13$	4	4
$B \rightarrow K \pi$	15	11		$+5(6)$	
$B \rightarrow K \bar{K}$	11	11	$+4 / 0$	$+3(4)$	+0

Input Parameters:

BBNS: input model for $\phi_{M}(x), \phi_{B}\left(k^{+}\right), \zeta^{B M}$
(use eg. light-cone sum rules for gegenbauer moments)
KLS: model wavefunctions
when pert. corrections are included, BPRS models shapes

Charm Loops

charm loops

BBNS
KLS
perturbative
BPRS
perturbative
nonperturbative fit
charm is relatively heavy and may be more sensitive to nonperturbative effects parameters, may have large strong phases
as in: Ciuchini et al
(charming penguin), Colangelo et al

Recent work:
Beneke et.al. 0902.4446 argue that duality violation in

$$
B \rightarrow X_{s} \ell^{+} \ell
$$

does not apply for nonleptonics.
(Smearing argument assumes factorization.)

Endpoint Singularities

eg. annihilation

singular

$$
\begin{gathered}
\bar{x} \longrightarrow 0 \\
\int_{0}^{1} d x \frac{\phi_{\pi}(x)}{\bar{x}^{2}}
\end{gathered}
$$

PQCD: $\frac{1}{m_{b}^{2} \bar{x}-k_{T}^{2}+i 0}$
singularity regulated by k_{T}

BBNS: Introduce hadronic parameters $\int_{0}^{1} d x / x \rightarrow X_{A}$

$$
X_{A}=\left(1+\rho_{A} e^{i \phi_{A}}\right) \ln \left(m_{B} / 500 \mathrm{MeV}\right)
$$

SCET:

The annihilation singularity has to do with a potential double counting
Same QCD topology appears twice.

In SCET a rapidity cutoff is needed to distinguish these two terms (and zero bin subtractions)

This soft rescattering term is complex.
$\sim \alpha_{s}^{2}(\sqrt{m \Lambda}) \frac{\Lambda}{m_{b}}$
conclude:

$$
\sim \alpha_{s}\left(m_{b}\right) \frac{\Lambda}{m_{b}}
$$

Naive counting:

This hard scattering term is real.

Proper: the two graphs are factored at a high scale where all alphas' are equal. To determine the dominance one needs an RGE (which has not been derived for these rapidity cutoff amplitudes).

Comparison Summary

	BPRS	BBNS	KLS
Expansion in $\alpha_{s}\left(\mu_{i}\right) ?$	No	Yes	Yes
T, P if Singular convolution	N/A	New parameters	uses k_{T}
Annihilation	Real at "LO", complex "NLO"	Complex, new parameters	perturbative, large phases
Charm Loop?	Non- perturbative	Perturbative	Perturbative
Number of fit parameters	Most	Middle	N/A

A few Applications

Counting parameters VP, VV modes

	no	BPRS/	BPRS/ expn.	SU(2)	$\mathrm{SU}(3)$	SCET $+\mathrm{SU}(2)$
SCET						
$+\mathrm{SU}(3)$						

PP, PV with isosinglets

$$
\begin{aligned}
& \pi \eta, \eta \eta, K \eta^{\prime}, \ldots \\
& \rho \pi, \omega \pi, K^{*} K, \rho \eta, \ldots
\end{aligned}
$$

Wang, Wang, Yang, Lu (arXiv:0801.3123) $+4$ $+8$
Global Fit (2 solutions)
Comparison with pQCD and QCDF

Branching Ratios

Branching Ratios

Channel	Exp.	QCDF	PQCD	This work 1	This work 2
$B^{-} \rightarrow K^{*-} \pi^{0}$	6.9 ± 2.3	$3.3_{-1.0-0.9-0.6-1.4}^{+1.1+1.0+0.6+4.4}$	$4.3_{-2.2}^{+5.0}$	$4.1_{-1.7-0.7}^{+2.2+0.8}$	$6.5_{-1.6-0.7}^{+1.9+0.7}$
$B^{-} \rightarrow \bar{K}^{* 0} \pi^{-}$	10.7 ± 0.8	$3.6_{-0.3-1.4-1.2-2.3}^{+0.4+1 .+1.2+7.7}$	$6.0_{-1.5}^{+2.8}$	$8.5_{-3.6-1.4}^{+4.6+1.7}$	$9.9_{-2.9-1.1}^{+3.4+1.3}$
$B^{-} \rightarrow \rho^{0} K^{-}$	$4.25_{-0.56}^{+0.55}$	$2.6_{-0.9-1.4-0.6-1.2}^{+0.9+3.1+0.8+4.3}$	$5.1_{-2.8}^{+4.1}$	$6.6_{-2.2-0.9}^{+2.7+1.0}$	$4.7_{-1.5-0.6}^{+1.8+0.7}$
$B^{-} \rightarrow \rho^{-} \bar{K}^{0}$	$8.0_{-1.4}^{+1.5}$	$5.8_{-0.6-3.3-1.3-3.2}^{+0.6+7.0+1.5+0.3}$	$8.7_{-4.4}^{+6.8}$	$9.3_{-3.7-1.4}^{+4.7+1.7}$	$10.0_{-3.3-1.3}^{+4.0+1.5}$
$B^{-} \rightarrow \omega K^{-}$	6.7 ± 0.5	$3.5_{-1.0-1.6-0.9-1.6}^{+1.0+3.3+1.4+4.7}$	$10.6_{-5.8}^{+10.4}$	$5.1_{-1.9-0.8}^{+2.4+0.9}$	$5.9_{-1.7-0.7}^{+2.1+0.8}$
$B^{-} \rightarrow \phi K^{-}$	8.30 ± 0.65	$4.5_{-0.4-1.7-2.1-3.3}^{+0.5+1.8+1.9+11.8}$	$7.8_{-1.8}^{+5.9}$	$9.7_{-3.9-1.5}^{+4.9+1.8}$	$8.5_{-2.7-1.0}^{+3.2+1.2}$
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} \pi^{0}$	$0.0_{-0.1}^{+1.3}$	$0.7_{-0.1-0.4-0.3-0.5}^{+0.1+0 .+0.3+2.6}$	$2.0_{-0.6}^{+1.2}$	$4.6_{-1.8-0.7}^{+2.3+0.9}$	$3.6_{-1.2-0.4}^{+1.4+0.5}$
$\bar{B}^{0} \rightarrow \bar{K}^{*-} \pi^{+}$	9.8 ± 1.1	$3.3_{-1.1-1.2-0.8-1.6}^{+1.4+1.3+0.8+6.2}$	$6.0_{-2.6}^{+6.8}$	$8.3_{-3.4-1.3}^{+4.3+1.6}$	$9.5_{-2.7-1.1}^{+3.2+1.2}$
$\bar{B}^{0} \rightarrow \rho^{0} \bar{K}^{0}$	$5.4_{-1.0}^{+0.9}$	$4.6_{-0.5-2.1-0.7-2.1}^{+0.5+4.0+0.7+6.1}$	$4.8_{-2.3}^{+4.3}$	$3.5_{-1.5-0.6}^{+2.0+0.7}$	$5.8_{-1.8-0.7}^{+2.1+0.8}$
$\bar{B}^{0} \rightarrow \rho^{+} K^{-}$	$15.3_{-3.5}^{+3.7}$	$7.4_{-1.9-3.6-1.1-3.5}^{+1.8+7.1+1.2+10.7}$	$8.8_{-4.5}^{+6.8}$	$9.8_{-3.7-1.4}^{+4.5+1.7}$	$10.2_{-3.2-1.2}^{+3.8+1.5}$
$\bar{B}^{0} \rightarrow \omega \bar{K}^{0}$	5.0 ± 0.6	$2.3_{-0.3-1.3-0.8-1.3}^{+0.3+2.8+1.3+4.3}$	$9.8_{-4.9}^{+8.6}$	$4.1_{-1.7-0.6}^{+2.1+0.8}$	$4.9_{-1.6-0.6}^{+1.9+0.7}$
$\bar{B}^{0} \rightarrow \phi \bar{K}^{0}$	$8.3_{-1.0}^{+1.2}$	$4.1_{-0.4-1.6-1.9-3.0}^{+0.4+1.7+1 .+10.6}$	$7.3_{-1.8}^{+5.9}$	$9.1_{-3.6-1.4}^{+4.5+1.7}$	$8.0_{-2.5-0.9}^{+2.9+1.1}$
$B^{-} \rightarrow K^{*-} \eta$	19.3 ± 1.6	$10.8_{-1.7-4.4-1.3-5.5}^{+1.9+8.1+1.8+16.5}$	$22.13_{-0.27}^{+0.26}$	$17.9_{-5.3-2.9}^{+5.4+3.5}$	$18.6_{-4.6-2.2}^{+4.5+2.6}$
$B^{-} \rightarrow K^{*-} \eta^{\prime}$	$4.9_{-1.9}^{+2.1}$	$5.1_{-1.0-3.8-3.0-3.3}^{+0.9+7.1+6+7}$	6.38 ± 0.26	$4.4_{-3.8-0.8}^{+6.5+0.9}$	$4.1_{-3.3-0.6}^{+4.9+0.7}$
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} \eta$	15.9 ± 1.0	$10.7_{-1.0-4.3-1.2-5.5}^{+1.1+7.8+1.4+16.2}$	$22.31_{-0.29}^{+0.28}$	$16.6_{-5.0-2.7}^{+5.1+3.2}$	$16.5_{-4.2-2.0}^{+4.1+2.3}$
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} \eta^{\prime}$	3.8 ± 1.2	$3.9_{-0.4-3.3-2.5-2.9}^{+0.4+6.6+1.8+6.2}$	$3.35_{-0.27}^{+0.29}$	$4.1_{-3.6-0.7}^{+6.1+0.9}$	$3.8_{-3.3-0.5}^{+4.8+0.6}$

Branching Ratios

Channel	Exp.	QCDF	PQCD	This work 1	This work 2
$B^{-} \rightarrow K^{*-} \pi^{0}$	6.9 ± 2.3	$3.3_{-1.0-0.9-0.6-1.4}^{+1.1+1.0+0.6+4.4}$	$4.3_{-2.2}^{+5.0}$	$4.1_{-1.7-0.7}^{+2.2+0.8}$	$6.5_{-1.6-0.7}^{+1.9+0.7}$
$B^{-} \rightarrow \bar{K}^{* 0} \pi^{-}$	10.7 ± 0.8	$3.6_{-0.3-1.4-1.2-2.3}^{+0.4+1.5+1.2+7.7}$	$6.0_{-1.5}^{+2.8}$	$8.5_{-3.6-1.4}^{+4.6+1.7}$	$9.9_{-2.9-1.1}^{+3.4+1.3}$
$B^{-} \rightarrow \rho^{0} K^{-}$	$4.25_{-0.56}^{+0.55}$	$2.6_{-0.9-1.4-0.6-1.2}^{+0.9+3.8+4.8}$	$5.1_{-2.8}^{+4.1}$	$6.6_{-2.2-0.9}^{+2.7+1.0}$	$4.7_{-1.5-0.6}^{+1.8+0.7}$
$B^{-} \rightarrow \rho^{-} \bar{K}^{0}$	$8.0_{-1.4}^{+1.5}$	$5.8_{-0.6-3.3-1.3-3.2}^{+0.6+7.0+1 .+10.3}$	$8.7_{-4.4}^{+6.8}$	$9.3_{-3.7-1.4}^{+4.7+1.7}$	$10.0_{-3.3-1.3}^{+4.0+1.5}$
$B^{-} \rightarrow \omega K^{-}$	6.7 ± 0.5	$3.5_{-1.0-1.6-0.9-1.6}^{+1.0+3.3+1.4+4.7}$	$10.6_{-5.8}^{+10.4}$	$5.1_{-1.9-0.8}^{+2.4+0.9}$	$5.9_{-1.7-0.7}^{+2.1+0.8}$
$B^{-} \rightarrow \phi K^{-}$	8.30 ± 0.65	$4.5_{-0.4-1.7-2.1-3.3}^{+0.5+1.8+1.9+11.8}$	$7.8_{-1.8}^{+5.9}$	$9.7_{-3.9-1.5}^{+4.9+1.8}$	$8.5_{-2.7-1.0}^{+3.2 .2}$
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} \pi^{0}$	$0.0_{-0.1}^{+1.3}$	$0.7_{-0.1-0.4-0.3-0.5}^{+0.1+0 .+0.3+2.6}$	$2.0_{-0.6}^{+1.2}$	$4.6_{-1.8-0.7}^{+2.3+0.9}$	$3.6_{-1.2-0.4}^{+1.4+0.5}$
$\bar{B}^{0} \rightarrow \bar{K}^{*-} \pi^{+}$	9.8 ± 1.1	$3.3_{-1.1-1.2-0.8-1.6}^{+1.4+1.3+0.8+6.2}$	$6.0_{-2.6}^{+6.8}$	$8.3_{-3.4-1.3}^{+4.3+1.6}$	$9.5_{-2.7-1.1}^{+3.2+1.2}$
$\bar{B}^{0} \rightarrow \rho^{0} \bar{K}^{0}$	$5.4_{-1.0}^{+0.9}$	$4.6_{-0.5-2.1-0.7-2.1}^{+0.5+4.0+0.7+6.1}$	$4.8_{-2.3}^{+4.3}$	$3.5_{-1.5-0.6}^{+2.0+0.7}$	$5.8_{-1.8-0.7}^{+2.1+0.8}$
$\bar{B}^{0} \rightarrow \rho^{+} K^{-}$	$15.3_{-3.5}^{+3.7}$	$7.4_{-1.9-3.6-1.1-3.5}^{+1.8+7.1+1.2+10.7}$	$8.8_{-4.5}^{+6.8}$	$9.8_{-3.7-1.4}^{+4.5+1.7}$	$10.2_{-3.2-1.2}^{+3.8+1.5}$
$\bar{B}^{0} \rightarrow \omega \bar{K}^{0}$	5.0 ± 0.6	$2.3_{-0.3-1.3-0.8-1.3}^{+0.3+2.8+1.3+4.3}$	$9.8_{-4.9}^{+8.6}$	$4.1_{-1.7-0.6}^{+2.1+0.8}$	$4.9_{-1.6-0.6}^{+1.9+0.7}$
$\bar{B}^{0} \rightarrow \phi \bar{K}^{0}$	$8.3_{-1.0}^{+1.2}$	$4.1_{-0.4-1.6-1.9-3.0}^{+0.4+1.7+1.8+10.6}$	$7.3_{-1.8}^{+5.9}$	$9.1_{-3.6-1.4}^{+4.5+1.7}$	$8.0_{-2.5-0.9}^{+2.9+1.1}$
$B^{-} \rightarrow K^{*-} \eta$	19.3 ± 1.6	$10.8_{-1.7-4.4-1.3-5.5}^{+1.9+8.1+1.8+16.5}$	$22.13_{-0.27}^{+0.26}$	$17.9_{-5.3-2.9}^{+5.4+3.5}$	$18.6_{-4.6-2.2}^{+4.5+2.6}$
$B^{-} \rightarrow K^{*-} \eta^{\prime}$	$4.9_{-1.9}^{+2.1}$	$5.1_{-1.0-3.8-3.0-3.3}^{+0.9+7.5+2.1+6.7}$	6.38 ± 0.26	$4.4_{-3.8-0.8}^{+6.5+0.9}$	$4.1_{-3.3-0.6}^{+4.9+0.7}$
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} \eta$	15.9 ± 1.0	$10.7_{-1.0-4.3-1.2-5.5}^{+1.1+7.8+4.4+16.2}$	$22.31_{-0.29}^{+0.28}$	$16.6_{-5.0-2.7}^{+5.1+3.2}$	$16.5_{-4.2-2.0}^{+4.1+2.3}$
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} \eta^{\prime}$	3.8 ± 1.2	$3.9_{-0.4-3.3-2.5-2.9}^{+0.4+6.6+1.8+6.2}$	$3.35_{-0.27}^{+0.29}$	$4.1_{-3.6-0.7}^{+6.1+0.9}$	$3.8_{-3.3-0.5}^{+4.8+0.6}$

CP Asymmetries

Channel	Exp.	QCDF	PQCD	This work 1	This work 2
$B^{-} \rightarrow \rho^{-} \pi^{0}$	2 ± 11	$-4.0_{-1.2-2.2-0.4-17.7}^{+1.2+1.8+0.4+17.5}$	0-20	$8.3_{-18.9-0.8}^{+17.8+0.8}$	$5.4_{-10.0-0.5}^{+9.7+0.4}$
$B^{-} \rightarrow \rho^{0} \pi^{-}$	-7_{-13}^{+12}	$4.1_{-0.9-2.0-0.7-18.8}^{+1.3+2.2+0.6+19.0}$	-20-0	$-5.7_{-12.8-0.4}^{+13.0+0.5}$	$-8.4_{-14.5-0.8}^{+15.6+0.8}$
$B^{-} \rightarrow \omega \pi^{-}$	-4 ± 6	$-1.8{ }_{-0.5-3.3-0.7-2.2}^{+0.5+2.7+0.8+2.1}$	~ 0	$-5.0_{-19.3-0.5}^{+19.7+0.5}$	$-5.8{ }_{-12.9-0.6}^{+13.7+0.5}$
$B^{-} \rightarrow K^{* 0} K^{-}$...	$-23.5_{-5.7-9.0-6.5-36.8}^{+6.9+7.8+5.5+25.2}$	$-20 \pm 5 \pm 2$	$-0.8{ }_{-5.6-0.1}^{+5.8+0.1}$	$-0.4_{-4.1-0.0}^{+4.1+0.0}$
$B^{-} \rightarrow K^{*-} K^{0}$...	$-13.4_{-3.0-3.5-4.7-36.7}^{+3.7+7.8+4.2+27.4}$	-49_{-3-7}^{+7+7}	$-1.3_{-2.4-0.1}^{+2.6+0.1}$	$-1.1_{-1.6-0.1}^{+1.7+0.1}$
$\bar{B}^{0} \rightarrow \rho^{+} \pi^{-}$	-53 ± 30	$0.6_{-0.1-1.6-0.1-11.7}^{+0.2+1.3+0.1+11.5}$		$-8.6_{-17.0-0.6}^{+17.4+0.8}$	$-11.0_{-15.3-1.1}^{+17.4+1.0}$
$\bar{B}^{0} \rightarrow \rho^{-} \pi^{+}$	-15 ± 8	$-1.5_{-0.4-1.3-0.3-8.4}^{+0.4+1.2+0.2+8.5}$		$2.6_{-19.7}^{+19.1+0.3}$	$0.9{ }_{-10.1}^{+10.0+0.1}$
$\bar{B}^{0} \rightarrow \rho^{0} \pi^{0}$	-30 ± 38	$-15.7_{-4.7-14.0}^{+4.8+12.9-25.8}$	-75-0	$5.5{ }_{-21.8}^{+20.8+0.5}$	$9.7_{-22.5-0.9}^{+21.5+0.9}$
$\bar{B}^{0} \rightarrow \omega \pi^{0}$	\ldots		-20-75	$-58.4_{-0.0-4.1}^{+150.1+4.2}$	$-72.9_{-32.9-4.8}^{+179.1+4.7}$
$\bar{B}^{0} \rightarrow K^{* 0} \bar{K}^{0}$...	$-26.7_{-5.7-9.0-6.9-13.4}^{+7.4+7.2+5.7+10.9}$		$-0.8_{-5.6-0.1}^{+5.8+0.1}$	$-0.4_{-4.1-0.0}^{+4.1+0.0}$
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} K^{0}$		$\begin{array}{r} -13.1_{-3.0-2.9-5.2-7.4}^{+3.8+5.4+4.5+5.8} \\ \hline \end{array}$		$-1.3_{-2.4-1 .}^{+2.6+0.1}$	$-1.1_{-1.6-0.1}^{+1.7+0.1}$
$B^{-} \rightarrow \rho^{-} \eta$	1 ± 16	$-2.4_{-0.7-6.3-0.4-0.2}^{+0.7+6.3+0.4+0.2}$	$-13_{-0.5-14}^{+1.2+2}$	$-11.7_{-21.0-1.2}^{+22.0+1.1}$	$9.1_{-17.3-0.9}^{+17.7+0.9}$
$B^{-} \rightarrow \rho^{-} \eta^{\prime}$	-4 ± 28	$4.1_{-1.1-6.9-0.8-7.0}^{+1.2+7.9+0.5+7.0}$	$-18_{-1.6-14}^{+3.0+1}$	$-18.0_{-44.1-2.9}^{+65.9+2.6}$	$\begin{gathered} 6.6_{-119.9-0.9}^{+66.6+0.8} \end{gathered}$
$\bar{B}^{0} \rightarrow \rho^{0} \eta$	\ldots	...	$-13_{-0.5-14}^{+1.2+2}$	$-76.0_{-33.3-4.5}^{+189.5+2.9}$	$-28.2_{-76.6-2.6}^{+5.0+2.4}$
$\bar{B}^{0} \rightarrow \rho^{0} \eta^{\prime}$	\ldots	...	$-18_{-1.6-14}^{+3.0+1}$	$-59.5_{-40.1-4.2}^{+112.2+3.4}$	$-57.5_{-16.1-4.6}^{+68.6+4.4}$
$\bar{B}^{0} \rightarrow \omega \eta$	\ldots	$\begin{aligned} & -33.4_{-9.5-55.8-21.4-20.8}^{+10.0+65.3+20.9+19.2} \end{aligned}$	$-69.1_{-13.4}^{+15.1}$	$-16.1_{-28.7}^{+30.2+1.5}$	$9.5{ }_{-18.0-0.9}^{+18.3+0.9}$
$\bar{B}^{0} \rightarrow \omega \eta^{\prime}$...	$0.2_{-01-76.5-11.5-20.1}^{+0.1+53.0+1.6+19.2}$	$13.9{ }_{-3.5}^{+4.1}$	$-55.4_{-7.0-5.5}^{+104.1+4.9}$	$35.6_{-19.7-3.0}^{+38.9+2.9}$

CP Asymmetries

Channel	Exp.	QCDF	PQCD	This work 1	This work 2
$B^{-} \rightarrow K^{*-} \pi^{0}$	4 ± 29	$8.7_{-2.6-4.3+3.4-44.2}^{+2.1+5.0+21.7}$	-32_{-28}^{+21}	$-4.0_{-27.8-0.5}^{+29.2+0.5}$	$-1.1_{-11.8-0.1}^{+11.8+0.1}$
$B^{-} \rightarrow \bar{K}^{* 0} \pi^{-}$	-8.5 ± 5.7	$1.6_{-0.5-0.5-0.4-1.0}^{+0.4+0.6+0.5}$	-1_{-0}^{+1}	0	0
$B^{-} \rightarrow \rho^{0} K^{-}$	31_{-10}^{+11}	$-13.6{ }_{-5.7-4.4-3.1-55.4}^{+4.5+6.9+32.7}$	71_{-35}^{+25}	$8.0_{-16.1-0.6}^{+15.4+0.6}$	$14.3{ }_{-22.5-1.4}^{+20.8+1.1}$
$B^{-} \rightarrow \rho^{-} \bar{K}^{0}$	-12 ± 17	$0.3_{-0.1}^{+0.1+0.3+0.2+1.6}$	1 ± 1	0	0
$B^{-} \rightarrow \omega K^{-}$	2 ± 5	$-7.8_{-3.0-3.6-1.9-38.0}^{+2.6+5.9+2.4+39.8}$	32_{-17}^{+15}	$10.1_{-20.5-0.9}^{+18.5+1.0}$	$11.1_{-17.3}^{+16.8+1.0}$
$B^{-} \rightarrow \phi K$	3.4 ± 4.4	$1.6{ }_{-0.5}^{+0.4+0.6+0.5+3.3-1.2}$	1_{-1}^{+0}	0	0
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} \pi^{0}$		$-12.8_{-3.2-7.0-4.0-35.3}^{+4.0+4.7+2.7+31.7}$	-11_{-5}^{+7}	$1.1{ }_{-8.3-0.1}^{+8.0+0.1}$	$0.4_{-4.8-0.0}^{+4.8+0.0}$
$\bar{B}^{0} \rightarrow \bar{K}^{*-} \pi^{+}$	-5 ± 14	$2.1_{-0.7-7.9+5.8-64.2}^{+0.6+5.1+62.5}$	-60_{-19}^{+32}	$-2.5{ }_{-17.8}^{+18.5+0.3}$	$-1.0{ }_{-11.4-0.1}^{+11.4+0.1}$
$\bar{B}^{0} \rightarrow \rho^{0} \bar{K}^{0}$	$-2 \pm 27 \pm 8 \pm 6$	$7.5_{-2.1}^{+1.7+2.3+0.7+8.4-8.7}$	7_{-5}^{+8}	-5.9 ${ }_{-10.1}^{+11.9+0.7}$	$-3.1{ }_{-4.8-0.2}^{+4.9+0.2}$
$\bar{B}^{0} \rightarrow \rho^{+} K^{-}$	22 ± 23	$-3.8{ }^{+1.4+2.7}+1.9+1.6-34.5$	64_{-30}^{+24}	$6.0_{-12.1-0.6}^{+11.1+0.6}$	$8.7_{-13.6-0.8}^{+13.1+0.6}$
$\bar{B}^{0} \rightarrow \omega \bar{K}^{0}$	21 ± 19	$-8.1_{-2.0-3.3-1.4-12.9}^{+2.5+3.0+1.7+11.8}$	-3_{-3}^{+2}	$4.7_{-9.5-0.5}^{+8.4+0.5}$	$3.4{ }_{-5.4}^{+5.2+0.3}$
$\bar{B}^{0} \rightarrow \phi \bar{K}^{0}$	1 ± 12	$1.7_{-0.5-0.5-0.3+0.8}^{+0.4+0.6+1.4}$	3_{-2}^{+1}	0	0
$B^{-} \rightarrow K^{*-} \eta$	2 ± 6	$3.5{ }_{-0.9-2.7-0.8-20.5}^{+0.9+1.9+0.8+20.7}$	$-24.57_{-0.27}^{+0.72}$	$-0.9{ }_{-5.5-0.1}^{+5.3+0.1}$	$-4.6_{-3.4-0.3}^{+3.4+0.3}$
$B^{-} \rightarrow K^{*-} \eta^{\prime}$	30_{-37}^{+33}	$\begin{aligned} & -14.2_{-4.2-13.8-14.6-26.1}^{+4.7+} 8.5+4.9+27.5 \end{aligned}$	$4.60{ }_{-1.32}^{+1.16}$	$2.6_{-20.9}^{+29.1+0.3}$	$-0.7_{-34.5-0.1}^{+36.4+0.1}$
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} \eta$	$19 \pm$	$3.8{ }_{-1.1}^{+0.9+1.1+8-0.2+3.8}$	0.57 ± 0.011	$-0.4_{-2.4-0.0}^{+2.3+0.0}$	$-1.6_{-1.1-0.1}^{+1.1+0.1}$
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} \eta^{\prime}$	-8 ± 25	$-5.5_{-1.3-5.1-5.9-7.0}^{+1.6+3.1+1.8+6.2}$	-1.30 ± 0.08	$10.2_{-10.3-1.3}^{+8.7+1.3}$	$-9.8{ }_{-6.4-0.9}^{+4.5+0.9}$

Branching Ratios

Modes	QCDF	PQCD	This work 1	This work 2
$\bar{B}_{s}^{0} \rightarrow K^{+} K^{*-}$	$4.1_{-1.5}^{+1.7+1.3+0.9+2.3}$	$6.0_{-1.5-1.2-0.3}^{+1.7+1.7+0.7}$	$8.3_{-3.4-1.3}^{+4.3+1.6}$	$9.5{ }_{-2.7}^{+3.2+1.1}$
$\bar{B}_{s}^{0} \rightarrow K^{*+} K^{-}$	$5.5{ }_{-1.4-2.6-0.7-3.6}^{+1.3+5.0+0.8}$	$4.7{ }_{-0.8}^{+1.1+1.4}{ }^{+0.0 .0}$	$9.8{ }_{-3.7-1.4}^{+4.6+1.7}$	$10.3_{-3.2-1.2}^{+3+1.5}$
$\bar{B}_{s}^{0} \rightarrow K^{0} \bar{K}^{* 0}$	$3.9{ }_{-0.4-1.4-1.4-2.8}^{+0.4+1.4}$	$7.3_{-1.7-1.3}^{+2.5+0.0}$	$7.9_{-3.4-1.3}^{+4.3+1.6}$	$9.3{ }_{-2.7}^{+3.2+1.0}$
$\bar{B}_{s}^{0} \rightarrow K^{* 0} \bar{K}^{0}$	$4.2_{-0.4-2.2-0.9-3.2}^{+0.4+4.2}$	$4.3{ }_{-0.7-1.4-0.0}^{+0.7+2.2+0.0}$	$8.7_{-3.5-1.3}^{+4.4+1.6}$	$9.33_{-3.1}^{+3.7+1.4}$
$B_{s}^{0} / \bar{B}_{s}^{0} \rightarrow K^{+} K^{*-}$			$17.3{ }_{-5.1-2.7}^{+6.5+3.2}$	$18.8{ }_{-4.5-2.2}^{+5.1+2.5}$
$B_{s}^{0} / \bar{B}_{s}^{0} \rightarrow K^{*+} K^{-}$			$18.8{ }_{-5.4}^{+2.8}{ }_{-2.8}^{+3.3}$	$20.8_{-4.7-2.3}^{+5.3+2.7}$
$\left.\begin{array}{l} B_{s}^{U} \rightarrow K^{*+} K^{-} \\ \bar{B}_{s}^{0} \rightarrow K^{*-} K^{+} \end{array}\right\}$			$18.1{ }_{-5.0-2.7}^{+6.3+3.3}$	$19.8{ }_{-4.2-2.2}^{+4.9+2.6}$
$B_{s}^{0} / \bar{B}_{s}^{0} \rightarrow K^{0} \bar{K}^{* 0}$			$16.6{ }_{-4.8-2.7}^{+6.1+3.2}$	$18.6{ }_{-4.1}^{+4.9+2.6}$
$B_{s}^{0} / \bar{B}_{s}^{0} \rightarrow K^{* 0} \bar{K}^{0}$			$16.6_{-4.8-2.7}^{+6.1+3.2}$	$18.6{ }_{-4.1}^{+2.2}{ }_{-2.2}$
$\left.\begin{array}{l} \bar{B}_{s}^{0} \rightarrow K^{* 0} \bar{K}^{0} \\ \bar{B}_{s}^{0} \rightarrow \bar{K}^{* 0} K^{0} \end{array}\right\}$			$16.6{ }_{-4.8}^{+6.1+3.2}$	$18.6{ }_{-4.1}^{+4.9+2.6}$
$\bar{B}_{s}^{0} \rightarrow \pi^{0} \phi$	$0.12_{-0.02-0.04-0.01}^{+0.03+0.04+0.01+0.02}$	$0.16{ }_{-0.05}^{+0.06+0.02+0.00}$	$0.07_{-0.00}^{+0.00+0.01}$	$0.09_{-0.00}^{+0.00+0.01}$
$\bar{B}_{s}^{0} \rightarrow \pi^{-} K^{*+}$	$8.7_{-3.7}^{+4.6+3.9+1.0-0.7}$	$7.6_{-2.2-0.5-0.3}^{+2.9+0.4+0.5}$	$5.8_{-0.5-0.5}^{+0.5+0.5}$	$6.8_{-0.1}^{+0.2+0.7}$
$\bar{B}_{s}^{0} \rightarrow \pi^{0} K^{* 0}$	$0.25_{-0.08-0.06-0.14-0.14}^{+0.08+0.10+0.32+0.30}$	$\left\lvert\, \begin{aligned} & 0.07_{-0.01-0.02-0.01}^{+0.02+0.04+0.01} \end{aligned}\right.$	$0.90_{-0.00-0.11}^{+0.07+0.10}$	$0.99_{-0.15-0.08}^{+0.16+0.10}$
$\bar{B}_{s}^{0} \rightarrow \rho^{-} K^{+}$	$24.5_{-9.7-7.8-3.0-1.6}^{+11.9+9.2+1.8+1.6}$	$17.8_{-5.6-1.6-0.9}^{+7.7+1.3+1.1}$	$7.4_{-0.1}^{+0.2+0.8}$	$10.1_{-0.4-0.9}^{+0.4+0.9}$
$\bar{B}_{s}^{0} \rightarrow \rho^{0} K^{0}$	$0.61_{-0.26-0.15-0.38-0.36}^{+0.33+0.21+1.06+0.56}$	$0.08_{-0.02+0.03}^{+0.02+0.07+0.01}$	$2.1_{-0.2}^{+0.2+0.2}$	$0.79_{-0.00}^{+0.02+0.08}$
$\bar{B}_{s}^{0} \rightarrow K^{0} \omega$	$\begin{aligned} & 0.51_{-0.18-0.11-0.23-0.25}^{+0.20+0.15+0.68+0.40} \end{aligned}$	$0.15{ }_{-0.04-0.03+0.01}^{+0.05+0.07+0.02}$	$0.94{ }_{-0.00}^{+0.05+0.11}$	$1.3_{-0.1}^{+0.1+0.1}$
$\bar{B}_{s}^{0} \rightarrow K^{0} \phi$	$\begin{aligned} & 0.27_{-0.08-0.14-0.06-0.18}^{+0.09+0.28+0.09+0.67} \\ & \hline \end{aligned}$	$0.16_{-0.03-0.04-0.01}^{+0.04+0.09+0.02}$	$0.44_{-0.18}^{+0.23+0.07}$	$0.54{ }_{-0.17}^{+0.21+0.08}$
$\bar{B}_{s}^{0} \rightarrow \rho^{0} \eta$	$0.17{ }_{-0.03-0.06-0.02-0.01}^{+0.03+0.07+0.02+0.02}$	$0.06{ }_{-0.02}^{+0.03+0.01+0.00}$	$0.08_{-0.03-0.01}^{+0.04+0.01}$	$0.06{ }_{-0.02}^{+0.03+0.00}$
$\bar{B}_{s}^{0} \rightarrow \rho^{0} \eta^{\prime}$	$0.25_{-0.05-0.08-0.02-0.02}^{+0.06+0.10+0.02+0.02}$	$0.13_{-0.04-0.02-0.01}^{+0.06+0.02+0.00}$	$0.003_{-0.000-0.000}^{+0.089+0.000}$	$0.15_{-0.12}^{+0.24+0.01}$
$\bar{B}_{s}^{0} \rightarrow \omega \eta$	$0.012_{-0.004-0.003}^{+0.005+0.006-0.006}$	$0.04{ }_{-0.01-0.02-0.00}^{+0.03+0.05+0.00}$	$0.04{ }_{-0.02-0.00}^{+0.04+0.00}$	$0.007_{-0.002-0.001}^{+0.010+0.001}$
$\bar{B}_{s}^{0} \rightarrow \omega \eta^{\prime}$	$0.024_{-0.009-0.006-0.010-0.015}^{+0.011+0.028+0.077+0.042}$	$0.44_{-0.13-0.14-0.01}^{+0.18+0.15+0.00}$	$0.002_{-0.000-0.000}^{+0.108+0.000}$	$0.22_{-0.18-0.02}^{+0.35+0.02}$
$\bar{B}_{s}^{0} \rightarrow \phi \eta$	$0.12_{-0.02-0.14-0.12-0.13}^{+0.02+0.95+0.54+0.32}$	$3.6{ }_{-1.0-0.6-0.0}^{+1.5+0.8+0.0}$	$0.40_{-0.51}^{+1.40+0.07}$	$1.2_{-1.2-0.2}^{+2.1+0.2}$
$\bar{B}_{s}^{0} \rightarrow \phi \eta^{\prime}$	$\begin{aligned} & 0.05_{-0.01-0.17-0.08-0.04}^{+0.01+1.10+0.18+0.40} \\ & \hline \end{aligned}$	$0.19_{-0.01-0.13-0.00}^{+0.06+0.19+0.00}$	$7.7_{-5.5-1.3}^{+7.8+1.6}$	$4.2_{-3.5-0.6}^{+5.2+0.7}$
$\bar{B}_{s}^{0} \rightarrow K^{* 0} \eta$	$0.26_{-0.13-0.22-0.05-0.15}^{+0.15+0.49+0.15+0.57}$	$0.17_{-0.04-0.06-0.01}^{+0.04+0.10+0.03}$	$1.7_{-0.3}^{+0.3+0.1}$	$0.55_{-0.12}^{+0.13+0.07}$
$\bar{B}_{s}^{0} \rightarrow K^{* 0} \eta^{\prime}$	$0.28_{-0.04-0.24-0.10-0.15}^{+0.04+0.46+0.23+0.29}$	$0.09{ }_{-0.02{ }_{-0.02}^{+0.02+0.01}}$	$0.66{ }_{-0.26-0.11}^{+0.34+0.12}$	$0.77_{-0.30-0.08}^{+0.33+0.09}$

$$
b \rightarrow c \bar{c} s \quad \text { vs. } \quad b \rightarrow q \bar{q} s
$$

Theory Uncertainty (from factorization)

$$
\begin{array}{ccc}
\text { Beneke } & \begin{array}{c}
\text { Buchalla,Hiller } \\
\text { Nir, Raz }
\end{array} & \begin{array}{c}
\text { Zupan, } \\
\text { Williamson }
\end{array} \\
+0.02_{-0.01}^{+0.01} & +0.02 & \\
+0.01_{-0.01}^{+0.01} & +0.01_{-0.02}^{+0.01} & -0.01 \pm 0.02 \\
+0.07_{-0.04}^{+0.05} & +0.06_{-0.03}^{+0.04} & +0.07 \pm 0.03 \\
+0.13_{-0.08}^{+0.08} & +0.19_{-0.14}^{+0.06} &
\end{array}
$$

- Constructive interference of penguins give a large $\operatorname{Br}\left(B \rightarrow \eta^{\prime} K^{0}\right)$ (to agree with data), and simultaneously a small uncertainty above

Determination of hadronic parameters dominates factorization uncertainties

What does a Penguin Amplitude look like if we try to compute it?

Beneke, Jager; Jain et.al.

$$
\begin{aligned}
& \text { theory: } \quad \alpha_{s} \equiv \alpha_{s}\left(m_{b}\right) \\
& \hat{P}_{0} \sim\left(C_{3,4}+\frac{\alpha_{s}\left(m_{b}\right) C_{1,2,8 g}}{\pi}\right) \zeta^{B M} \phi^{M^{\prime}}+\left(C_{3,4}+\frac{\alpha_{s}\left(m_{b}\right) C_{1,2,8 g}}{\pi}\right) \zeta_{J}^{B M} \phi^{M^{\prime}} \\
& +C_{1,2} \alpha_{s}\left(2 m_{c}\right) v \hat{A}_{c \bar{c}}^{B M M^{\prime}} \quad \text { Non.Pert. Charm Penguin } \\
& \text { Ciuchini et al, } \\
& \text { Colangelo et al } \\
& +\left(C_{5,6}+\frac{\alpha_{s}\left(m_{b}\right) C_{1,2,8 g}}{\pi}\right)\left[\frac{\mu_{M^{\prime}}}{m_{b}} \zeta^{B M} \phi_{p p}^{M^{\prime}}+\frac{\mu_{M^{\prime}}}{m_{b}} \zeta_{J}^{B M} \phi_{p p}^{M^{\prime}}\right]+\left(C_{3,4}+\frac{\alpha_{s}\left(m_{b}\right) C_{1,2,8 g}}{\pi}\right) \frac{\mu_{M}}{m_{b}} \zeta_{\chi}^{B M} \phi^{M^{\prime}} \\
& +\frac{\alpha_{s}\left(m_{b}\right)}{m_{b}}\left(C_{3,4} f_{B} \phi^{M} \phi^{M^{\prime}}+C_{5,6} f_{B} \phi_{B}^{+} \phi^{3 M} \phi^{M^{\prime}}\right) \\
& +C_{5,6} \frac{\alpha_{s}\left(m_{b}\right) \mu_{M}}{m_{b}^{2}} f_{B} \phi_{p p}^{M} \phi^{M^{\prime}}, \\
& +\ldots \\
& \text { Arnesen et al. } \\
& \wedge_{\text {singular }}^{\text {A }} \\
& \int_{0} \frac{d x}{x}=? \\
& \text { terms BBNS } \\
& \hat{P}_{\pi \pi}^{\zeta_{J}}+\left.\hat{P}_{\pi \pi}^{\zeta_{\pi},}\right|_{C_{3-10}} \sim f_{\pi} \zeta_{J}^{B \pi}\left(28+215 \frac{\mu_{\pi}}{3 m_{B}}\right)
\end{aligned}
$$

	$\hat{P}^{\mathrm{LO}} \times 10^{4}$	$\hat{P}^{\chi} \times 10^{4}$	$\hat{P}^{\mathrm{ann}} \times 10^{4}$	$\hat{P}^{\mathrm{total}} \times 10^{4}$	$\hat{P}_{\text {ispin }}^{\text {expt }} \times 10^{4}$ $\left(\gamma=59^{\circ}\right)$	$\hat{P}_{\text {ispin }}^{\text {expt }} \times 10^{4}$ $\left(\gamma=74^{\circ}\right)$	$\hat{P}_{\mathrm{TF}}^{\text {expt }} \times 10^{4}$ $\left(\gamma=59^{\circ}-74^{\circ}\right)$
$B \rightarrow \pi \pi$	(8.10 ± 0.63)	(10.2 ± 2.9)	-1.31 ± 5.08	(16.9 ± 5.9)	(18 ± 9)	(44 ± 6)	
	$+i(1.61 \pm 0.21)$	$+i(1.10 \pm 0.39)$		$+i(2.71 \pm 0.45)$	$-i(29 \pm 6)$	$-i(29 \pm 6)$	
$B \rightarrow K \pi$	(9.34 ± 1.00)	(13.8 ± 3.9)	0.46 ± 8.03	(23.6 ± 9.0)			$\pm(48 \pm 4 \pm 10)$
	$+i(2.08 \pm 0.25)$	$+i(1.49 \pm 0.57)$		$+i(3.57 \pm 0.62)$			$-i(22 \pm 7 \pm 4)$
$B \rightarrow \rho \rho$	$22.4_{-2.3}^{+3.7}$	-	$0.87_{-0.29}^{+0.67}$	$23.3_{-2.4}^{+3.7}$	$-(29 \pm 26)$	(38 ± 23)	
	$+i 5.68_{-1.07}^{+2.45}$	-		$+i 5.68_{-1.07}^{+2.45}$	$-i(8 \pm 18)$	$-i(8 \pm 18)$	

All terms directly related to Trees have SMALL imaginary parts
phase relative to $T^{M_{1}^{+} M_{2}^{-}}$

Possible Imaginary contributions:

- new physics without long-distance penguins?
very unlikely. A large imaginary part requires that the new physics have a large strong phase

$$
\left|\operatorname{Im}\left(N_{1,2}\right)\right| \leq \frac{|\operatorname{Im}(N)|}{\sin \gamma} \quad N e^{-i \phi}=N_{1}+N_{2} e^{i \gamma}
$$

- complex annihilation
- complex charm penguins

Beneke \& Jager (BBNS): imaginary part is from annihilation

In all approaches, the terms used to bring the penguins into agreement with data depend on model parameters AND are the least well understood / agreed upon:

Charm Penguins
or
Annihilation
$\mathrm{B} \rightarrow K \pi$
Br are reproduced IF penguin is reproduced
Within Factorization there is an interesting correlation in the CPasymmetries: (any of: BBNS or KLS or BPRS or Williamson et.al.)
LO: $\quad \mathrm{A}_{K^{+} \pi^{0}}<A_{K^{+} \pi^{-}}$
$\sim 1.5-2.5 \sigma$ deviation
(with theory error estimate from
hadronic parameters and power corr.)
The "usual largest" power corrections (chiral enhanced annihilation, chiral enhanced amplitudes, charming penguins) do not explain this, since they contribute equally to both amplitudes.

Ciuchini, Franco, Martinelli, Pierini, Silvestrini (arXiv: 08II.034I)

Power correction scan. Significant corrections to color suppressed amplitudes yield results compatible with the data.

Li and Mishima (arXiv: 090I.I272)

violations of kT factorization due to soft divergence can give a phase to color suppressed amplitude for pions, yielding a dynamical mechanism to explain the data (also is a power corr. in collinear fact). Simultaneously this improves the agreement for $\operatorname{Br}\left(\pi^{0} \pi^{0}\right), \operatorname{Br}\left(\pi^{0} \rho^{0}\right)$, and $S_{\pi_{0} K_{S}}$

Path to finding New Physics in the presence of Hadronic Parameters/Expansions (best we can do?)
I) use as much form factor information from semileptonic decays as possible (synergy is like $B \rightarrow X_{s} \gamma$ with $B \rightarrow X_{u} e \bar{\nu} \quad$)
eg.
Lattice analysis of form factors (with fit to future $B \rightarrow \pi \ell \bar{\nu}$ spectra) can distinguish between

BBNS: $\quad \zeta_{J}^{B M} / \zeta^{B M} \sim \alpha_{s} \quad$ BPRS: $\quad \zeta_{J}^{B M} / \zeta^{B M} \sim 1$
using

$$
\delta \equiv 1-\frac{\left(m_{B}^{2}-m_{\pi}^{2}\right)}{f_{+}(0)}\left(\left.\frac{d f_{+}}{d q^{2}}\right|_{q^{2}=0}-\left.\frac{d f_{0}}{d q^{2}}\right|_{q^{2}=0}\right)=\frac{2 \zeta_{J}^{B \pi}}{\zeta_{J}^{B \pi}+\zeta^{B \pi}}\left[1+\mathcal{O}\left(\alpha_{s}\left(m_{b}\right), \frac{\Lambda}{E}\right)\right]
$$

shape parameter Hill

Path to finding New Physics in the presence of

 Hadronic Parameters/Expansions (best we can do?)I) use as much form factor information from semileptonic decays as possible (synergy is like $B \rightarrow X_{s} \gamma$ with $B \rightarrow X_{u} e \bar{\nu} \quad$)
II) use global fits which combine Factorization and $\mathrm{SU}(3)$ to look for interesting channels with large deviations
III) use Factorization and $\operatorname{SU}(2)$ for individual channels, to obtain more precise predictions (at the expense of additional fit parameters)
IV) use $\mathrm{SU}(3)$ fits as a cross-check on the hadronic uncertainties (supplementing II and III)
V) include THEORY uncertainty when discussing any deviations (power corrections, model parameters, etc.)
VI) build a new-physics model that correlates and explains the deviations in several channels

