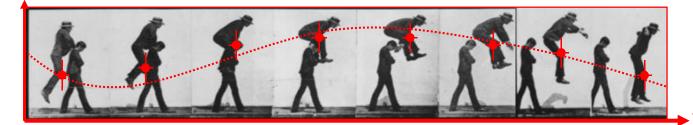
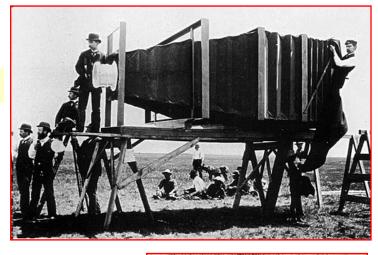

Flavor Physics Techniques and Sensitivities at LHCb

Olivier Deschamps Laboratoire de Physique Corpusculaire de Clermont-Ferrand Université Blaise Pascal & IN2P3/CNRS

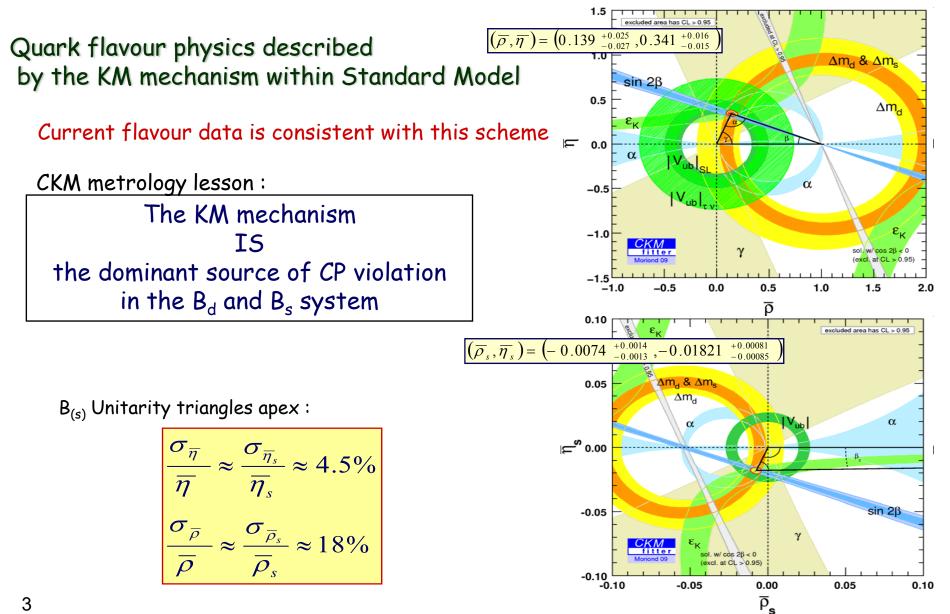
On behalf of the LHCb collaboration




- 1- Flavour physics : state of the art
 - 2- The LHCb detector

3- LHCb trigger strategy

4- Resolving the event topology


5- Probing the decay dynamics

<u>LHCb</u> I CKM metrology : state of the art

<u>LHCb</u> I - CKM methology : state of the art

excluded area has CL > 0.68 2 α 1 SM point $\Delta m_{d} \& \Delta m_{s}$ $\mathsf{Im}\,\Delta_{\mathsf{d}}$ $sin 2\beta; cos 2\beta>0$ A^d & A_{st} & A^s New Physics in $B_d - \overline{B}_d$ mixing -2 0 2 -2 -1 $\operatorname{Re}\Delta_d$ A^d_{SL} & A_{SL} & A^s_{SL} SM point $\Delta m_a \& \Delta m_s$ $\mathsf{Im}\,\Delta_{\!\!s}$ Δ $\Gamma_{\rm s}, \Delta \Gamma_{\rm d}/\Gamma_{\rm d}$ & $\tau_{\rm s}^{\rm FS}$ -1 φ_s New Physics in B $_{\!\!s}$ - $\overline{B}_{\!\!s}$ mixing -2 2 -2 -1 0 $\operatorname{Re}\Delta_{s}$

... but still room for sizeable contribution from New Physics

e.g. : model independent parametrization for NP in Δ F=2 transition

 $\left\langle \boldsymbol{B}_{q}^{0} \left| \boldsymbol{M}_{12}^{SM+NP} \right| \overline{\boldsymbol{B}}_{q}^{0} \right\rangle \equiv \Delta_{q}^{NP} \left\langle \boldsymbol{B}_{q}^{0} \right| \boldsymbol{M}_{12}^{SM} \left| \overline{\boldsymbol{B}}_{q}^{0} \right\rangle$

$$\Delta_q^{NP} = \operatorname{Re}(\Delta_q) + i \ \operatorname{Im}(\Delta_q) = \left|\Delta_q\right| e^{i\phi^{\Delta_q}} = r_q^2 e^{2i\theta_q} = 1 + h_q e^{2i\sigma_q}$$

The prefered (SM+NP) Δ^{NP} value is currently ~ 2σ from SM for both B_d and B_s systems

[FPCP09 Update of CKM fits on Monday in Valentin Niess talk]

LHCb detector : single arm forward spectrometer Muon Vertex Trigger Tracking Spd/Prs Stations 1.9 < n < 4.9 Pythia production cross section Locator Trac pT of B-hadron ATLAS/CMS LHCb 230 ub 10 θ_{b} [rad] 1 eta of B-hadron Main challenge : Perform precision measurements in hadronic environment Heal Magnet Rich II There is a $B \rightarrow J/\psi K_s$ in this event Rich I

- Large multiplicity : ~30 particles for hard pp collisions
- Background from high inelastic X-section of 80 mb
- Small Branching Ratio for B meson decay

... but ...

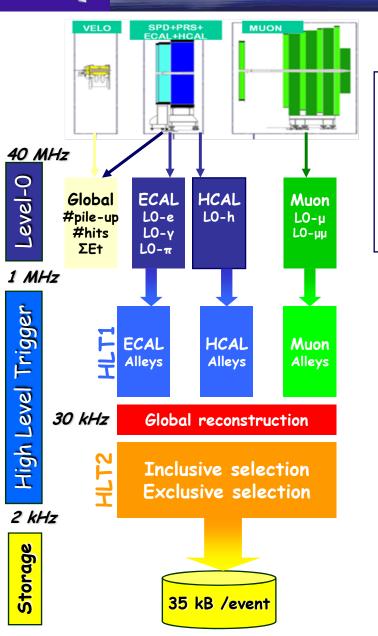

- 100 kHz bb rate
- Access to all b species $: B_d, B_u, B_s, B_c, \Lambda_b, \Xi_{b...}$

LHCb environment at LHC

- Nominal LHC conditions
 - ôs = 14 TeV
 - Crossing rate 40 MHz
 - bunch filling ~ 75%
 - Optimize for single pp-interactions \rightarrow less focusing for LHCb : L = 2x10³² cm²s⁻¹
 - Nominal year : $\int L dt = 2fb^{-1}$ $\rightarrow 10^{12} bb produced$
- 2009/2010 operations
 - ô **s = 8-10 TeV**
 - bunch filling up to 12%
 - up to L = 1.9x10³² cm²s⁻¹
 - first year : $\int L dt = 200 \text{ pb}^{-1}$

Minimum bias trigger in early running

« Minibias statistics to perform a 10% measurement »


 $\frac{\sigma \epsilon}{\sigma_{mb}}$

rate

observation

LHCb ITI- The LHCb Irigger

Level-O Trigger (Hardware)

- Fully synchronous (40 MHz) custom electronics
 - Visible interaction rate 10 MHz \rightarrow 1MHz
- Identification of highest P_T : h, e, γ, π and μ candidates
 typical threshold : μ ~ 1 GeV/c h, e, γ, π ~ 3-4 GeV/c
 typical bandwdith : Hadron/Ecal/Muon ~ 700/200/100 kHz

High-Level Trigger (Software)

2000 multi-processor boxes farm.

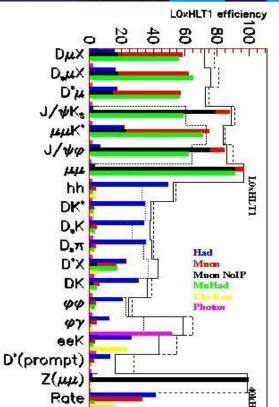
• HLT1 :

confirm LO candidates with more info (tracking, Velo)
 add impact parameter and lifetime cuts

• HLT2 :

global event reconstruction + selections

Triggering strategy TI

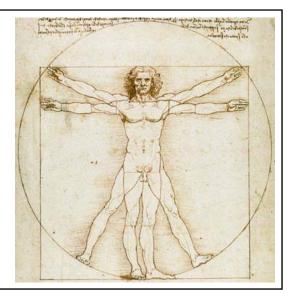

Trigger performance

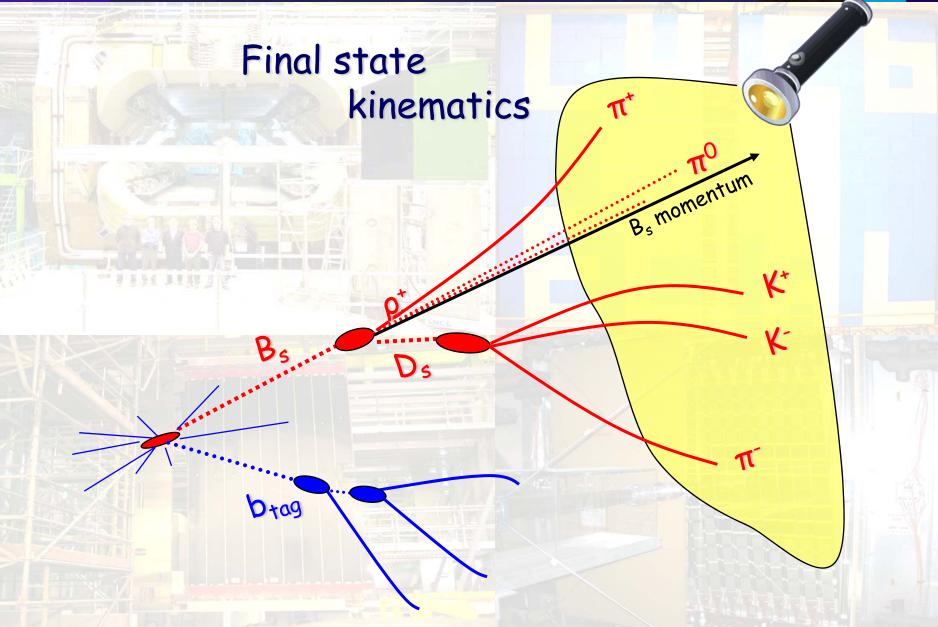
er performance	e(L0)	e(HLT)	e(total)
Hadronic	50%	80%	40%
Electromagnetic	70 %	60%	40%
Muon	90%	80%	70%

e corrected for acceptance and selection

Trigger output rate: 2kHz

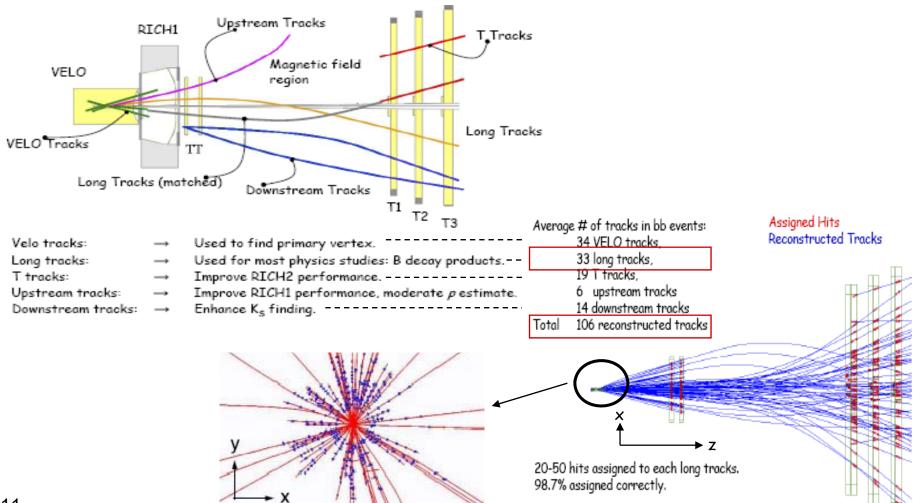
HLT rate	Event type	Purpose
200 Hz	Exclusive B selections	B (core program)
900 Hz	Inclusive b (e.g. b→µ) opposite-B unbiased	Trigger efficiency data mining
600 Hz	High mass di-muons <i>lifetime unbiased</i>	J/ψ(μμ) , B _(s) -> J/ψ(μμ) X Proper time resolution, alignment, momentum calibration
300 Hz	Inclusive D* <i>PID unbiased</i>	Charm physics PID performance



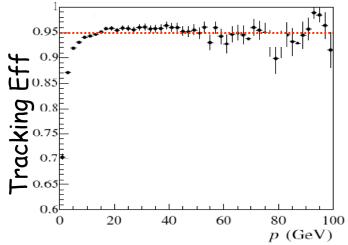


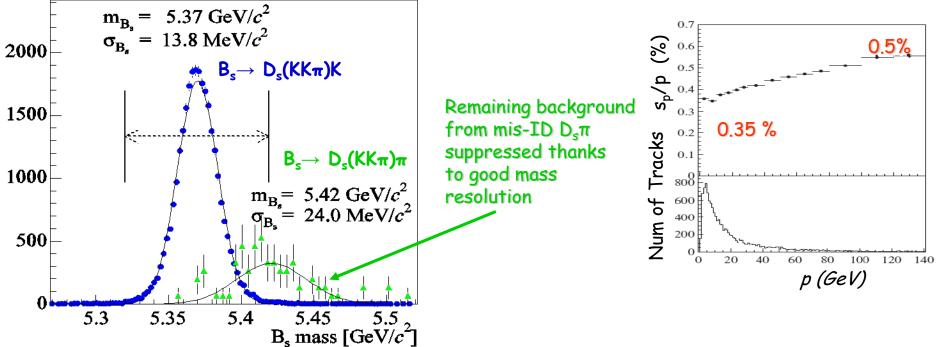
- kinematics reconstruction
- particle identification
- proper-time measurement
- flavour tagging

LHCb Resolving the event topology



LHCb THCp Resolving the event topology


- Tracking
 - track configurations in LHCb spectrometer

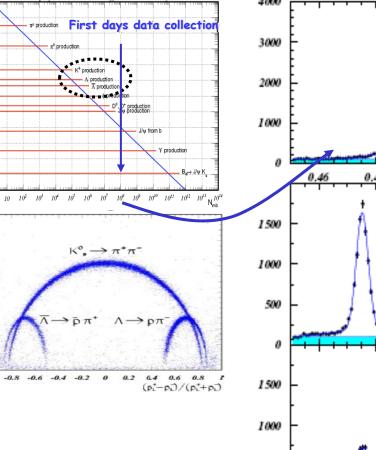


LHCb Resolving the event topology

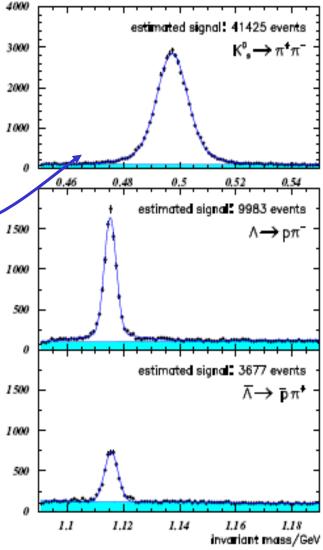
- Expected tracking performances
 - Efficieny > 95% for tracks crossing the whole detector
 - **•** δp/p : 0.3-0.5%
 - B mass resolution 10-20 MeV/c²

LHCB Resolving the event topology

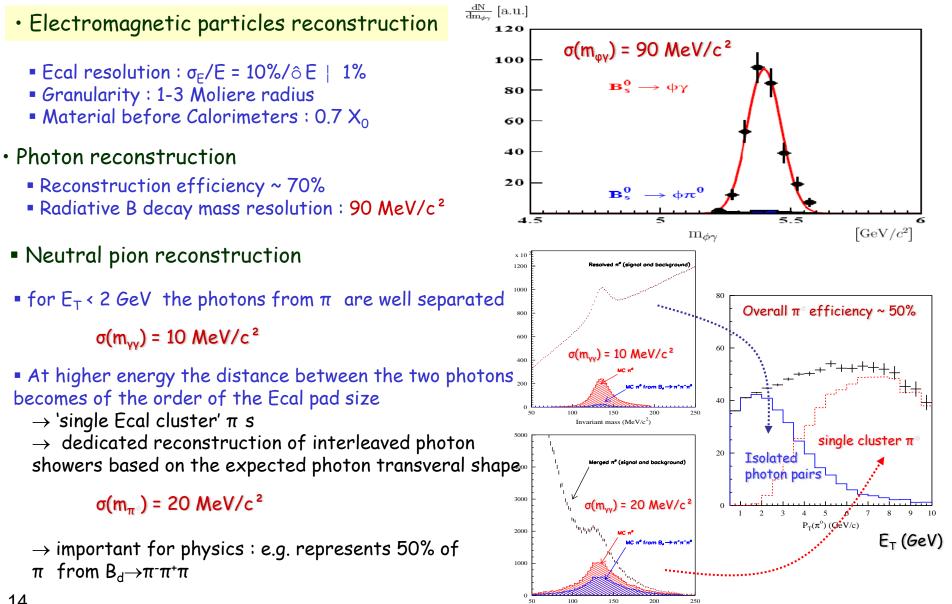
V=0/14 25


0.2

0.15

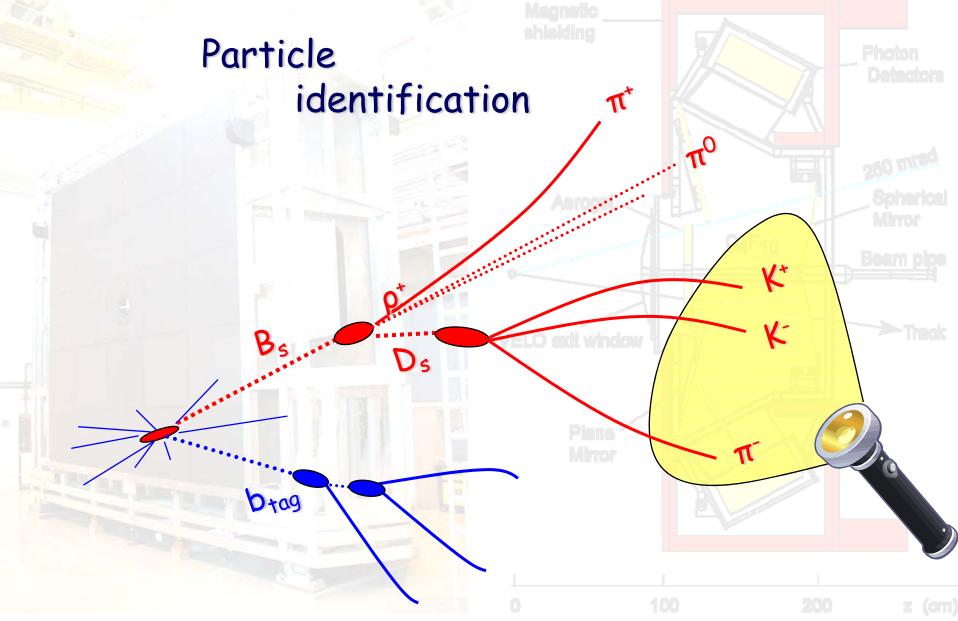

0.1

- Strange VO reconstruction #
- Plenty of $K_s \rightarrow \pi \pi$ and $\Lambda \rightarrow p \pi$ to be produced in pp collisions
- Will be used for alignment, tracking and PID calibration with first data
- e.g 95% purity with kinematical and vertex cuts only
 - clean & unbiased sample for RICH PID calibration
- K_s / Λ reconstruction
 - Reconstruction efficiency ~60%
 - ~1/3 long tracks pair ~ 2/3 downstream tracks pair
 - Mass resolution of few MeV/c²



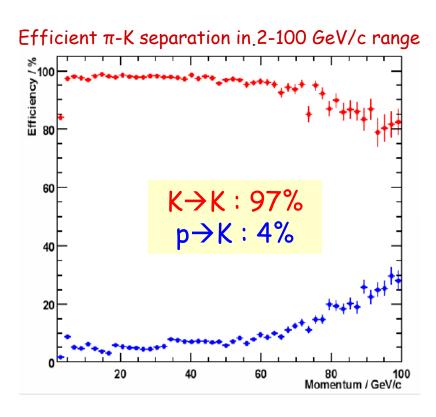
physics reach vs integrated luminosity

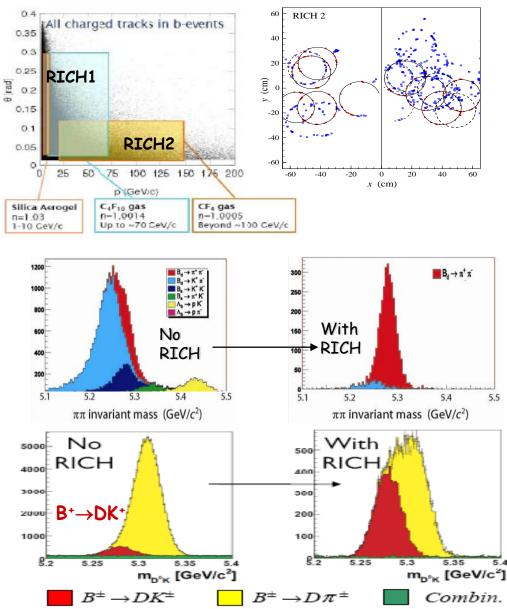
LHCb Resolving the event topology



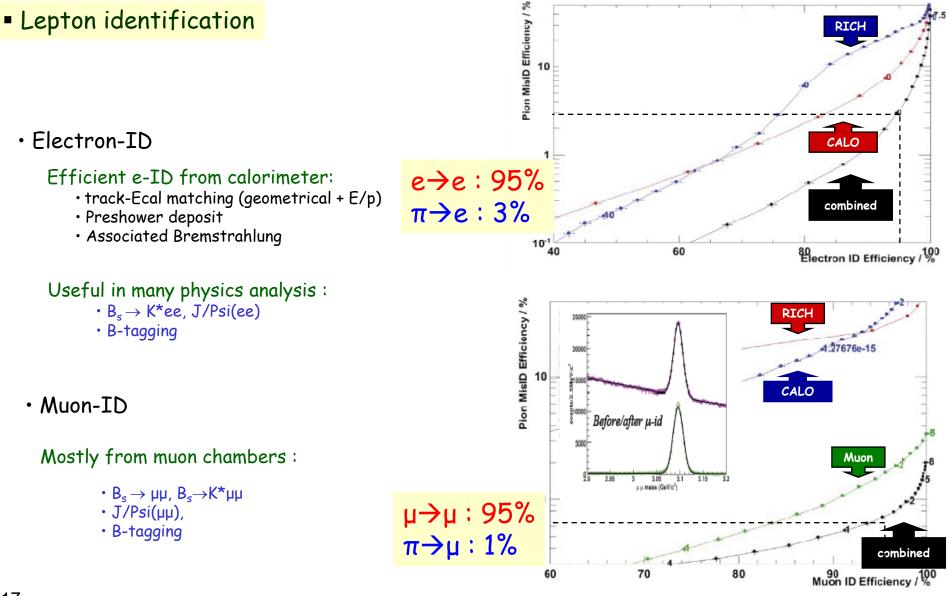
Invariant mass (MeV/c2)

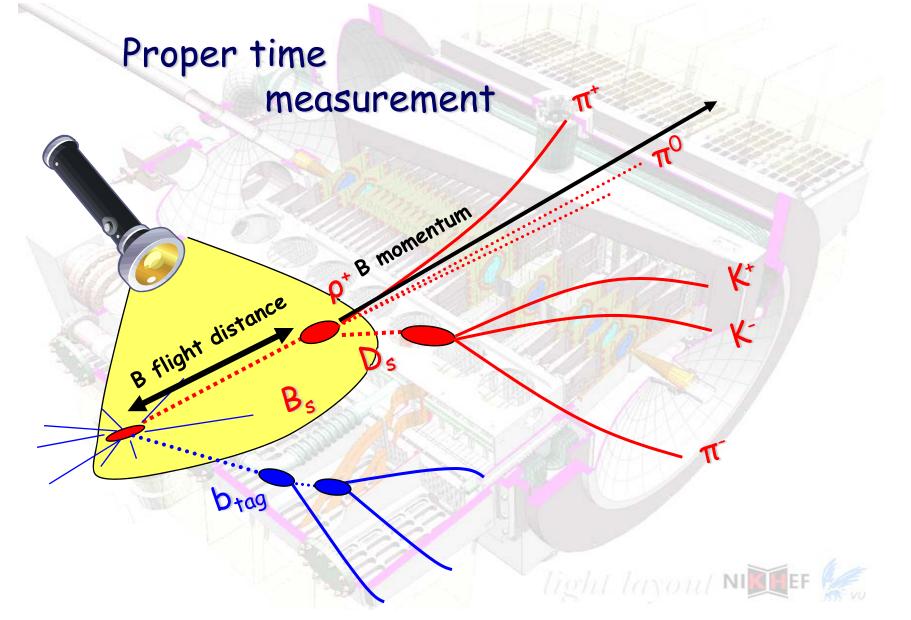
LHCb THCp Resolving the event topology

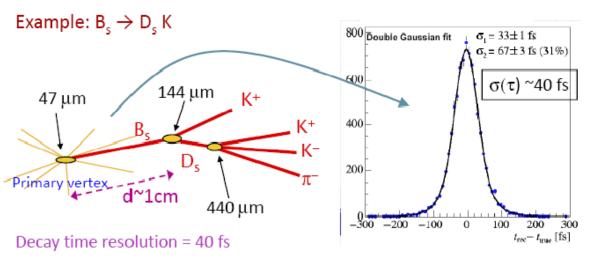



LHCB Resolving the event topology

Hadron identification


Two RICH detectors with 3 radiators allow for a good identification over a wide momentum range

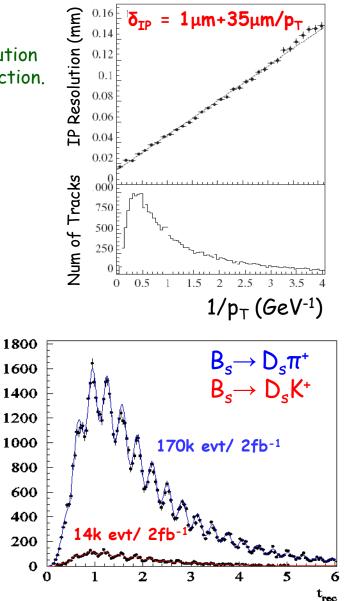

LHCD Resolving the event topology



LHCb Resolving the event topology

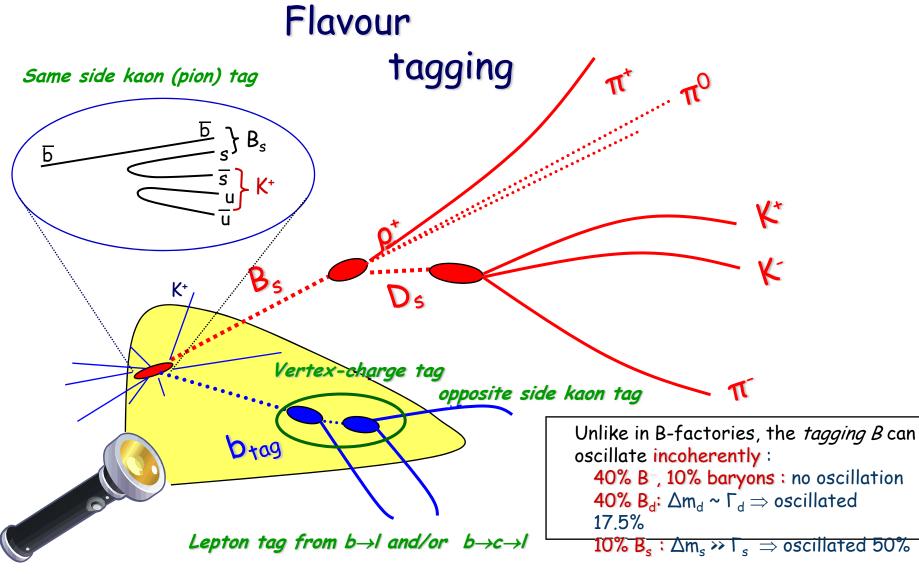
Flight distance measurement

- Vertex Locator (Velo) : silicon strip detector with <10µm hit resolution</p>
- First measurement ~ 8mm from beam. Retractable system for injection.
- Precise IP determination : combinatorial background rejection
- Precise vertexing :



• sensitivity to Δm_s from $B_s \rightarrow D_s \pi / D_s K$ joint analysis

Same topology for $B_s \rightarrow D_s K$ and $B_s \rightarrow D_s \pi$, \rightarrow combined fit of Δm_s , $\Delta \Gamma_s$ and w_{tag} together with phase $\gamma + \Phi_s$ arising through the interference between $b \rightarrow c$ and $b \rightarrow u$ transitions in $B_s \rightarrow D_s K$

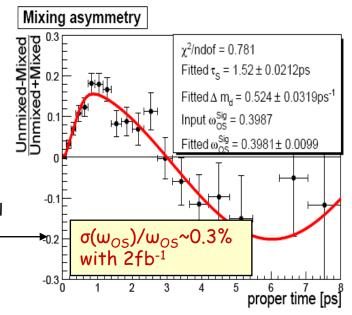

 $\sigma^{\text{stat}}(\Delta m_{\text{s}}) = 0.007 \text{ ps}^{-1}$ with 2 fb⁻¹ $\sigma^{\text{stat}}(\gamma + \Phi_{\text{s}}) \sim 10$

19 \rightarrow knowledge of the b-flavour at the production is needed

LHCb THCp Resolving the event topology

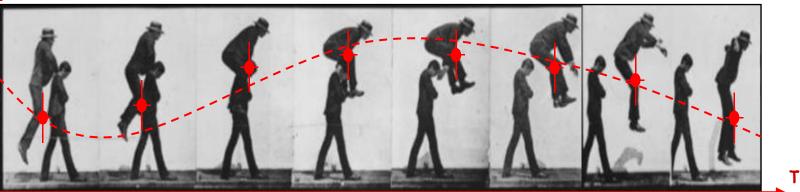
LHCB Resolving the event topology

 $D = 1 - 2\omega$


Flavour tagging performance

- Kaon tagging powerful for LHCb using RICH detectors to identify K fom the "opposite side" b \rightarrow c \rightarrow s
- Combined power for B_s : ϵ_{eff} ~ 7 % Lower for B_d : ϵ_{eff} ~ 5 % due to reduced same-side tagging power
- Example : $B_s \rightarrow J/\psi \phi$ decay

Tagging efficiency	:ε = 55.7%,
Mistag rate	: ω = 33.3%,
Tagging power	$\epsilon_{eff} = \epsilon (1-2\omega)^2 = 6.2\%$

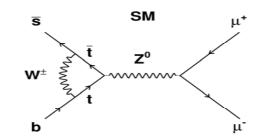

- Main control channels
 - B⁺→J/ ψ K⁺ , B⁰→J/ ψ K^{*0} for Opposite Side taggers (unified selection for all B_{u.s.d}→ J/ ψ X channels)
 - $B_s \rightarrow D_s \pi$ for Same Side kaon
- First results will probably come with opposite side taggers
 - higher statistics in B_{u,d} channels and proper time resolution less crucial
 - \bullet Measure ω_{OS} from mixing asymmetry in $B_d{\rightarrow}J/\psi K^\star$
 - Fit with 17 free parameters

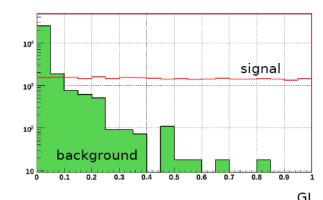
Tagging power	ε <i>D</i> ² (%)
Muon	0.8
Electron	0.4
Kaon	1.3
Jet/vertex charge	1.1
Same side	2.4

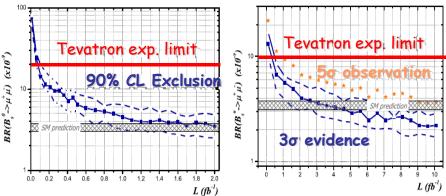
- Branching Ratio of very rare decay
- Time-dependent decay rate
- Dalitz analysis
- Time dependent, flavour tagged, Dalitz analysis
- Angular analysis
- Time dependent, flavour tagged Angular analysis

- : NP in $B_s \rightarrow \mu\mu$
- : photon polarization in $B_{s}{\rightarrow}\phi\gamma$
- : UT angle γ in $B_u {\rightarrow} D \ K^{-}$
- : UT angle a in $B_d \rightarrow (\rho \pi)$
- : NP in $B_s \rightarrow K^* \mu \mu$
- : UT angle β_{s} in $B_{s}{\rightarrow}J/\psi\phi$

Probing the decay dynamics


HCD Probing the decay dynamics



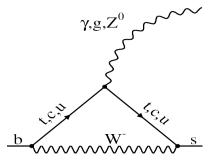

The Branching Ratio of the very rare $B_s \rightarrow \mu\mu$ decay

- Z-penguin suppressed diagram :
 - SM BR = (3.35 0.32) × 10⁻⁹
 - Sensitive to NP, e.g. probe two Higgs doublet models (e.g. MSSM BR ~ tan⁶β/m⁴_H)
- Selection based on 3D likelihood:
 - Geometrical Likelihood (GL): Impact Parameter, B vertex, Isolation
 - Invariant mass likelihood
 - μ-ID likelihood
- Selection Likelihood determined from data
 - using sidebands for background
 - using control channels for signal : $B_{(s)} \rightarrow h^+h^-$, $B \rightarrow J/\psi(\mu\mu)X$
- Use known normalisation channels to derive BR from the event yield
 - get ratio of trigger/tracking efficiency from $B_d \rightarrow K^*\pi^- / B_u \rightarrow J/\psi(\mu\mu)K^*$
 - $\scriptstyle \bullet$ main systematics (\sim 13%) from hadronization rate fB_{u,d} / fB_s
- Statistical analysis of the Likelihood distribution

Improve 90% CL upper limit with ~ 0.1 fb⁻¹ 3σ evidence of SM BR with ~ 2 fb⁻¹ 5 σ observation of SM BR with < 10 fb⁻¹

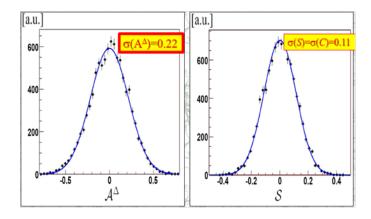
The photon polarization from the **time-dependent decay rate** of the $B_s \rightarrow \varphi \gamma$ decay

- $\Gamma(\overset{(-)}{B_q} \to f^{CP}\gamma) = |A|^2 e^{-\Gamma_q \tau} \Big[\cosh(\Delta\Gamma_q \tau/2) + A_q^{\Delta} \sinh(\Delta\Gamma_q \tau/2) \pm C_q \cos(\Delta m_q \tau) \mp S_q \sin(\Delta m_q \tau) \Big]$
- Within SM for B_s one expects : $C_s \approx S_s \approx 0$
 - $A_s^{\Delta} \approx \sin(2\psi) \approx 0.1$
- $\hfill \ensuremath{\,^\circ}$ Reliable theoretical prediction at NNLO \rightarrow probe for NP in loop


Expect 11x10³ selected signal events / 2 fb⁻¹ B/S < 0.9 @ 90% CL

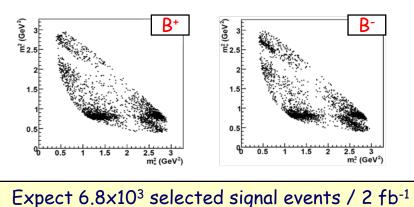
- \bullet Unbinned likelihood fit proper lifetime \oplus reconstructed mass
 - simultaneous fit of $(\dot{A}^{\triangle}, \dot{C}, S) \rightarrow$ tagging involved
 - parametrize background from side-bands
 - acceptance function from control channel ($K^*\gamma$, $J/\psi\phi$)

 σ_{stat} (A^{Δ}) ~ 0.2, σ_{stat} (C/S) ~ 0.1 with 2 fb⁻¹


• Other radiative decays under study :

 $B_{d} \rightarrow K^{\star} \ \gamma, \ B_{u} \rightarrow \phi K^{\star} \ \gamma, \ \Lambda_{b} \rightarrow \Lambda \ \gamma$

 $b \rightarrow s \gamma_{\rm L} + ({\rm m}_{\rm s}/{\rm m}_{\rm b}) \times s \gamma_{\rm R}$

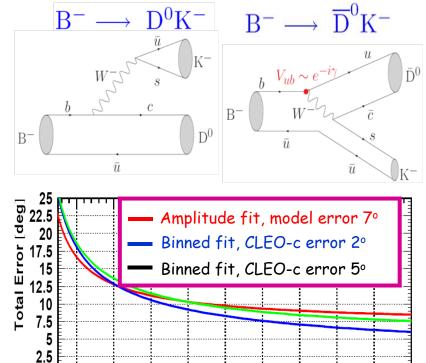

$$\tan \psi \equiv \left| \frac{\mathcal{A} \left(\bar{\mathbf{B}}_{(\mathrm{s})}^{-} \to \Phi^{\mathcal{CP}} \gamma_{\mathrm{R}} \right)}{\mathcal{A} \left(\bar{\mathbf{B}}_{(\mathrm{s})}^{-} \to \Phi^{\mathcal{CP}} \gamma_{\mathrm{L}} \right)} \right|$$

The UT angle γ from the **Dalitz analysis** of the B⁻ \rightarrow D /D K⁻ decay

- \bullet Interferences between the b---c and b---u tree transition for B-----(D /D)K--
- Example : Dalitz analysis of D $/\overline{D} \rightarrow K_s \pi \pi$ to extract (r_B, δ_B, γ)

B/S < 0.5 @ 90% CL contamination from B⁻ \rightarrow D π ⁻ < 10%

Unbinned Amplitude fit analysis assuming isobar model

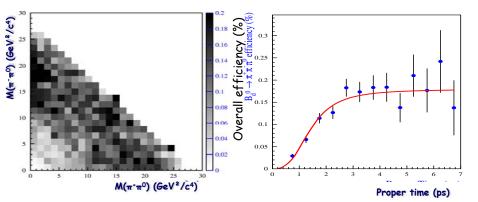

σ(γ) ~ 9-11° stat with 2 fb-1
 7° model [PRD 78 (2008) 034023]

• Model independent binned fit using inputs from correlated $\psi(3770)$ decay at Cleo-c. Residual systematuc error 1-2 [Asner, ICHEP OB]

• Dalitz method possibly extented using D \rightarrow K_sKK, K_sK π , KK $\pi\pi$, K $\pi\pi$, K $\pi\pi$, 25

 $\frac{<\mathbf{B}^{-}\longrightarrow \ \overline{\mathbf{D}}^{0}\mathbf{K}^{-}>}{<\mathbf{B}^{-}\longrightarrow \ \mathbf{D}^{0}\mathbf{K}^{-}>} = \mathbf{r}_{\mathbf{B}}\mathbf{e}^{i(\delta_{B}-\boldsymbol{\gamma})}$

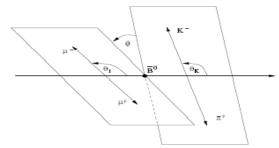
Integrated luminosity [fb⁻¹]



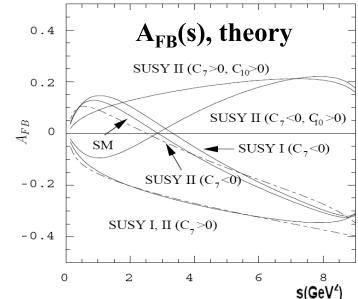
2

The UT angle a from the time-dependent Dalitz analysis of the tagged $B_d \rightarrow (\rho \pi)^\circ$ decay

- Using SU(2) asumption the interferences in the $\begin{bmatrix} B \\ B \end{bmatrix}
 \xrightarrow{\rho^{+}\pi^{-}} \pi^{-}\pi^{0}\pi^{+}$ transition
- provides a theoretically clean extraction of $\boldsymbol{\alpha}$
- Require an accurate control of the p-lineshapes and the experimental acceptance


Unbinned likelihood fit analysis

Expect 10×10^3 selected signal events / 2 fb⁻¹ B/S < 0.8 @ 90% CL $\sigma^{\text{stat}}(\alpha) \sim 8$ with 2 fb⁻¹



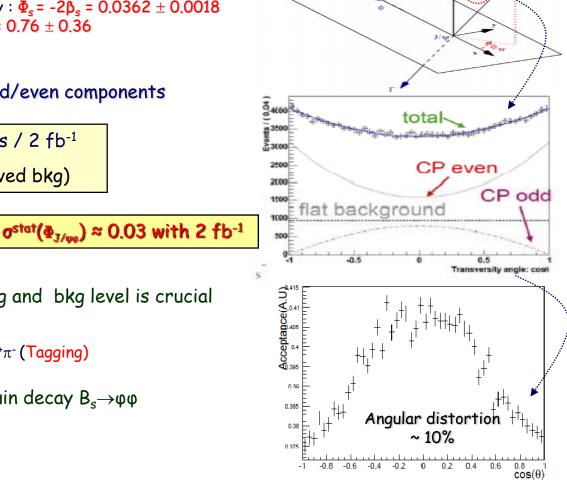
Forward-Backward asymmetry from the **angular analysis** of the rare $B_d \rightarrow K^* \mu \mu$ decay

- Suppressed FCNC in b—s EW-penguin transition - BR ~ (1.2 \pm 0.4) 10⁻⁶
- Lepton angular distribution affected by NP

- Several observable to test the dynamics
 - $s = m^2_{\mu+\mu}$ distribution
 - $A_{FB}(s)$: forward-backward asymmetry in Θ_{μ}
- Zero-crossing point $A_{FB}(s_0) = 0$ prediction depends on $C_7^{eff} \& C_9^{eff}$ $s_0^{SM}(C_7, C_9) = 4.39^{+0.38} - 0.35 \text{ GeV}^2$

Expect 7×10^3 selected signal events / 2 fb⁻¹ B/S ~ 0.2 $\sigma(s_0) \sim 0.5 \text{ GeV}^2$ with 2 fb⁻¹

- Full angular analysis will give better discrimination between NP models
- 27

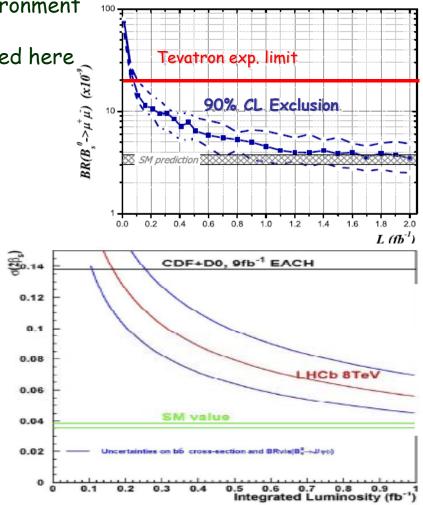

The mixing phase Φ_s from the **time-dependent angular analysis** of the **tagged** $B_s \rightarrow J/\psi \phi$ decay

- B_s mixing phase from (almost) pure b \rightarrow ccs tree transition
 - sensitive to NP in ΔF =2 transition
 - SM value well determined from CKM metrology : Φ_s = -2 β_s = 0.0362 ± 0.0018
 - Tevatron direct measurement 2σ away : $\Phi_{J/\psi\phi} = 0.76 \pm 0.36$
- $J/\psi\phi$ is not pure CP eigenstate \rightarrow angular analysis to separate the CP odd/even components

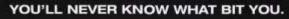
Expect 115x10³ selected signal events / 2 fb⁻¹

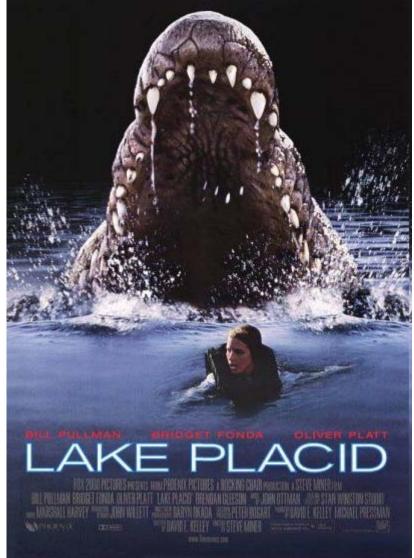
B/S ~ 1.8 (prompt bkg) + 0.5 (long-lived bkg)

- Unbinned likelihood fit analysis :
 - 7 parameters ($\phi_{S_{,}}\Gamma_{s}$, $\Delta\Gamma_{s}$, R_{\perp} , $R_{//}$, δ_{\perp} , $\delta_{//}$)
- Control of the acceptance, flavour-tagging and bkg level is crucial
 - Use control channels and side-bands
 - $B \rightarrow J/\psi K^*$ (Acceptance), $B^+ \rightarrow J/\psi K^+$, $B_s \rightarrow D_s^{+}\pi^-$ (Tagging)
- Similar analysis for the pure b—sss penguin decay $B_s{\rightarrow}\phi\phi$
 - 4x10³ events / 2 fb⁻¹ B/S < 2.1 @ 90% CL
 - $\sigma^{\text{stat}}(\Phi_{\varphi\varphi}) \approx 0.1$ with 2 fb⁻¹

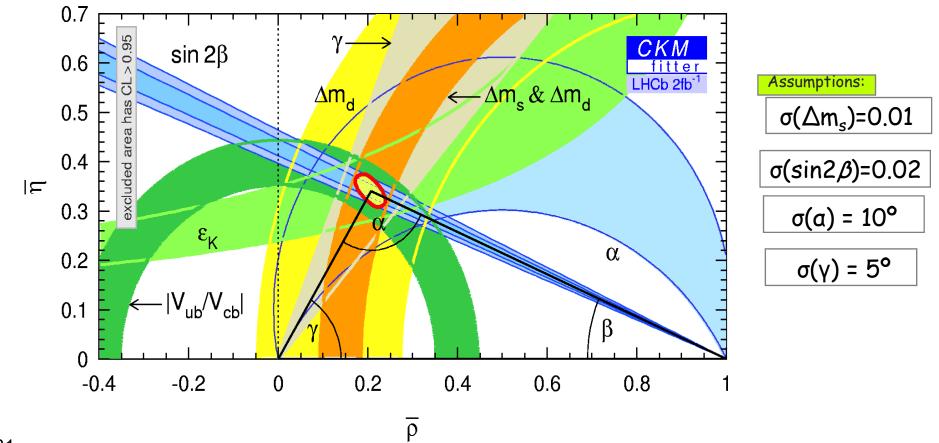


- LHCb : heavy flavour dedicated experiment
- Aims at performing a lot of precision measurements using sophisticated reconstruction and analysis techniques within a challenging hadronic environment
- Expect much more interesting results than presented here


Eagerly waiting for data


- Important results can come early
 - $B_s \rightarrow \mu \mu$ BR limit close to SM expectation
 - Hints in the B_s sector (including φ_s)

LHCb Spare slides



LHCb 2012?

E in

LHCb global sensitivity to yur

ADS/GLW

GGSZ

• <u>γ from tree</u>

B⁻→D⁰K⁻

- D⁰→Kq, KK, qq
- D⁰→Kqqq
- D⁰→K_sqq

 $B^0 \rightarrow D^0 K^{\star 0}$

- D⁰→Kq, KK, qq
- Time dependent measurements:
 - $B^0 \rightarrow D_q$ $\gamma + 2\beta$ • $B_s \rightarrow D_s K$ $\gamma + 2\beta_s$
- <u>γ from loop</u>

 $B_{(s)} \rightarrow h^+h^-$

Time dependent CP asymmetry Assume U-spin symmetry

Summary of event yields in 2 fb⁻¹

Channel	Signal	Background
$B^{\pm} \to D(K^{\pm}\pi^{\mp})K^{\pm}$	56k	35k
$B^+ \rightarrow D(K^-\pi^+)K^+$	680	780
$B^- \rightarrow D(K^+\pi^-)K^-$	400	780
$B^+ \to D(K^+K^- + \pi^+\pi^-)K^+$	3.3k	7.2k
$B^- \rightarrow D(K^+K^- + \pi^+\pi^-)K^-$	4.4k	7.2k
$B^{\pm} \to D(K^{\pm}\pi^{\mp}\pi^{+}\pi^{-})K^{\pm}$	61k	40k
$B^+ \to D(K^-\pi^+\pi^+\pi^-)K^+$	470	1.2k
$B^- \to D(K^+\pi^-\pi^+\pi^-)K^-$	350	1.2k
$B^0 \to D(K^+\pi^-)K^{*0}, \ \bar{B^0} \to D(K^-\pi^+)\bar{K}^{*0}$	3.4k	1.7k
$B^0 ightarrow D(K^-\pi^+)K^{*0}$	350	850
$ar{B^0} ightarrow D(K^+\pi^-) ar{K^{*0}}$	230	850
$B^0 \to D(K^+K^- + \pi^+\pi^-)K^{*0}$	150	500
$\bar{B^0} \to D(K^+K^- + \pi^+\pi^-)\bar{K}^{*0}$	550	500
$B^{\pm} \rightarrow D(K_S^0 \pi^+ \pi^-) K^{\pm}$	5k	4.7k
$B_s, \bar{B_s} \to D_s^{\mp} K^{\pm}$	6.2k	4.3k
$B^0, \bar{B^0} \to D^{\mp} \pi^{\pm}$	$1,\!300k$	290k

$\sigma(\gamma) = 5^{\circ}$ with 2 fb⁻¹ of data

Channel	Yield (2 fb⁻¹)	B/S
В→πл	36k	0.5
B₅→KK	36k	0.15
1 1 4	0.0 1.1	0 01 1

 $\sigma(\gamma) \sim 10^{\circ} \text{ with } 2 \text{ fb}^{-1}$

2009: 0.5 fb⁻¹: sensitivity ~0.042 using $B_S \rightarrow J/\psi \phi$ (cf SM value 2 $\beta_s \sim$ - 0.04)

$J/\psi \ \eta(\gamma\gamma)$	8.5 k	0.109
J/ψη(πππ)	3 k	0.142
J/ψ η'(πππ)	2.2 k	0.154
$J\!/\psi\eta^{\prime}(ho\gamma)$	4.2 k	0.08
$\eta_c \phi$	3 k	0.108
$D_s^+ D_s^-$	4k	0.133
All CP eigenstates	-	0.046
$J\!/\psi~\phi$	130 k	0.023
All	-	0.021

Sensitivity with 2 fb⁻¹ and $\Delta m_s = 17$ ps ⁻¹, $2\beta_s = -0.04$, $\Delta\Gamma/\Gamma = 0.15$