Rare Leptonic Decays

Cristoforo Simonetto

Technical University Munich

Flavor Physics and CP Violation 2009 Lake Placid, NY, USA, May 27 – June 1

Outline

Current Status

Model Independent Parametrization

Implications for New Physics Constraints on the scale of NP Model discriminating power Some examples of NP

Some Constraints on SUSY theories

Correlations under the minimal assumption Constraints in SUSY leptogenesis

Summary

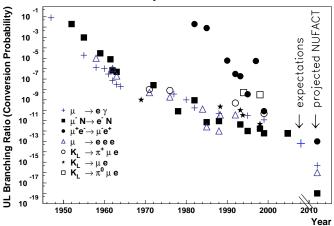
Expectations from the SM

The old SM

Each Lepton Flavor is symmetry of Lagrangian. \longrightarrow No LFV. Rare lepton decays forbidden.

The SM with ν -masses (ν SM)

- ▶ Neutrino oscillations → LF broken!
- Via one loop LFV is induced in charged sector (cLFV)



$$BR(\tau \rightarrow \mu \gamma) > 10^{-54}$$

• Lagrangian of ν SM unknown \Rightarrow Rate of cLFV unknown!

Experimental bounds [King, Long et al.]

Searches for Lepton Number Violation

Experimental bounds

Process	BR	Process	BR
$ au ightarrow \mu \gamma$	$< 4.510^{-8}$	$\mu ightarrow {m e} \gamma$	$< 1.210^{-11}$
$ au ightarrow \mu \mu \mu$	$< 3.210^{-8}$	$\mu ightarrow$ e e e	$< 1.010^{-12}$
$\tau \to \mu {\rm meson}$	$\lesssim 510^{-8}$	$\mu{ m Ti} ightarrow e{ m Ti}$	$\frac{\sigma^{ m LFV}}{\sigma^{ m capture}} < 4.310^{-12}$
Similar for $ au ightarrow e \dots$			[PDG 2008, Belle]

- \longrightarrow Bounds comparable within each flavor
- \longrightarrow No chance to go down to $\nu {\rm SM}$ lower bound

Parametrization of the Unknown

$$\begin{array}{lll} \mathcal{L} \supset & \frac{em_{l_j}}{\Lambda_{D_L}^2} \overline{l_i} \sigma^{\mu\nu} l_j F_{\mu\nu} + & \text{Dipole, leads to } \tau \to \mu \gamma \\ & \frac{1}{\Lambda_L^2} l_i l_j \ \overline{l_i} l_i + & \text{4 Fermi, leads to } \tau \to \mu \, \mu \, \mu \\ & \frac{1}{\Lambda_Q^2} \overline{l_i} l_j \ \overline{q_i} q_i & \text{4 Fermi, } \tau \to \mu \, \text{meson } / \, \text{Conversion} \end{array}$$

Parametrization of the Unknown

$$\mathcal{L} \supset \quad \frac{em_{l_j}}{\Lambda_{l_p}^2} \overline{l_i} \sigma^{\mu\nu} l_j F_{\mu\nu} + \quad \text{Dipole, leads to } \tau \to \mu\gamma \\ \frac{1}{\Lambda_{l_p}^2} \overline{l_i} l_j \ \overline{l_i} l_i + \qquad \text{4 Fermi, leads to } \tau \to \mu \, \mu \, \mu \\ \frac{1}{\Lambda_{Q}^2} \overline{l_i} l_j \ \overline{q_i} q_i \qquad \text{4 Fermi, } \tau \to \mu \, \text{meson / Conversion}$$

 $\begin{array}{ll} \mbox{From experiment} & \Lambda_D^{\mu e}\gtrsim 300 \ {\rm TeV} & \Lambda_D^{\tau \mu}\gtrsim 20 \ {\rm TeV} \\ \Rightarrow \mbox{Constraints on New Physics (NP) at very high scales} \\ \mbox{(More detailed treatment on next slide)} \end{array}$

Parametrization of the Unknown

$$\mathcal{L} \supset \quad \frac{em_{l_j}}{\Lambda_{D_c}^2} \overline{l_i} \sigma^{\mu\nu} l_j F_{\mu\nu} + \quad \text{Dipole, leads to } \tau \to \mu \gamma \\ \frac{1}{\Lambda_L^2} \overline{l_i} l_j \ \overline{l_i} l_i + \qquad 4 \text{ Fermi, leads to } \tau \to \mu \mu \mu \mu \\ \frac{1}{\Lambda_Q^2} \overline{l_i} l_j \ \overline{q_i} q_i \qquad 4 \text{ Fermi, } \tau \to \mu \text{ meson } / \text{ Conversion}$$

 $\begin{array}{ll} \mbox{From experiment} & \Lambda_D^{\mu e}\gtrsim 300 \ {\rm TeV} & \Lambda_D^{\tau \mu}\gtrsim 20 \ {\rm TeV} \\ \Rightarrow \mbox{Constraints on New Physics (NP) at very high scales} \\ \mbox{(More detailed treatment on next slide)} \end{array}$

If there is any source of cLFV, the others will be induced:

Constraining the scale of NP

Bounds on effective couplings translate into a bound on the scale of NP depending on the suppression at work. Typically:

- Non-maximal flavor mixing: $\Lambda^{NP} > \Lambda^{ij} \theta_{ij}$
- loop-suppression: $\Lambda^{NP} > \sqrt{\alpha}\Lambda$

► maybe additional GIM suppression: $\Lambda^{NP} > \sqrt{\alpha} \frac{\sqrt{\Delta m^2}}{\Lambda^{NP}} \Lambda$ In some models:

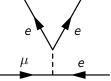
- Triplet Higgs: flavor mixing: $(\Lambda^{TH})^2 > (100 \text{ TeV})^2 \times Y_{11}Y_{12}$
- Anarchic Randall Sundrum: flavor mixing "known": $\Lambda^{\rm RS} > 3~{\rm TeV}$
- ► SUSY: loop suppression, flavor mixing: $(\Lambda^{\text{SUSY}})^2 > (30 \text{ TeV})^2 \times \frac{m_{\mu e}^2}{(\Lambda^{\text{SUSY}})^2}, \quad (2 \text{ TeV})^2 \times \frac{m_{\tau \mu}^2}{(\Lambda^{\text{SUSY}})^2}$

Model discrimination with cLFV

What do we learn about underlying models, if

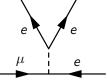
- cLFV is found?
 - $\rightarrow \! \mathsf{Need}$ additionally scale of NP to draw any conclusion.
- cLFV is found in several processes within the same flavor violation?

 \rightarrow This determines ratios of effective couplings. Lots of models can typically be ruled out.


► cLFV is found in different flavor violations?
 →Can rule out models, where cLFV in different flavors are connected.

Model discrimination with upcoming data

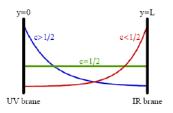
- ▶ BaBar and Belle continue to search for *τ*-cLFV. In case of a positive signal
 - Lots of different processes measured with similar accuracy
 - We would know that τ -cLFV $\gg \mu$ -e-cLFV
 - \Rightarrow Great model discrimination!
- MEG at PSI is running and will soon provide information about $\mu \rightarrow e\gamma$. In case of a positive signal
 - $\mu \to e \gamma$ the only found, but $\mu \to e \, e \, e$ already well measured.
 - Measurement of the dependence on the muon chirality possible.
 - \Rightarrow Good model discrimination!


Triplet Higgs model [Schechter, Valle]

- ► Introduce SU(2) triplet ($\Delta^{++}, \Delta^{+}, \Delta^{0}$), lepton number -2. $\mathcal{L} \supset \frac{1}{2} Y_{ij} \overline{L}_{i}^{c} \Delta L_{j}$
- $\langle \Delta^0
 angle \neq 0 \Rightarrow$ neutrino masses $m_
 u = Y \langle \Delta^0
 angle$
- Tree level cLFV diagram

Triplet Higgs model [Schechter, Valle]

- ► Introduce SU(2) triplet $(\Delta^{++}, \Delta^{+}, \Delta^{0})$, lepton number -2. $\mathcal{L} \supset \frac{1}{2} Y_{ij} \overline{L}_{i}^{c} \Delta L_{j}$
- $\langle \Delta^0
 angle
 eq 0 \Rightarrow$ neutrino masses $m_
 u = Y \langle \Delta^0
 angle$
- Tree level cLFV diagram

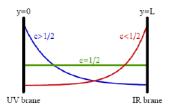

Predictions [Kakizaki, Ogura, Shima]

- ► Negligible *τ*-cLFV
- cLFV only in left-handed sector
- $\mu \rightarrow e \, e \, e$ more frequently than muon conversion

Anarchic Randall Sundrum model

[Agashe et al.]

► Add small extra dimension with warped geometry $ds^2 = e^{-2ky}\eta_{\mu\nu}dx^{\mu}dx^{\nu} - dy^2$



- Higgs at IR-brane, gauge fields and fermions in the bulk.
 4D Yukawas from fermion shape functions on IR-brane
- ► anarchic 5D-Yukawas, different localizations in small dim.
 ⇒ Hierarchical pattern of Yukawas
- Non-universal couplings of KK gauge bosons to fermions ⇒ cLFV at tree level.

Anarchic Randall Sundrum model

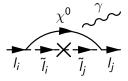
[Agashe et al.]

► Add small extra dimension with warped geometry $ds^2 = e^{-2ky}\eta_{\mu\nu}dx^{\mu}dx^{\nu} - dy^2$

- Higgs at IR-brane, gauge fields and fermions in the bulk.
 4D Yukawas from fermion shape functions on IR-brane
- ► anarchic 5D-Yukawas, different localizations in small dim.
 ⇒ Hierarchical pattern of Yukawas
- Non-universal couplings of KK gauge bosons to fermions ⇒ cLFV at tree level.

Predictions

Scale (=naturalness) of this scenario already probed!


SUSY

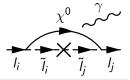
- unbroken SUSY: no new couplings \Rightarrow no cLFV
- broken SUSY (R-Parity conserved): Generation of scalar masses and trilinears

$$\mathcal{L} \supset \tilde{l}_{Li}^* m_{Lij}^2 \tilde{l}_{Lj}^* + \tilde{l}_{Ri}^* m_{Rij}^2 \tilde{l}_{Rj}^* + \tilde{l}_{Ri}^* A_{ij} \tilde{l}_{Lj}^* H_d^0$$

cLFV might be introduced via SUSY breaking or afterwards

Leading cLFV diagram

SUSY


• unbroken SUSY: no new couplings \Rightarrow no cLFV

 broken SUSY (R-Parity conserved): Generation of scalar masses and trilinears

$$\mathcal{L} \supset \tilde{l}_{Li}^* m_{Lij}^2 \tilde{l}_{Lj}^* + \tilde{l}_{Ri}^* m_{Rij}^2 \tilde{l}_{Rj}^* + \tilde{l}_{Ri}^* A_{ij} \tilde{l}_{Lj}^* H_d^0$$

cLFV might be introduced via SUSY breaking or afterwards

Leading cLFV diagram

Predictions

Dipole operator dominant.

Correlations between different flavor violations

Definition $\Delta^{LL} = m_L^2, \ \Delta^{RR} = m_R^2, \ \Delta^{LR} = (\Delta^{RL})^{\dagger} = A \langle H_d^0 \rangle,$

Correlations between different flavor violations

Definition $\Delta^{LL} = m_L^2, \ \Delta^{RR} = m_R^2, \ \Delta^{LR} = (\Delta^{RL})^{\dagger} = A \langle H_d^0 \rangle,$ Is it really impossible to relate different flavor violations?

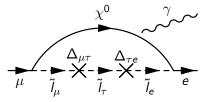
From a low energy perspective, $\Delta_{\tau\mu}$, $\Delta_{\tau e}$, $\Delta_{\mu e}$ uncorrelated. \Rightarrow Yes!

Need to impose additional assumptions.

Correlations between different flavor violations

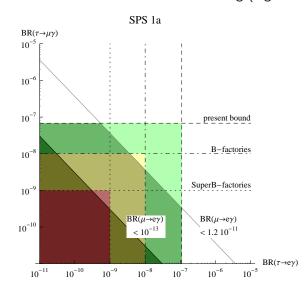
Definition $\Delta^{LL} = m_L^2, \ \Delta^{RR} = m_R^2, \ \Delta^{LR} = (\Delta^{RL})^{\dagger} = A \langle H_d^0 \rangle,$

Is it really impossible to relate different flavor violations? From a low energy perspective, $\Delta_{\tau\mu}$, $\Delta_{\tau e}$, $\Delta_{\mu e}$ uncorrelated. \Rightarrow Yes! Need to impose additional assumptions.


Plan for the remainder of the talk

Study the implications of

- minimal assumptions [Ibarra, Shindou, CS]
- leptogenesis [lbarra, CS]


Correlations under the minimal assumption

- The minimal assumption: No cancellation between terms of different origin.
- \blacktriangleright If both rare τ decays are there, then necessarily also $\mu \to e\,\gamma$

▶ Therefore BR($\mu \rightarrow e\gamma$) ≥ C BR($\tau \rightarrow \mu\gamma$) BR($\tau \rightarrow e\gamma$) C depending on SUSY paramaters and which of Δ^{LL} , Δ^{RR} , Δ^{LR} is leading. Rare Lepton Decays

Taking further – low energy MSSM (SPS1a [Allanach et al.]) – that Δ^{LL} or Δ^{RR} is leading (e.g. in see-saw, GUT)

Constraints in SUSY leptogenesis

Connect different things:

- Iow energy MSSM
- see-saw
 - add heavy right-handed neutrino $\nu_R Y_{\nu} \nu_L H_u^0 \frac{1}{2} \nu_R M \nu_R$
 - effective light neutrino mass: $m_{\nu} = Y_{\nu}^{T} M^{-1} Y_{\nu} \langle H_{u}^{0} \rangle^{2}$
 - flavor off-diagonals induced the soft mass: $m_L^2 \propto Y_{\nu}^{\dagger} \log \frac{M_X}{M} Y_{\nu}$

Still not enough information to draw any conclusion about cLFV.

Constraints in SUSY leptogenesis

Connect different things:

- Iow energy MSSM
- see-saw
 - add heavy right-handed neutrino $\nu_R Y_{\nu} \nu_L H_u^0 \frac{1}{2} \nu_R M \nu_R$
 - effective light neutrino mass: $m_{\nu} = Y_{\nu}^{T} M^{-1} Y_{\nu} \langle H_{u}^{0} \rangle^{2}$
 - flavor off-diagonals induced the soft mass: $m_L^2 \propto Y_
 u^\dagger \log rac{M_X}{M} Y_
 u$
- baryon asymmetry via leptogenesis [Fukugita, Yanagida]
 - See-saw includes possibility of CP violation in decay of $\nu_R \rightarrow$ leptogenesis
 - \blacktriangleright Converted via sphaleron processes into baryon asymmetry \rightarrow baryogenesis
 - Usually final lepton asymmetry from decay of lightest ν_R Then lower bound on its mass M_1 depending on $\tilde{m}_1 = \frac{\langle H_u^o \rangle^2}{M_1} (Y_\nu Y_\nu^\dagger)_{11}$

Still not enough information to draw any conclusion about cLFV.

Current Status

Constraints in SUSY leptogenesis

Even more (but well motivated) assumptions)

- hierarchical Y_{ν}
- absence of cancellations

Current Status

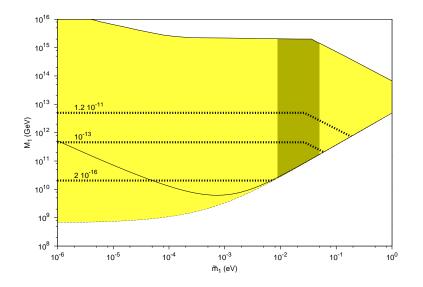
Constraints in SUSY leptogenesis

Even more (but well motivated) assumptions)

- hierarchical Y_{ν}
- absence of cancellations

Implications for the see-saw

- Small BRs of rare decays ↔ small off-diagonals in m²_L ↔ small mixings in the left-handed sector
- ▶ No mixing in left-handed sector \Rightarrow minimal BR($\mu \rightarrow e\gamma$)
- Under the assumptions, from see-saw formulae:
 - ${
 m BR}(\mu o e\gamma) \propto (Y_{\nu})_{11}^4 o {
 m Upper bound on } (Y_{\nu})_{11}$


•
$$M_1 \gtrsim (Y_{\nu})_{11}^2 \frac{\langle H_{\mu}^0 \rangle^2}{\sqrt{\Delta m^2}} \rightarrow \text{Upper bound on } M_1$$

•
$$\tilde{m}_1 \gtrsim \sqrt{\Delta m_{sol}^2}$$

 \Rightarrow Possibility to exclude leptogenesis.

L_{Current Status}

Constraints in SUSY leptogenesis

Summary

- Lepton Flavor is violated! But minimal expected rate in the *v*SM cannot be observed.
- If there is some NP close to the EW scale, it needs a mechanism to suppress cLFV.
- ► Excellent prospects for experimental improvement in $\mu \rightarrow e \gamma$. But still hope to find cLFV in B-factories.
- Although indirect, measurements of cLFV would be a very clean signal of NP and would exclude/constrain models a lot.