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Rare Lepton Decays

Current Status

Expectations from the SM

The old SM

Each Lepton Flavor is symmetry of Lagrangian.
−→ No LFV. Rare lepton decays forbidden.

The SM with ν-masses (νSM)

◮ Neutrino oscillations → LF broken!

◮ Via one loop LFV is induced in charged sector (cLFV)

li

ν

W lj

γ

BR(τ → µγ) > 10−54

◮ Lagrangian of νSM unknown ⇒ Rate of cLFV unknown!
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Current Status

Experimental bounds [King, Long et al.]

Searches for Lepton Number Violation
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Current Status

Experimental bounds

Process BR Process BR
τ → µ γ < 4.5 10−8 µ → e γ < 1.2 10−11

τ → µ µ µ < 3.2 10−8 µ → e e e < 1.0 10−12

τ → µ meson . 5 10−8 µ Ti → e Ti
σ

LFV

σcapture < 4.3 10−12

Similar for τ → e . . . [PDG 2008, Belle]

−→ Bounds comparable within each flavor
−→ No chance to go down to νSM lower bound
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Model Independent Parametrization

Parametrization of the Unknown

L ⊃ emlj

Λ2
D

l̄iσ
µν ljFµν + Dipole, leads to τ → µγ

1
Λ2

L

l̄i lj l̄i li + 4 Fermi, leads to τ → µ µ µ

1
Λ2

Q

l̄i lj q̄iqi 4 Fermi, τ → µ meson / Conversion
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Parametrization of the Unknown

L ⊃ emlj

Λ2
D

l̄iσ
µν ljFµν + Dipole, leads to τ → µγ

1
Λ2

L

l̄i lj l̄i li + 4 Fermi, leads to τ → µ µ µ

1
Λ2

Q

l̄i lj q̄iqi 4 Fermi, τ → µ meson / Conversion

From experiment Λµe
D & 300 TeV Λτµ

D & 20 TeV

⇒ Constraints on New Physics (NP) at very high scales
(More detailed treatment on next slide)
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Model Independent Parametrization

Parametrization of the Unknown

L ⊃ emlj

Λ2
D

l̄iσ
µν ljFµν + Dipole, leads to τ → µγ

1
Λ2

L

l̄i lj l̄i li + 4 Fermi, leads to τ → µ µ µ

1
Λ2

Q

l̄i lj q̄iqi 4 Fermi, τ → µ meson / Conversion

From experiment Λµe
D & 300 TeV Λτµ

D & 20 TeV

⇒ Constraints on New Physics (NP) at very high scales
(More detailed treatment on next slide)

If there is any source of cLFV, the others will be induced:
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Implications for New Physics

Constraints on the scale of NP

Constraining the scale of NP

Bounds on effective couplings translate into a bound on the scale
of NP depending on the suppression at work. Typically:

◮ Non-maximal flavor mixing: ΛNP > Λijθij

◮ loop-suppression: ΛNP >
√

αΛ

◮ maybe additional GIM suppression: ΛNP >
√

α
√

∆m2

ΛNP Λ

In some models:

◮ Triplet Higgs: flavor mixing: (ΛTH)2 > (100 TeV)2 × Y11Y12

◮ Anarchic Randall Sundrum: flavor mixing “known”:
ΛRS > 3 TeV

◮ SUSY: loop suppression, flavor mixing:

(ΛSUSY)2 > (30 TeV)2× m2
µe

(ΛSUSY)2
, (2 TeV)2× m2

τµ

(ΛSUSY)2
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Implications for New Physics

Model discriminating power

Model discrimination with cLFV

What do we learn about underlying models, if

◮ cLFV is found?
→Need additionally scale of NP to draw any conclusion.

◮ cLFV is found in several processes within the same flavor
violation?
→This determines ratios of effective couplings. Lots of
models can typically be ruled out.

◮ cLFV is found in different flavor violations?
→Can rule out models, where cLFV in different flavors are
connected.
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Implications for New Physics

Model discriminating power

Model discrimination with upcoming data

◮ BaBar and Belle continue to search for τ -cLFV. In case of a
positive signal

◮ Lots of different processes measured with similar accuracy
◮ We would know that τ -cLFV ≫ µ-e-cLFV

⇒ Great model discrimination!

◮ MEG at PSI is running and will soon provide information
about µ → eγ. In case of a positive signal

◮ µ → eγ the only found, but µ → e e e already well measured.
◮ Measurement of the dependence on the muon chirality

possible.

⇒ Good model discrimination!
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Implications for New Physics

Some examples of NP

Triplet Higgs model [Schechter, Valle]

◮ Introduce SU(2) triplet (∆++,∆+,∆0), lepton number −2.
L ⊃ 1

2Yij L̄
c
i ∆Lj

◮ 〈∆0〉 6= 0 ⇒ neutrino masses mν = Y 〈∆0〉
◮ Tree level cLFV diagram

µ e

e e
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Implications for New Physics

Some examples of NP

Triplet Higgs model [Schechter, Valle]

◮ Introduce SU(2) triplet (∆++,∆+,∆0), lepton number −2.
L ⊃ 1

2Yij L̄
c
i ∆Lj

◮ 〈∆0〉 6= 0 ⇒ neutrino masses mν = Y 〈∆0〉
◮ Tree level cLFV diagram

Predictions [Kakizaki, Ogura, Shima]

◮ Negligible τ -cLFV

◮ cLFV only in left-handed sector

◮ µ → e e e more frequently than muon conversion

µ e

e e
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Implications for New Physics

Some examples of NP

Anarchic Randall Sundrum model
[Agashe et al.]

◮ Add small extra dimension with
warped geometry
ds2 = e−2kyηµνdxµdxν − dy2

◮ Higgs at IR-brane, gauge fields and fermions in the bulk.
4D Yukawas from fermion shape functions on IR-brane

◮ anarchic 5D-Yukawas, different localizations in small dim.
⇒ Hierarchical pattern of Yukawas

◮ Non-universal couplings of KK gauge bosons to fermions
⇒ cLFV at tree level.
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Implications for New Physics

Some examples of NP

Anarchic Randall Sundrum model
[Agashe et al.]

◮ Add small extra dimension with
warped geometry
ds2 = e−2kyηµνdxµdxν − dy2

◮ Higgs at IR-brane, gauge fields and fermions in the bulk.
4D Yukawas from fermion shape functions on IR-brane

◮ anarchic 5D-Yukawas, different localizations in small dim.
⇒ Hierarchical pattern of Yukawas

◮ Non-universal couplings of KK gauge bosons to fermions
⇒ cLFV at tree level.

Predictions

Scale (=naturalness) of this scenario already probed!
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Implications for New Physics

Some examples of NP

SUSY

◮ unbroken SUSY: no new couplings ⇒ no cLFV

◮ broken SUSY (R-Parity conserved):
Generation of scalar masses and trilinears

L ⊃ l̃∗Lim
2
Lij l̃

∗
Lj + l̃∗Rim

2
Rij l̃

∗
Rj + l̃∗RiAij l̃

∗
LjH

0
d

cLFV might be introduced via SUSY
breaking or afterwards

◮ Leading cLFV diagram

li

χ0

l̃i ljl̃j

γ
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Implications for New Physics

Some examples of NP

SUSY

◮ unbroken SUSY: no new couplings ⇒ no cLFV

◮ broken SUSY (R-Parity conserved):
Generation of scalar masses and trilinears

L ⊃ l̃∗Lim
2
Lij l̃

∗
Lj + l̃∗Rim

2
Rij l̃

∗
Rj + l̃∗RiAij l̃

∗
LjH

0
d

cLFV might be introduced via SUSY
breaking or afterwards

◮ Leading cLFV diagram

Predictions

Dipole operator dominant.

li

χ0

l̃i ljl̃j

γ
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Some Constraints on SUSY theories

Correlations between different flavor violations

Definition

∆LL = m2
L, ∆RR = m2

R , ∆LR = (∆RL)† = A〈H0
d〉,
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Some Constraints on SUSY theories

Correlations between different flavor violations

Definition

∆LL = m2
L, ∆RR = m2

R , ∆LR = (∆RL)† = A〈H0
d〉,

Is it really impossible to relate different flavor violations?

From a low energy perspective, ∆τµ, ∆τe , ∆µe uncorrelated.
⇒Yes!
Need to impose additional assumptions.



Rare Lepton Decays

Some Constraints on SUSY theories

Correlations between different flavor violations

Definition

∆LL = m2
L, ∆RR = m2

R , ∆LR = (∆RL)† = A〈H0
d〉,

Is it really impossible to relate different flavor violations?

From a low energy perspective, ∆τµ, ∆τe , ∆µe uncorrelated.
⇒Yes!
Need to impose additional assumptions.

Plan for the remainder of the talk

Study the implications of

◮ minimal assumptions [Ibarra, Shindou, CS]

◮ leptogenesis [Ibarra, CS]
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Some Constraints on SUSY theories

Correlations under the minimal assumption

Correlations under the minimal assumption

◮ The minimal assumption:
No cancellation between terms of different origin.

◮ If both rare τ decays are there, then necessarily also µ → e γ

µ

χ0

l̃µ
e

l̃τ l̃e

γ

∆µτ ∆τe

◮ Therefore BR(µ → eγ) & C BR(τ → µγ) BR(τ → eγ)
C depending on SUSY paramaters and which of ∆LL, ∆RR ,
∆LR is leading.
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Current Status

Taking further – low energy MSSM (SPS1a [Allanach et al.])
– that ∆LL or ∆RR is leading (e.g. in see-saw, GUT)
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Current Status

Constraints in SUSY leptogenesis

Constraints in SUSY leptogenesis
Connect different things:

◮ low energy MSSM

◮ see-saw
◮ add heavy right-handed neutrino νRYννLH

0
u − 1

2νRMνR

◮ effective light neutrino mass: mν = Y T
ν

M−1Yν〈H0
u 〉2

◮ flavor off-diagonals induced the soft mass: m2
L ∝ Y †

ν
log MX

M
Yν

Still not enough information to draw any conclusion about cLFV.
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Constraints in SUSY leptogenesis

Constraints in SUSY leptogenesis
Connect different things:

◮ low energy MSSM

◮ see-saw
◮ add heavy right-handed neutrino νRYννLH

0
u − 1

2νRMνR

◮ effective light neutrino mass: mν = Y T
ν

M−1Yν〈H0
u 〉2

◮ flavor off-diagonals induced the soft mass: m2
L ∝ Y †

ν
log MX

M
Yν

◮ baryon asymmetry via leptogenesis [Fukugita, Yanagida]
◮ See-saw includes possibility of CP violation in decay of νR

→ leptogenesis
◮ Converted via sphaleron processes into baryon asymmetry

→ baryogenesis
◮ Usually final lepton asymmetry from decay of lightest νR

Then lower bound on its mass M1 depending on

m̃1 =
〈Ho

u 〉
2

M1
(YνY †

ν
)11

Still not enough information to draw any conclusion about cLFV.
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Current Status

Constraints in SUSY leptogenesis

Even more (but well motivated) assumptions)

◮ hierarchical Yν

◮ absence of cancellations
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Current Status

Constraints in SUSY leptogenesis

Even more (but well motivated) assumptions)

◮ hierarchical Yν

◮ absence of cancellations

Implications for the see-saw

◮ Small BRs of rare decays ↔ small off-diagonals in m2
L ↔

small mixings in the left-handed sector

◮ No mixing in left-handed sector ⇒ minimal BR(µ → eγ)

◮ Under the assumptions, from see-saw formulae:
◮ BR(µ → eγ) ∝ (Yν)411 → Upper bound on (Yν)11

◮ M1 & (Yν)211
〈H0

u〉
2√

∆m2
sol

→ Upper bound on M1

◮ m̃1 &
√

∆m2
sol

⇒ Possibility to exclude leptogenesis.
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Current Status

Constraints in SUSY leptogenesis
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Summary

Summary

◮ Lepton Flavor is violated! But minimal expected rate in the
νSM cannot be observed.

◮ If there is some NP close to the EW scale, it needs a
mechanism to suppress cLFV.

◮ Excellent prospects for experimental improvement in µ → e γ.
But still hope to find cLFV in B-factories.

◮ Although indirect, measurements of cLFV would be a very
clean signal of NP and would exclude/constrain models a lot.
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