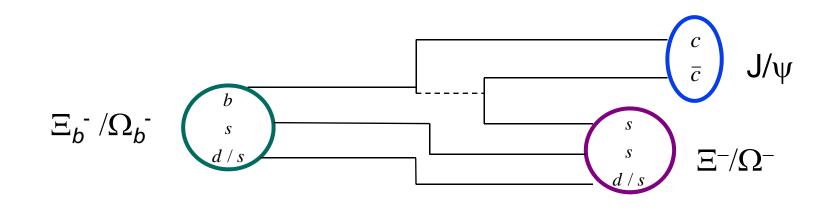
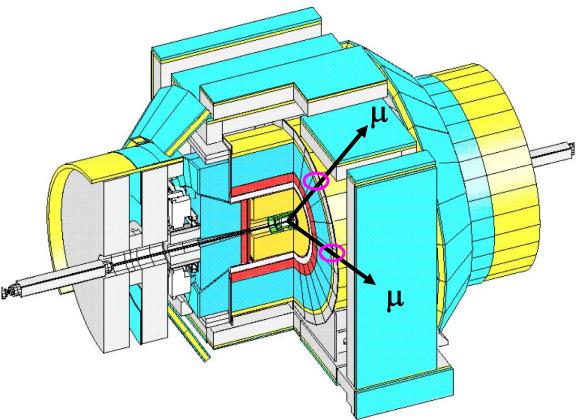

Observation of the Ω_b^- at CDF [or, story of a doubly-strange baryon]

Giovanni Punzi INFN-Pisa and FNAL for The CDF Collaboration FPCP, May 28-Jun 1 2009


Bottom Baryon Ground States

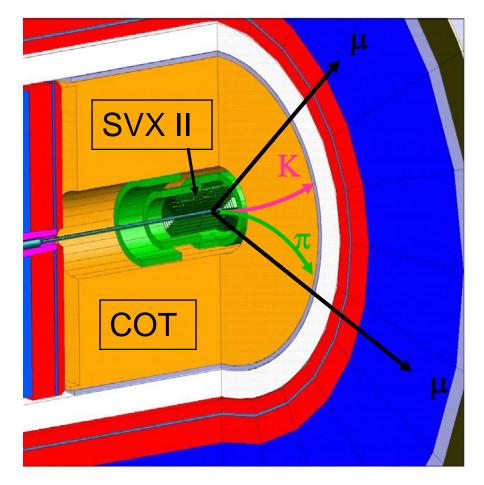
- Our knowledge of *b*-baryons has greately expanded in the last ~2 years
- This is totally a Tevatron field
 - > $\Sigma_{b}^{(*)+}$ and $\Sigma_{b}^{(*)-}$ observed by CDF in 2007 –
 - > $\Xi_{\rm b}^{-}$, observed by D0, CDF 2007
 - $\succ \Omega_{\rm b}^{-}$, observed by D0 in 2008
- This talk is the CDF report on Ω_b [arXiv:0905.3123]
- The CDF analysis of $\Omega_{\rm b}$ is actually a comprehensive analysis of the properties of weakly-decaying *b*-baryons $\Xi_{\rm b}^{-}$, $\Omega_{\rm b}^{-}$, $(\Lambda_{\rm b})$
- Similar, fully reconstructed J/ψ modes: convenient way to cross check.

J = 1/2 b Baryons

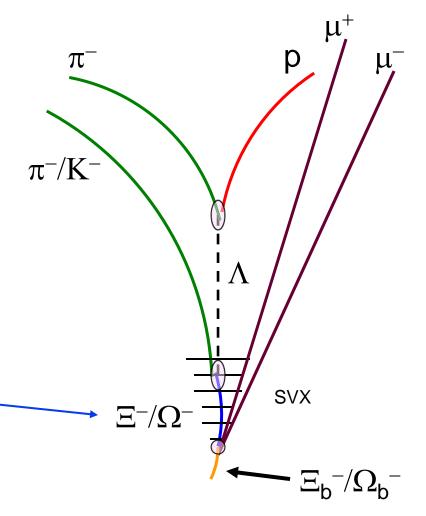

- We search for the Ξ_{b}^{-} and Ω_{b}^{-} through the processes
 - \succ $\Xi_{b}^{-} \rightarrow J/\psi \Xi^{-}, J/\psi \rightarrow \mu^{+}\mu^{-}, \Xi^{-} \rightarrow \Lambda \pi^{-}$
 - $\succ \ \Omega_{\rm b}^{-} \rightarrow {\rm J}/\psi \ \Omega^{-}, \ {\rm J}/\psi \rightarrow \mu^{+}\mu^{-}, \ \Omega^{-} \rightarrow \Lambda {\rm K}^{-}$
- The data set is from di-muon trigger
 - > $J/\psi \rightarrow \mu^+\mu^-$ in the final state

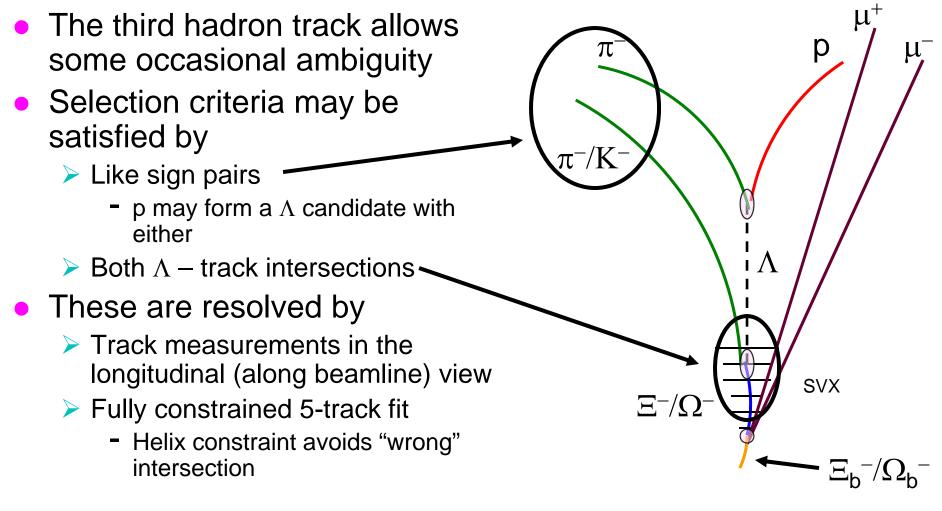
- This data set contains many bmeson candidates
- Therefore, the mesons are used throughout, to cross check the measurements.

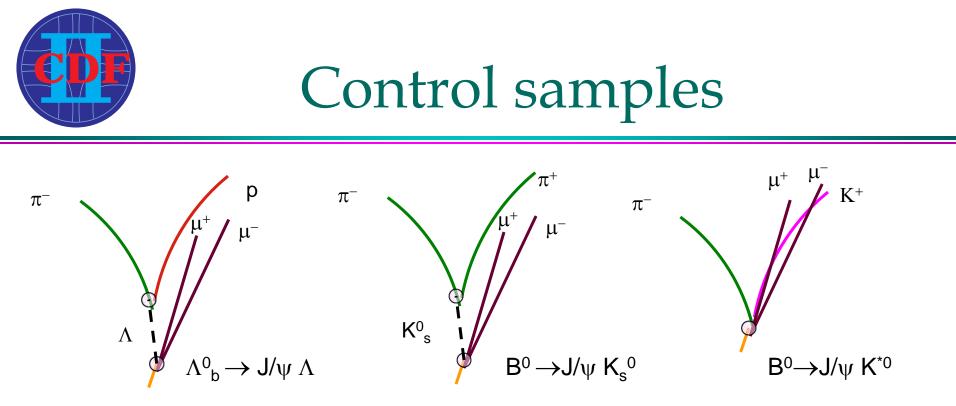
The CDF II Detector


- The data used in this analysis was collected with the CDF II Detector.
 - This analysis uses data from 4.2 fb⁻¹.
- The trigger requires
 - Tracks in muon chambers
 - Tracks in the central tracking chamber (COT) (p_T>1.5 GeV)
 - > 2.7<M(µ⁺µ⁻)<4.0 GeV/c²</p>
- Unbiased with respect to decay time for *b*-hadrons

The CDF II Detector

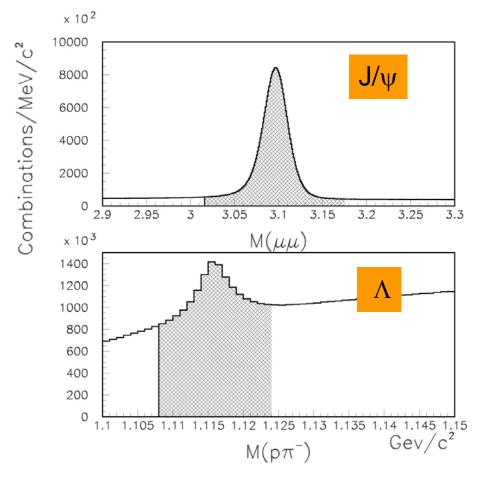

- Events that satisfy the trigger are fully analyzed.
- Track reconstruction identifies all tracks with p_T>0.4 GeV/c
- Three SVX II measurements are required for muon tracks.
 Not used for p/K/π tracks


$\Xi_{\rm b}^{-}/\Omega_{\rm b}^{-}$ Reconstruction


- **5**-track, 3-vertex fit
 - > $\mu^+\mu^-$ are constrained to J/ ψ mass
 - Hadron trajectories constrained to appropriate topologies
 - > Reconstructed Ξ^- / Ω^- constrained to originate from the $\mu^+\mu^-$ intersection.
- The long life of the Ξ⁻ and Ω⁻ opens the possibility of seeing the hits left in the Silicon detector (more on this later)

$\Xi_{\rm b}^{-}/\Omega_{\rm b}^{-}$ Reconstruction

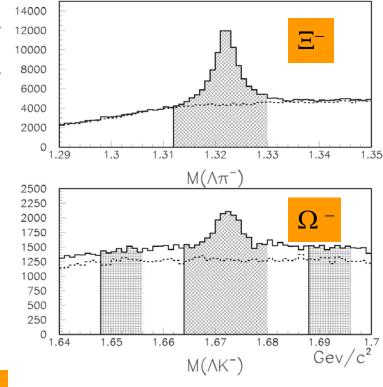
 Measurements of B⁰ properties provide a cross check.


> Also the Λ_b^0 , the most plentiful *b*-baryon

Reconstruction is very similar for these.

J/ψ and Λ Samples

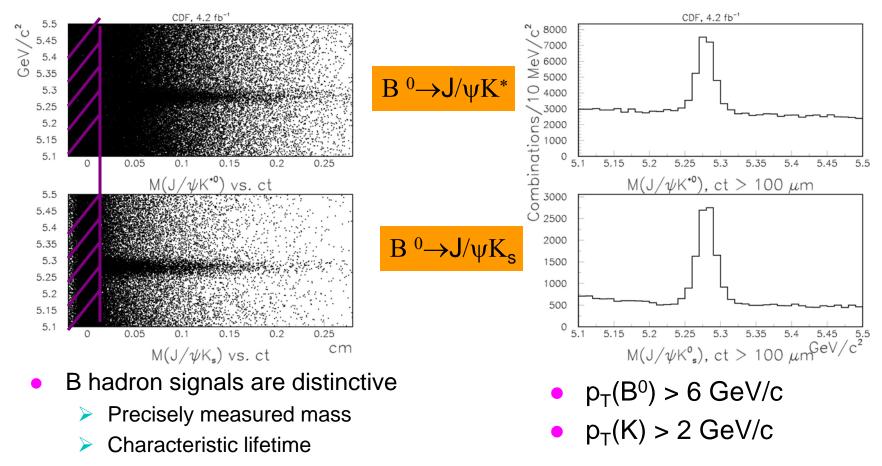
- The analysis is based on data collected from 4.2 fb⁻¹ of collisions.
 - **≻** 29 M J/ψ
- For Λ in the J/ ψ sample,
 - Require decay position > 1 cm transverse from the collision.
 - ▷ p_T > 2.0 GeV/c
 - **>** 3.6 M Λ
- Shaded areas define the mass ranges used for *b*-hadron selection.



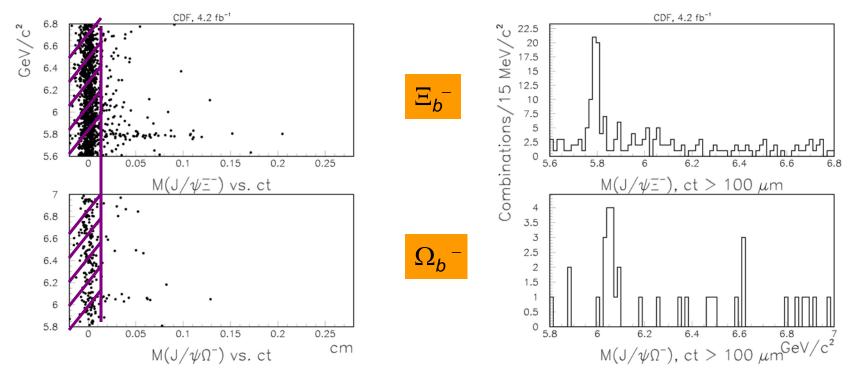
Inclusive Ξ^{-}/Ω^{-} Sample

Combinations/MeV/

- The base sample is given by
 - ▶ 1.1077<M(πp)<1.1237</p>
 - ▶ P_T(Ξ/Ω)>2.0
 - > Flight($\Lambda/\Xi^{-}/\Omega^{-}$) > 1 cm
 - > Impact(Ξ^{-}/Ω^{-}) < 3σ
 - ▶ P(χ²) > 10⁻⁴
 - > $P(\chi^2)_{used}$ > $P(\chi^2)_{swapped}$
 - > Veto 1.311<M($\Lambda\pi$)<1.331 for Λ K sample (Ξ^- reflection)
- Yields in the J/ψ sample:

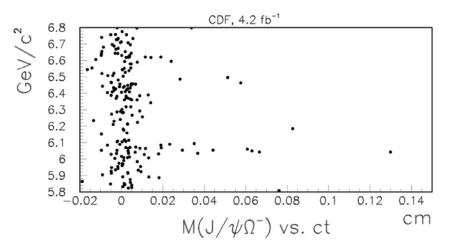

 Σ⁻: 41,000
 Ω⁻: 3,500
 Large samples ! Compare D0:
 ~1150 Ξ⁻ ~150 Ω⁻

- > Dashed histograms are $\Lambda \pi^+/K^+$
- Shaded are selection and sideband regions


b-meson signals

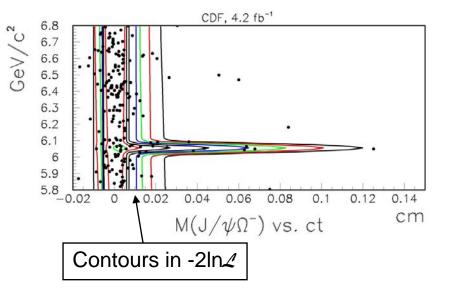
ct > 100 μm removes most prompt background

b-baryon signals



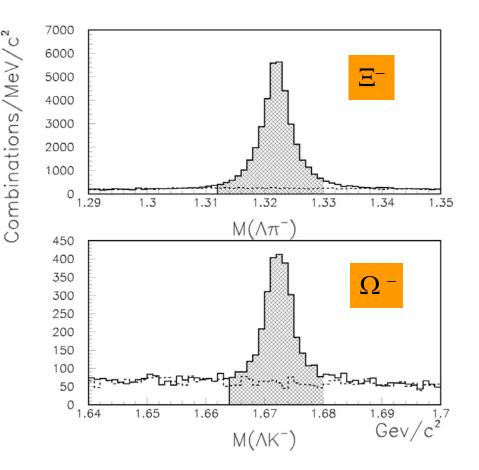
- $J/\psi \Xi^-$, $J/\psi \Omega^-$ samples
 - > Obvious Ξ_{b}^{-} signal when $ct > 100 \ \mu m$
 - > Cluster in the J/ $\psi \Omega^2$ around 6.05 GeV/c² test its significance

Ω_b⁻ Significance – Mass/Decay Time Distribution Test


- Ratio of likelihoods of the mass-decay time distribution.
 - P.D.F in mass is Gaussian signal and a flat background.
 - P.D.F. in time is resolution smeared
 - Exponential(τ_0) for signal
 - Exponential(\u03c6_b) for b-background
 - Delta function for prompt background
 - Fit freely, and with the null hypothesis

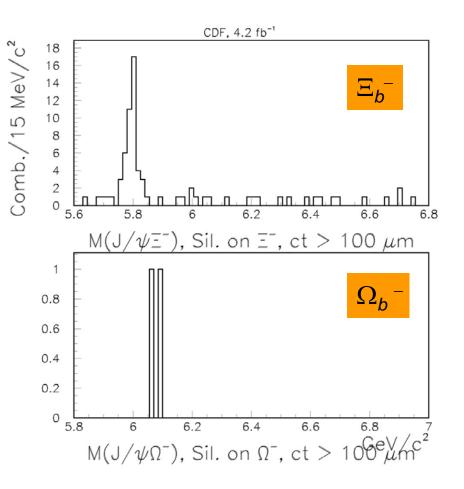
Ω_b⁻ Significance – Mass/Decay Time Distribution Test

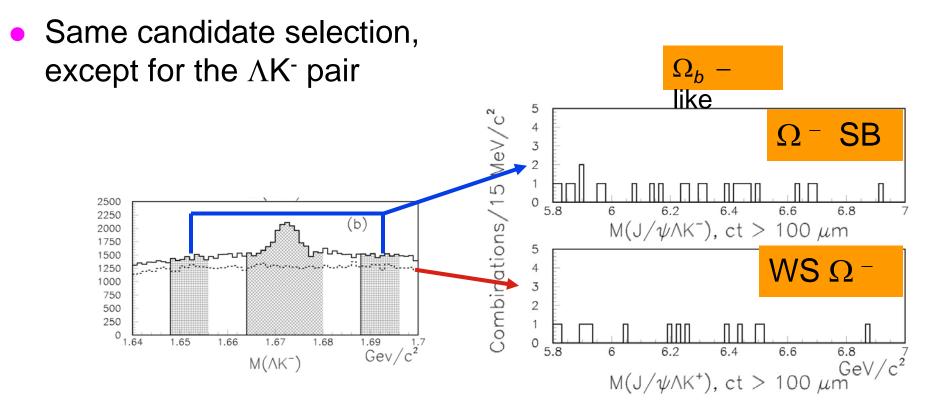
- Ratio of likelihoods of the mass-decay time distribution.
 - P.D.F in mass is Gaussian signal and a flat background.
 - P.D.F. in time is resolution smeared
 - Exponential(τ_0) for signal
 - Exponential(τ_b) for b-background
 - Delta function for prompt background
 - Fit freely, and with the null hypothesis $\wedge 2 \ln 2 = 37.3$



- Interpreted as $P(\chi^2)$ with 3 d.o.f. = 4.0 10⁻⁸ \Rightarrow **5.5** σ
- Prudent evaluation, accounts for "look-elsewhere" effect

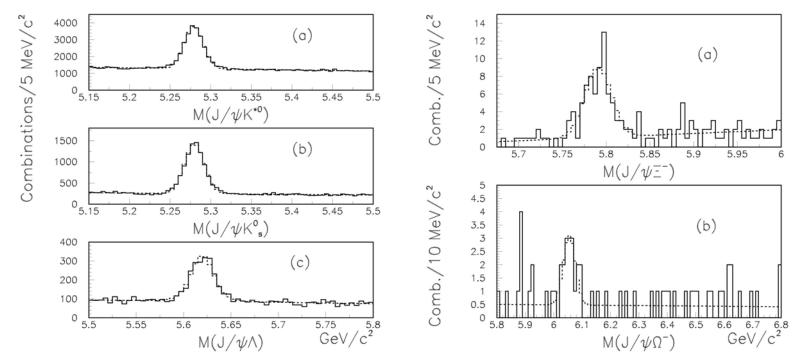
Cross-check 1: require Ξ^{-}/Ω^{-} hits in the detector

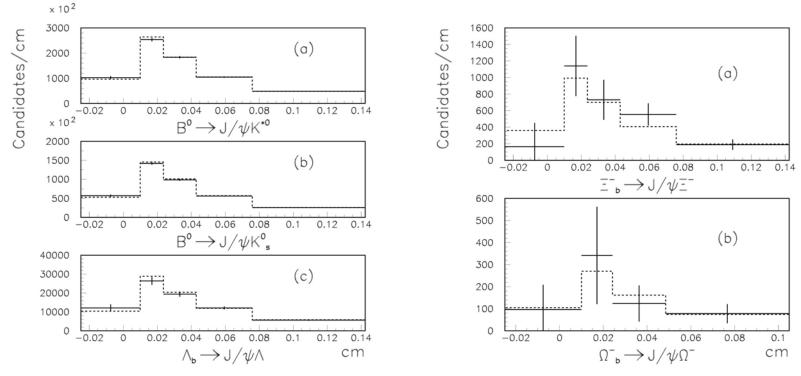

- Inclusive $\Lambda \pi$ and ΛK with previous selection and silicon hit on the Ξ^{-}/Ω^{-} track
- Shaded areas are our mass selection ranges.
 - Shorter lifetime of the Ω⁻
 (1" vs. 2") implies lower efficiency
 - Many decay before reaching the silicon detector.



Cross-check 1: require Ξ^{-}/Ω^{-} hits in the detector

- Inclusive $\Lambda \pi$ and ΛK with previous selection and silicon hit on the Ξ^{-}/Ω^{-} track
- Obvious Ξ_b⁻ signal
- Just 2 Ω_b candidates (low acceptance), but mass consistent with the main selection




Mass and Lifetime Measurements

Masses and lifetimes calculated for 5 final states
 > 3 are references (B⁰ in K^{*0} and K_s⁰ final states and Λ_b⁰)
 > 2 are results (Ξ_b⁻, Ω_b⁻)

Lifetime Measurements, Data and Fits

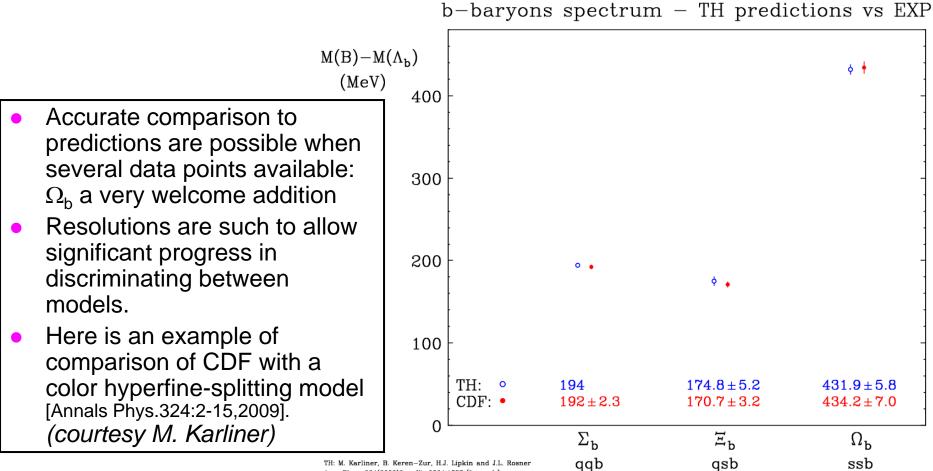
- Binned lifetime fit distributions
 - Each bin comes from an independent fit to the mass distribution
 - Dashed lines are fit projections

Mass and Lifetime Results

		Mass (MeV)	Lifetime(µm)	
	$B^{0}(K^{*0})$	5279.2 ± 0.2	453 ± 6	
References -	$B^{0}(K_{s}^{0})$	5280.2 ± 0.2	448 ± 7	
	Λ_{b}	5620.3 ± 0.5	472 ± 17	_
	Ξ _b	5790.9 ± 2.6	468 ⁺⁸² ₋₇₄	
	Ω_{b}	6054.4 ± 6.8	340 +160 -120	≻ Results

• Systematic uncertainty on mass – 0.8 (Ξ_{b}^{-}) and 0.9(Ω_{b}^{-}) MeV/c²

- > 0.55 MeV from $B^0(K_s)$ error scale by 80% for kinetic energy in the decay
- > 0.5 MeV from Λ_{b} resolution treatment (considered largest possible)
- \succ 0.3 MeV from Ω^- mass
- Systematic uncertainty on lifetime 1.3% overall
 - > 2 μ m from σ^{ct} treatment range is 15-40 μ m in B⁰
 - 5 µm from binning



Results

• Masses:

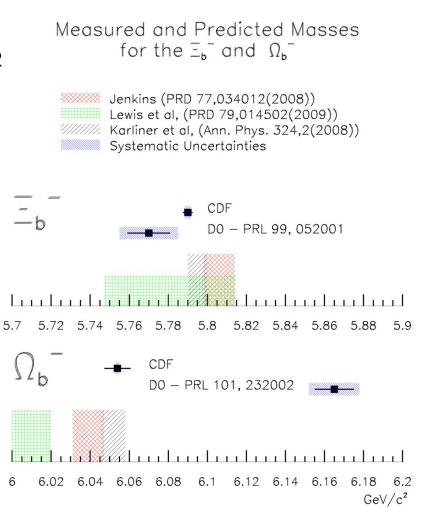
- $\geq \Xi_{b}^{-}$: 5790.9 ± 2.6(stat.) ± 0.9(syst.) MeV/c²
 - 2.0 MeV/c² shift from 1.9 fb⁻¹ measurement [PRL 99,052002(2007)]
- $\geq \Omega_{b}^{-}$: 6054.4 ± 6.8(stat.) ± 0.9(syst.) MeV/c²
- Lifetimes:
 - $\geq \Xi_{b}^{-}$: 1.56^{+0.27}_{-0.25}(stat.) ± 0.02(syst.) ps
 - First in a fully reconstructed state.
 - $\geq \Omega_{b}^{-1}$: 1.13^{+0.53}-0.40(stat.) ± 0.02(syst.) ps
 - First ever

Improving our understanding of hadron dynamics

Ann. Phys. 324(2009)2, arXiv:0804.1575 [hep-ph]

Production Rate Measurements

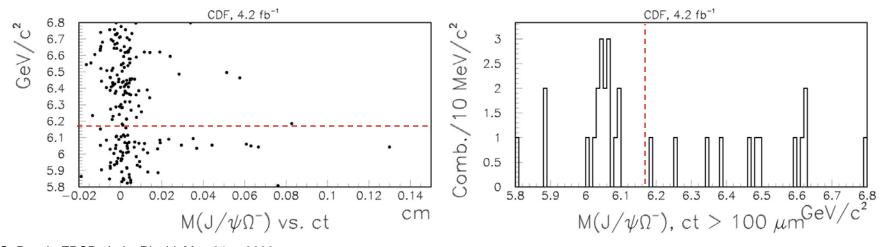
- We have access to the product of cross section times BR.
 - > We measure ratios with respect to the Λ_{b} , only *b*-baryon with a large sample
- Issues:
 - Experiment's acceptance is p_T dependent
 - Cross section is p_T dependent
 - Unknown assume Λ_{b} distribution (no systematics)
 - Limited data sample requires integration over p
- Combine acceptance with yields:
 - > Λ_b⁰: 1812 ± 61
 - ≻ Ξ_b⁻: 66⁺¹⁴-9
 - $\succ \Omega_{\rm b}^{-1}: 16^{+6}_{-4}$


Results:

 $\frac{\sigma B(\Xi_b^- \to J/\psi \Xi^-)}{\sigma B(\Lambda_b \to J/\psi \Lambda)} = 0.167^{+0.037}_{-0.025}$ $\frac{\sigma B(\Omega_b^- \to J/\psi \Omega^-)}{\sigma B(\Lambda_b \to J/\psi \Lambda)} = 0.045^{+0.017}_{-0.012}$

Are we seeing the same Ω_b as D0?

- We find: M(Ω_b⁻) = 6054.4 ±6.8 ±0.9 MeV/c²
- D0 finds [PRL 101, 232002(2008)]: $M(\Omega_b^-) = 6165 \pm 10 \pm 13 \text{ MeV/c}^2$
- $M(\Omega_b)_{D0} M(\Omega_b)_{CDF} =$ 111±12±14 MeV/c²
 - Significant disagreement (6-sigma)
- Agreement on Ξ_b[−]
 - Does not look like a scale problem


What about rates ?

D0

$$\frac{f(b \to \Omega_b^-) B(\Omega_b^- \to J/\psi \Omega^-)}{f(b \to \Xi_b^-) B(\Xi_b^- \to J/\psi \Xi^-)} = 0.80 \pm 0.32^{+0.14}_{-0.22}$$

$$\frac{\sigma B(\Omega_b^- \to J/\psi\Omega^-)}{\sigma B(\Xi_b^- \to J/\psi\Xi^-)} = 0.27 \pm 0.12 \pm 0.01$$

- Not very useful: the D0 number is less than 3 sigma from zero, although significance > 5 sigma (non-gaussian uncertainty is misleading)
- A D0 measurement relative to Λ_{b} would be helpful
- Scaling the yields, we were expecting to see ~50 events in our plots

Conclusions

- CDF started out in a search for D0's $\Omega_{\rm b}$, but eventually found its own.
- It's always good to have several experiments do the same measurement.
- Both results look convincing: solution of the "doubly-strange" baryon puzzle can only come from more measurements:
 - CDF other channels?
 - D0 has more data on tape: analyzed 1.3 fb-1
 - Tevatron will soon double the current sample
- These measurements are useful: can be compared with theory predictions of similar precision to improve our understanding.