

Measurement of the CKM angle γ/ϕ_3

Matteo Rama Laboratori Nazionali di Frascati

Flavor Physics & CP Violation 2009

May 27 - June 1, 2009, Lake Placid, NY, USA

Quarks mixing and CKM matrix

The electroweak coupling strength of W[±] to quarks is described by the CKM matrix

$$-\mathcal{L}_{W^{\pm}} = \frac{g}{\sqrt{2}} \overline{u_{Li}} \gamma^{\mu} (V_{\text{CKM}})_{ij} d_{Lj} W^{+}_{\mu} + \text{h.c.} \qquad \underbrace{W^{+}}_{V_{ij}} \overbrace{\overline{d}}_{j} = \overline{d}, \overline{s}, \overline{b}$$

 3x3 unitary matrix → 4 parameters (after ad hoc choice of quark field phases): 3 real and I CP violating phase

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

$$(\bar{\rho}, \bar{\eta})$$

V is unitary: VV⁺=I

 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

(0, 0)

(0.1)

Why measure γ

Importance of over-constraining the CKM matrix

- precise measurement of Standard Model parameters
- search for evidence of New Physics in discrepancies of redundant measurements
 constraint with 75ab⁻¹

• CP violating parameter γ can be measured in tree decays

- assuming that New Physics does not change tree-level processes, its determination is not affected by New Physics
- together with the measurement of $|V_{ub}/V_{cb}|$ it gives a constraint in the rho-eta plane that must be met by any New Physics model

How to measure a phase

Phases are measured in the interference of two amplitudes

$$|A_{\text{tot}}|^{2} = |A_{1} + A_{2}e^{i\phi}|^{2} = A_{1}^{2} + A_{2}^{2} + 2A_{1}A_{2}\cos\phi$$

- \blacktriangleright The unknowns are: $\gamma,\ r_{b}$ and δ
- ► Same principle applies to several other processes: $B^0 \rightarrow D^{(*)+}\pi^-$, $B^0 \rightarrow D^0 K^{(*)0}$, $B_s \rightarrow D_s K$, ...

Current experiments

- asymmetric e+e- colliders PEP-II (US) and KEK (Japan) at Y(4S) CM energy
- ▶ Y(4S) \rightarrow BB decays detected by general purpose BaBar and Belle detectors

Methods using $B \rightarrow DK$ decays

GLW:

• D⁰ mesons reconstructed into two-body CP eigenstates K^+K^- , $\pi^+\pi^-$ (even), $K_s\pi^0$, $K_s\omega$ (odd)

ADS:

 D⁰ mesons reconstructed into doubly Cabibbo suppressed decays K⁺π⁻, K⁺π⁻π⁰, ...

Dalitz (GGSZ):

• D⁰ mesons reconstructed into 3-body decays $K_s \pi^+ \pi^-$, $K_s K^+ K^-$, $\pi^+ \pi^- \pi^0$, etc. and Dalitz plot fitted to determine how the strong phase of D⁰ decay amplitude varies in the Dalitz plane

most powerful method nowadays

- Different B decays $D^{0}K^{\pm}$, $D^{*0}K^{\pm}$, $D^{0}K^{*\pm}$ and flavour-tagged $D^{0}K^{*0}$. They depend on different hadronic factors (r_{b}, δ_{b})
- Strategy: combine as many channels as possible to improve the overall sensitivity to γ

Dalitz method

D.Atwood et al., PRL78, 3257 (1997); A. Giri et al., PRD68, 054018 (2003)

The interference varies as function of the position in the D⁰ Dalitz plot

Dalitz: reconstructed modes

D

Dalitz: results

• Extract the cartesian coordinates instead of γ , r_b , δ_b (likelihood unbiased and Gaussian-shaped with x,y)

 $\Gamma(B^{+}) \propto \left| f_{+} \right|^{2} + (x_{+}^{2} + y_{+}^{2}) \left| f_{-} \right|^{2} + 2x_{+} \operatorname{Re}(f_{+}f_{-}^{*}) + 2y_{+} \operatorname{Im}(f_{+}f_{-}^{*})$ $\Gamma(B^{-}) \propto \left| f_{-} \right|^{2} + (x_{-}^{2} + y_{-}^{2}) \left| f_{+} \right|^{2} + 2x_{-} \operatorname{Re}(f_{-}f_{+}^{*}) + 2y_{-} \operatorname{Im}(f_{-}f_{+}^{*})$ $f_{\mp} \equiv A_{D}(m_{\mp}^{2}, m_{\pm}^{2})$

$$x_{\mp} = r_B \cos(\delta_B \mp \gamma)$$
$$y_{\mp} = r_B \sin(\delta_B \mp \gamma)$$

 (x_{\pm},y_{\pm}) 4 variables, 3 indep. $x_{+}^{2}+y_{+}^{2}=x_{-}^{2}+y_{-}^{2}$

Dalitz: from x,y to $\gamma(\phi_3)$

• Use frequentist method to obtain the physical parameter γ , r_b , δ_b from (x,y)

stat

syst model

Dependence on r_b of $\sigma(\gamma)$

 $B^+ \to D^* K^+$

- The error on γ scales roughly as $1/r_b$
- This is the origin of the large difference in the statistical errors of BaBar and Belle

 $B^+ \rightarrow DK^+$

Parameter

B	same x,y errors but smaller r_b \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	$\frac{y}{40}$
2 2 R .	Parameters $B^- \rightarrow \tilde{D}^0 K^ x, x^*, x_{s-}$ $0.090 \pm 0.043 \pm 0.015 \pm 0.011$ y, y^*, y_{s-} $0.053 \pm 0.056 \pm 0.007 \pm 0.015$ x_+, x_+^*, x_{s+} $-0.067 \pm 0.043 \pm 0.014 \pm 0.011$ y_+, y_+^*, y_{s+} $-0.015 \pm 0.055 \pm 0.006 \pm 0.008$	errors on x,y are comparable
2 2 R.	$r_b(DK) = 0.086 \pm 0.035$	central values of r _b are significantly dfferent

GLW method

M. Gronau, D. London, D. Wyler, PLB253,483 (1991); PLB 265, 172 (1991)

- D⁰ to K⁺K⁻, $\pi^+\pi^-$ (CP+) and Ks π^0 , Ks ω , Ks ϕ (CP-)
- ▶ measure B⁺ and B⁻ yields to determine the GLW observables:

$$R_{CP\pm} \equiv \frac{\Gamma(B^- \to D_{CP\pm}^0 K^-) + \Gamma(B^+ \to D_{CP\pm}^0 K^+)}{2\Gamma(B^- \to D^0 K^-)} = 1 \pm 2r_b \cos\gamma\cos\delta_b + r_b^2$$

$$A_{CP\pm} = \frac{\Gamma(B^- \to D_{CP\pm}^0 K^-) - \Gamma(B^+ \to D_{CP\pm}^0 K^+)}{\Gamma(B^- \to D_{CP\pm}^0 K^-) + \Gamma(B^+ \to D_{CP\pm}^0 K^+)} = \pm 2r_b \sin\gamma\sin\delta_b / R_{CP\pm}$$

GLW-Dalitz relation:

4 observables

(3 independent),3 unknowns:

 r_b, δ_b, γ

GLW results

HFAG: http://www.slac.stanford.edu/xorg/hfag/

<u>D⁰K GLW results can be translated into $x_{+} = -0.082 \pm 0.045$, $x_{-} = 0.103 \pm 0.045$, $r_{b}^{2} = 0.08 \pm 0.07$ </u>

Exercise:

* Gershon@CKM08

Combining GLW & Dalitz gives $x_{+} = -0.085 \pm 0.026$, $x_{-} = 0.103 \pm 0.027$

 $x_{-} - x_{+} = 0.189 \pm 0.037$ 5.1 σ from zero*

GLW + Dalitz w/o model error

ADS method

D. Atwood, I. Dunietz, A. Soni, PRL 78, 3357 (1997)

• D⁰ to K⁺ π^- , K⁺ $\pi^-\pi^0$ or K⁺ $\pi^+\pi^+\pi^-$ (doubly-suppressed)

measure B⁺ and B⁻ yields to determine the ADS observables:

$$R_{ADS} = \frac{\Gamma(B^- \to D[\to f]K^-) + \Gamma(B^+ \to D[\to \overline{f}]K^+)}{\Gamma(B^- \to D[\to \overline{f}]K^-) + \Gamma(B^+ \to D[\to f]K^+)} = r_b^2 + r_D^2 + 2r_b r_D \cos(\delta_b + \delta_D) \cos\gamma$$

$$A_{ADS} = \frac{\Gamma(B^- \to D[\to f]K^-) - \Gamma(B^+ \to D[\to \overline{f}]K^+)}{\Gamma(B^- \to D[\to f]K^-) + \Gamma(B^+ \to D[\to \overline{f}]K^+)} = 2r_b r_D \sin(\delta_b + \delta_D) \sin\gamma / R_{ADS}$$

$$r_{D} = \left| \frac{A(\overline{D}^{0} \to f)}{A(D^{0} \to f)} \right|$$

(r_{D}(K^{+}\pi)=0.06)
$$\delta_{D} = \arg \left[\frac{A(\overline{D}^{0} \to f)}{A(D^{0} \to f)} \right]$$

ADS method useful at present to constrain r_b

ADS results

Limits on r_b derived from R_{ADS}
 Measurement of Belle below

 No evidence of signal observed in any modes. Upper limits on R_{ADS} translated to upper limits on r_b

$B^{\pm} \rightarrow DK$ altogether

Dalitz method with $B^0 \rightarrow D^0 K^{*0}$

- Same concept as the charged B analysis, with the flavour of $K^{*0} \rightarrow K^+\pi^$ tagging the B⁰ flavour
- Main features
 - w.r.t. charged B mode: much lower signal yield but expected larger \vec{r}_b (~0.3)
 - ► $D^0 \rightarrow K_s \pi^+ \pi^-$ with same Dalitz model used for the charged B measurement
 - likelihood fit (m_{ES} and event shape variables) to separate signal from background
 - fit to the $D^0 \rightarrow K_s \pi^+ \pi^-$ Dalitz plot to constrain γ , δ_b and r_s
 - data sample: 371 M BB

BE

(usually called r_s)

PRD79, 072003 (2009)

- <u>r too small</u> to be extracted from C \rightarrow r fixed using external input + SU(3)
- Effect of $b \rightarrow u$ vs. $b \rightarrow c$ interference in Btag must be taken into account.

sin(2 β + γ) with B⁰ \rightarrow D^(*) π^{\pm}/ρ^{\pm}

Future experiments and perspectives

- B-factories have collected about 1300M BB, allowing CKM test at ~10% level precision
- Next generation B-factories are needed to go down to the 1% level
 - LHCb expected to start operations this year
 - e⁺e⁻ SuperB factories proposed in Italy and Japan
- Will γ measurements be systematic-limited? In general, no.
 - ► Dalitz model uncertainties seem hard to reduce below ~5°, but a model independent <u>analysis is possible</u>. It benefits from $\psi(3770) \rightarrow DD$ data of CLEOc and BESIII
 - Effects of charm mixing and CPV are small and under control PRD72, 031501(2005)
 - ▶ Decays that at present have a weak constraining power or are not reconstructed at all (e.g., $B_s \rightarrow D_s K$) might give significant contributions at next machines
- An uncertainty of about 2-3° is expected at LHCb on 10fb⁻¹, and 1-2° at e⁺e⁻ SuperB factories on 75ab⁻¹

LHCB-2008-031 SuperB CDR, arXiv:0709.0451

Summary

- > Many measurements have been performed to improve the overall precision on γ/φ_3
- There is evidence of CP violation in charged $B \rightarrow DK$
- Charged B→DK 'Dalitz' is currently the most sensitive method
 σ(γ) ~ 10÷20°
 - Fluctuations in $\sigma(\gamma)$ due to the " $1/r_b$ " effect should decrease as more data are analyzed and $\sigma(r_b)/r_b$ decreases
 - On larger datasets a model-independent approach can possibly be used to eliminate the Dalitz model systematics
- New measurements are expected this year. Stay tuned.

backup slides

Sensitivity to γ over the Dalitz plot

Sensitivity varies strongly over the Dalitz plane
 2nd derivative of the log(L) event-by-event weighs the event

 $\sigma^2(\gamma) \sim \frac{1}{d^2 \ln(L)}$

x,y results of B \rightarrow D(*)⁰K(*), D⁰ \rightarrow K_s $\pi\pi/K_s$ KK

BELLE		657M BĒ				2	R					PRD7	3,11200	9 (2006)
Parameter $B^+ \to DK^+$			$B^{+} -$							pt ptrt i				
<i>x</i>		$+0.105\pm 0.047\pm 0.011$	$+0.024 \pm 0.140 \pm 0.018$			Parameter $B^+ \to DK^+$ mode						$B^+ \to D^* K^+ \text{ mode}$		
y_{-} +0.177 ± 0.060 ± 0.018 -0.2			-0.243 ± 0	$0.243 \pm 0.137 \pm 0.022$			$\phi_3 \qquad 80.8^\circ \frac{+13.1^\circ}{-14.8^\circ} \pm 5.0^\circ \pm 8.7^\circ$					$63.8^{\circ} {}^{+20.8^{\circ}}_{-22.9^{\circ}} \pm 4.7^{\circ} \pm 8.7^{\circ}_{10.05^{\circ}}$		
		$-0.107 \pm 0.043 \pm 0.011$	$+0.133 \pm 0$	$-0.133 \pm 0.083 \pm 0.018$			r $0.161^{+0.040}_{-0.038} \pm 0.011 \pm 0.000$				49 $0.208^{+0.085}_{-0.083} \pm 0.015 \pm 0.049$ 9° $342.0^{\circ} \frac{+21.4^{\circ}}{-22.9^{\circ}} \pm 3.7^{\circ} \pm 22.9^{\circ}$			
y_+		$-0.067 \pm 0.059 \pm 0.018$	20 00000000000000000000000000000000000			δ		137.4°	$+13.0^{-1}$	$\pm 4.0^{\circ} =$	= 22.9°	342.0° _	$^{+21.4}_{-22.9^{\circ}}$ ±	$3.7^{\circ} \pm 22.9^{\circ}$
9-		51001 ± 01000 ± 01010	1 01100 ± 1		- 0.022			F	PRD78,	034023	(2008)			
	Parame	eters B^- –	$\rightarrow \tilde{D}^0 K^-$							$B^- \rightarrow \tilde{D}^0 K^{*-}$				
BABAR	$ \begin{array}{c} x_{-}, \ x_{-}^{*} \\ y_{-}, \ y_{-}^{*} \\ x_{+}, \ x_{+}^{*} \\ y_{+}, \ y_{+}^{*} \end{array} $	$\begin{array}{c} y_{s-} & 0.053 \pm 0.056 \\ y_{s+} & -0.067 \pm 0.043 \end{array}$	$\pm 0.007 \pm 0.007 \pm 0.014 \pm 0.014 \pm 0.014 \pm 0.0014 \pm 0.0000000000000000000000000000000000$	0.015 0.011	-0. 0.	051 ± 0 137 ± 0	0.080 ±	0.014 : 0.009 : 0.014 : 0.010 :	± 0.010 ± 0.005) ; .	0.226 -0.113	$\pm 0.142 \pm 0.107$	2 ± 0.0 7 ± 0.0	$ \begin{array}{l} 39 \pm 0.014 \\ 58 \pm 0.011 \\ 28 \pm 0.018 \\ 51 \pm 0.010 \end{array} $
	BĒP	Source	<i>x</i> _	<i>y</i> _	<i>x</i> ₊	<i>y</i> +	<i>x</i> [*] _	<i>y</i> *_	<i>x</i> [*] ₊	<i>y</i> [*] ₊	<i>x_s</i>	<i>ys</i> -	<i>xs</i> +	<i>y</i> _{s+}
		$m_{\rm ES}, \Delta E, \mathcal{F}$ shapes	0.001	0.001	0.001	0.002	0.002	0.004	0.004	0.005	0.003	0.002	0.001	0.004
	BABAN	Real D ⁰ fractions Charge-flavor correlation	0.001 0.002	0.001 0.002	0.001 0.001	0.001 0.001	0.001 0.002	0.001	0.004	0.001 0.001	0.002	0.004 0.002	0.001 0.001	0.001 0.001
2021		Efficiency in the Dalitz plot	t 0.002	0.002	0.002	0.002	0.001	0.001	0.001	0.001	0.002	0.003	0.001	0.005
383M BE		Background Dalitz plot sha $B^- \rightarrow D^{*0}K^-$ cross feed	pe 0.012	0.007	0.013	0.003	0.010	0.007	0.007	0.007	0.014	0.006	0.012	0.005
		CP violation in $D\pi$ and BI		0.001	0.001	0.001	0.005	0.002	0.007	0.001	0.006	0.002	0.003	0.001
		Non- $K^* B^- \rightarrow \tilde{D}^0 K^0_S \pi^-$ de									0.035	0.058	0.025	0.045
		Total experimental	0.015	0.007	0.014	0.006	0.014	0.009	0.014	0.010	0.039	0.058	0.028	0.051