

Measurement of the CKM angle γ / ϕ_{3}

Matteo Rama
 Laboratori Nazionali di Frascati

Flavor Physics \& CPViolation 2009
May 27 - June 1, 2009, Lake Placid, NY, USA

Quarks mixing and CKM matrix

- The electroweak coupling strength of $W^{ \pm}$to quarks is described by the CKM matrix

$$
-\mathcal{L}_{W^{ \pm}}=\frac{g}{\sqrt{2}} \overline{u_{L i}} \gamma^{\mu}\left(V_{\mathrm{CKM}}\right)_{i j} d_{L j} W_{\mu}^{+}+\text {h.c. } \quad-\frac{W^{+}}{-}-\underline{\underline{V_{i j}}} \begin{aligned}
& u_{i}=u, c, t \\
& \bar{d}_{j}=\bar{d}, \bar{s}, \bar{b}
\end{aligned}
$$

- 3×3 unitary matrix $\Rightarrow 4$ parameters (after ad hoc choice of quark field phases): 3 real and I CP violating phase

$$
V=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)=\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)+\mathcal{O}\left(\lambda^{4}\right)
$$

(V is unitary: $\mathrm{VV}^{+}=1$
$V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0$

Why measure γ

- Importance of over-constraining the CKM matrix
b precise measurement of Standard Model parameters
b search for evidence of New Physics in discrepancies of redundant measurements

- CP violating parameter γ can be measured in tree decays
- assuming that New Physics does not change tree-level processes, its determination is not affected by New Physics
v together with the measurement of $\left|\mathrm{V}_{\mathrm{ub}} / \mathrm{V}_{\mathrm{cb}}\right|$ it gives a constraint in the rho-eta plane that must be met by any New Physics model

How to measure a phase

- Phases are measured in the interference of two amplitudes

$$
\begin{aligned}
& \left|A_{\text {tot }}\right|^{2}=\left|A_{1}+A_{2} e^{i \phi}\right|^{2}=A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \cos \phi \\
& \left.\mathrm{~B}^{+} \underset{\left(V_{u b}\right)}{V_{c b} \rightarrow r_{b} e^{-i v i}} \boldsymbol{D ^ { 0 }} \mathrm{D}^{0} K^{+} \xrightarrow\left[{A\left(D^{0} \rightarrow[f]\right.}\right)\right]{A\left(\bar{D}^{0} \rightarrow[f]\right)} \\
& \text { interference } \\
& \phi=\gamma+\delta \\
& \delta=\begin{array}{l}
\text { strong phase } \\
\text { from B and } \mathrm{D} \text { decays }
\end{array} \\
& r_{b} \equiv\left|\frac{A\left(B^{+} \rightarrow D^{0} K^{+}\right)}{A\left(B^{+} \rightarrow \bar{D}^{0} K^{+}\right)}\right| \sim 0.1
\end{aligned}
$$

- The unknowns are: $\gamma, \mathrm{r}_{\mathrm{b}}$ and δ
- Same principle applies to several other processes: $\mathrm{B}^{0} \rightarrow \mathrm{D}^{(*)} \pi^{+}$, $\mathrm{B}^{0} \rightarrow \mathrm{D}^{0} \mathrm{~K}\left({ }^{*}\right)^{0}, \mathrm{~B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}} \mathrm{K}, \ldots$

Current experiments

- asymmetric e+e- colliders PEP-II (US) and KEK (Japan) at Y(4S) CM energy - $\mathrm{Y}(4 \mathrm{~S}) \rightarrow \mathrm{B} \overline{\mathrm{B}}$ decays detected by general purpose BaBar and Belle detectors

I 300 M $B \bar{B}$ decays overall

Methods using $\mathrm{B} \rightarrow \mathrm{DK}$ decays

, GLW:

- D^{0} mesons reconstructed into two-body CP eigenstates $\mathrm{K}^{+} \mathrm{K}^{-}, \pi^{+} \pi^{-}$(even), $\mathrm{K}_{\mathrm{s}} \pi^{0}, \mathrm{~K}_{\mathrm{s}} \omega$ (odd)
- ADS:
- D^{0} mesons reconstructed into doubly Cabibbo suppressed decays $\mathrm{K}^{+} \pi^{-}, \mathrm{K}^{+} \pi^{-} \pi^{0}, \ldots$
- Dalitz (GGSZ):
- D^{0} mesons reconstructed into 3-body decays $\mathrm{K}_{\mathrm{s}} \pi^{+} \pi^{-}, \mathrm{K}_{\mathrm{s}} \mathrm{K}^{+} \mathrm{K}^{-}$,

nowadays
- Different B decays $D^{0} K^{ \pm}, D^{* 0} K^{ \pm}, D^{0} K^{* \pm}$ and flavour-tagged $\mathrm{D}^{0} \mathrm{~K}^{* 0}$. They depend on different hadronic factors $\left(\mathrm{r}_{\mathrm{b}}, \delta_{\mathrm{b}}\right)$
- Strategy: combine as many channels as possible to improve the overall sensitivity to γ

Dalitz method

D. Atwood et al., PRL78, 3257 (I997);A. Giri et al., PRD68, 0540 I8 (2003)

- The interference varies as function of the position in the D^{0} Dalitz plot

$A_{+}\left(m_{-}^{2}, m_{+}^{2}\right)=\left|A\left(B^{+} \rightarrow \bar{D}^{0} K^{+}\right)\right|\left[\begin{array}{l}{\left[A_{D}\left(m_{+}^{2}, m_{-}^{2}\right)\right.} \\ A_{B}\end{array} e^{i \delta_{B}} e^{+i \gamma A_{D}\left(m_{-}^{2}, m_{+}^{2}\right)}\right]$

$$
m_{ \pm}^{2} \equiv m^{2}\left(K_{S}^{0} \pi^{ \pm}\right)^{2}
$$

- $A_{D}\left(m_{-}^{2}, m_{+}{ }^{2}\right)$ is measured with a Dalitz plot analysis of high statistics samples of flavour-tagged D^{0} and $\overline{\mathrm{D}}^{0}$
- The B^{+}and B^{-}yields are measured as a function of the position in the D^{0} Dalitz plot (ML fit)
, Unknowns: γ, rb and δ_{b}

Dalitz: reconstructed modes

Decays	DOK	D*0[D0 $\left.0^{0}\right]$ K	D*0[Dor]K	D0K*[Kst]
$\mathrm{D}^{0} \rightarrow \mathrm{~K} s \pi \pi$	$\begin{aligned} & 383 M \\ & 657 M \end{aligned}$	$\begin{aligned} & 383 M \\ & 357 M \end{aligned}$	383M	$\begin{aligned} & 383 \mathrm{M} \\ & 386 \mathrm{M} \end{aligned}$
$\mathrm{D}^{0} \rightarrow$ K SKK	383M	383M	383M	---

Dalitz: results

- Extract the cartesian coordinates instead of $\gamma, \mathrm{r}_{\mathrm{b}}, \delta_{\mathrm{b}}$ (likelihood unbiased and Gaussian-shaped with x, y)

$$
\begin{aligned}
& x_{\mp}=r_{B} \cos \left(\delta_{B} \mp \gamma\right) \\
& y_{\mp}=r_{B} \sin \left(\delta_{B} \mp \gamma\right)
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\Gamma\left(B^{+}\right) \propto\left|f_{+}\right|^{2}+\left(x_{+}^{2}+y_{+}^{2}\right)\left|f_{-}\right|^{2}+2 x_{+} \operatorname{Re}\left(f_{+} f_{-}^{*}\right)+2 y_{+} \operatorname{Im}\left(f_{+} f_{-}^{*}\right) \\
\Gamma\left(B^{-}\right) \propto\left|f_{-}\right|^{2}+\left(x_{-}^{2}+y_{-}^{2}\right)\left|f_{+}\right|^{2}+2 x_{-} \operatorname{Re}\left(f_{-} f_{+}^{*}\right)+2 y_{-} \operatorname{Im}\left(f_{-} f_{+}^{*}\right)
\end{array}\right.
$$

$\left(x_{ \pm}, y_{ \pm}\right) 4$ variables, 3 indep. $x_{+}{ }^{2}+y_{+}{ }^{2}=x_{-}{ }^{2}+y_{-}{ }^{2}$

$$
f_{\mp} \equiv A_{D}\left(m_{\mp}^{2}, m_{ \pm}^{2}\right)
$$

Dalitz: from x, y to $\gamma\left(\phi_{3}\right)$

- $\left\{\gamma, \mathrm{r}_{\mathrm{b}}, \delta_{\mathrm{b}}\right.$) extracted from $\left\{\mathrm{x}_{ \pm}, \mathrm{y}_{ \pm}\right\}$
- frequentist stat. procedure to evaluate the error


```
PRD73, II 2009 (2006)
```


3.5σ stat significance of CPV

$$
\begin{array}{ll}
\gamma(D K)=\left(80.8_{-14.8}^{+13.1} \pm 5.0 \pm 8.7\right)^{\circ} & \text { DK only } \\
\gamma\left(D^{*} K\right)=\left(63.8_{-22.9}^{+20.8} \pm 4.7 \pm 8.7\right)^{\circ} & D^{*} K \text { only }
\end{array}
$$

$$
\delta_{b}(D K)=\left(137.4_{-15.7}^{+13.0} \pm 4.0 \pm 22.9\right)^{\circ}
$$

$$
\delta_{b}\left(D^{*} K\right)=\left(342_{-22.9}^{+21.4} \pm 3.7 \pm 22.9\right)^{\circ}
$$

$$
r_{b}(D K)=0.161_{-0.038}^{+0.040} \pm 0.011 \pm 0.049
$$

$$
r_{b}^{*}\left(D^{*} K\right)=0.208_{-0.083}^{+0.085} \pm 0.015 \pm 0.049
$$

$$
\gamma\left(\bmod 180^{\circ}\right)=\left(76_{-13}^{+12} \pm 4 \pm 9\right)^{\circ}
$$

Dalitz: from x,y to $\gamma\left(\phi_{3}\right)$

- Use frequentist method to obtain the physical parameter $\gamma, \mathrm{r}_{\mathrm{b}}, \delta_{\mathrm{b}}$ from (x, y)

PRD78, 034023 (2008)

3.0σ stat significance of CPV

$$
\begin{aligned}
& r_{b}(D K)=0.086 \pm 0.035 \\
& r_{b}^{*}\left(D^{*} K\right)=0.135 \pm 0.051 \\
& \kappa r_{s}\left(D K^{*}\right)=0.163_{-0.105}^{+0.088}
\end{aligned}
$$

$$
\gamma\left(\bmod 180^{\circ}\right)=(76 \pm \underset{\text { stat }}{22} \pm \underset{\text { syst }}{5} \pm 5)^{\circ}
$$

Dependence on r_{b} of $\sigma(\gamma)$

- The error on γ scales roughly as $\mathrm{I} / \mathrm{r}_{\mathrm{b}}$
- This is the origin of the large difference in the statistical errors of BaBar and Belle

Parameter	$B^{+} \rightarrow D K^{+}$		$B^{+} \rightarrow D^{*} K^{+}$
x_{-}	$+0.105 \pm 0.047$	± 0.011	$+0.024 \pm 0.140 \pm 0.018$
y_{-}	$+0.177 \pm 0.060 \mid \pm 0.018$	$-0.243 \pm 0.137 \pm 0.022$	
x_{+}	-0.107 ± 0.043	± 0.011	$+0.133 \pm 0.083 \pm 0.018$
y_{+}	-0.067 ± 0.059	± 0.018	$+0.130 \pm 0.120 \pm 0.022$

Parameters	$B^{-} \rightarrow \tilde{D}^{0} K^{-}$	
x_{-}, x_{-}^{*}, x_{s-}	$0.090 \pm 0.043 \pm 0.015 \pm 0.011$	
y_{-}, y_{-}^{*}, y_{s-}	$0.053 \pm 0.056 \pm 0.007 \pm 0.015$	errors on x,y
x_{+}, x_{+}^{*}, x_{s+}	-0.067 ± 0.043	$\pm 0.014 \pm 0.011$
y_{+}, y_{+}^{*}, y_{s+}	$-0.015 \pm 0.055 \pm 0.006 \pm 0.008$	

$$
\begin{aligned}
& r_{b}(D K)=0.161_{-0.038}^{+0.040} \pm 0.011 \pm 0.049 \\
& r_{b}^{*}\left(D^{*} K\right)=0.208_{-0.083}^{+0.055} \pm 0.015 \pm 0.049 \\
& \gamma\left(\bmod 180^{\circ}\right)=\left(766_{-13}^{+12} \pm 4 \pm 9\right)^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& r_{b}(D K)=0.086 \pm 0.035 \\
& r_{b}^{*}\left(D^{*} K\right)=0.135 \pm 0.051 \\
& \gamma\left(\bmod 180^{\circ}\right)=(76 \pm 22 \pm 5 \pm 5)^{\circ}
\end{aligned}
$$

central values of r_{b} are significantly

- The " I / r_{b} " effect should reduce as more data are analyzed $\left(\sigma\left(r_{b}\right) / r_{b}\right.$ decreases)

GLW method

M. Gronau, D. London, D.Wyler, PLB253,483 (I99I); PLB 265, I72 (I99I)

- D^{0} to $\mathrm{K}^{+} \mathrm{K}^{-}, \pi^{+} \pi^{-}(\mathrm{CP}+)$ and $\mathrm{K} s \pi^{0}$, $\mathrm{K} s \omega$, $\mathrm{K} s \phi$ (CP-)
- measure B^{+}and B^{-}yields to determine the GLW observables:

$$
R_{C P \pm} \equiv \frac{\Gamma\left(B^{-} \rightarrow D_{C P \pm}^{0} K^{-}\right)+\Gamma\left(B^{+} \rightarrow D_{C P \pm}^{0} K^{+}\right)}{2 \Gamma\left(B^{-} \rightarrow D^{0} K^{-}\right)}=1 \pm 2 r_{b} \cos \gamma \cos \delta_{b}+r_{b}^{2}
$$

$$
A_{C P \pm} \equiv \frac{\Gamma\left(B^{-} \rightarrow D_{C P}^{0} K^{-}\right)-\Gamma\left(B^{+} \rightarrow D_{C P \pm}^{0} K^{+}\right)}{\Gamma\left(B^{-} \rightarrow D_{C P \pm}^{0} K^{-}\right)+\Gamma\left(B^{+} \rightarrow D_{C P \pm}^{0} K^{+}\right)}= \pm 2 r_{b} \sin \gamma \sin \delta_{b} / R_{C P \pm}
$$

4 observables
(3 independent), 3 unknowns:
$r_{b}, \delta_{b}, \gamma$
, GLW-Dalitz relation:

GLW results

HFAG: http://www.slac.stanford.edu/xorg/hfag/
$D^{0} \mathrm{~K}$ GLW results can be translated into $x_{+}=-0.082 \pm 0.045, \quad x_{-}=0.103 \pm 0.045, \quad r_{b}{ }^{2}=0.08 \pm 0.07{ }^{*}$
Exercise:

* Gershon@CKM08

Combining GLW \& Dalitz gives $x_{+}=-0.085 \pm 0.026, x_{-}=0.103 \pm 0.027$

$$
x_{-}-x_{+}=0.189 \pm 0.037 \quad 5.1 \sigma \text { from zero* }
$$

GLW + Dalitz w/o model error

ADS method

D. Atwood, I. Dunietz, A. Soni, PRL 78, 3357 (I997)

- D^{0} to $\mathrm{K}^{+} \pi^{-}, \mathrm{K}^{+} \pi^{-} \pi^{0}$ or $\mathrm{K}^{+} \pi^{+} \pi^{+} \pi^{-}$(doubly-suppressed)
suppressed
$B^{+} \rightarrow D^{(*) 0} K^{(*)+}+D^{0} \rightarrow f$ favored
$B^{+} \rightarrow \bar{D}^{(*) 0} K^{(*)+}+\bar{D}^{0} \rightarrow f$
same final state
Large interference $\sim \mathrm{O}(1)$
- measure B^{+}and B^{-}yields to determine the ADS observables:

$$
R_{A D S} \equiv \frac{\Gamma\left(B^{-} \rightarrow D[\rightarrow f] K^{-}\right)+\Gamma\left(B^{+} \rightarrow D[\rightarrow \bar{f}] K^{+}\right)}{\Gamma\left(B^{-} \rightarrow D[\rightarrow \bar{f}] K^{-}\right)+\Gamma\left(B^{+} \rightarrow D[\rightarrow f] K^{+}\right)}=r_{b}^{2}+r_{D}^{2}+2 r_{b} r_{D} \cos \left(\delta_{b}+\delta_{D}\right) \cos \gamma
$$

$$
A_{A D S} \equiv \frac{\Gamma\left(B^{-} \rightarrow D[\rightarrow f] K^{-}\right)-\Gamma\left(B^{+} \rightarrow D[\rightarrow \bar{f}] K^{+}\right)}{\Gamma\left(B^{-} \rightarrow D[\rightarrow f] K^{-}\right)+\Gamma\left(B^{+} \rightarrow D[\rightarrow \bar{f}] K^{+}\right)}=2 r_{b} r_{D} \sin \left(\delta_{b}+\delta_{D}\right) \sin \gamma / R_{A D S}
$$

$$
\begin{aligned}
& r_{D}=\left|\frac{A\left(\bar{D}^{0} \rightarrow f\right)}{A\left(D^{0} \rightarrow f\right)}\right| \\
& \left(\mathrm{r}_{\mathrm{D}}\left(\mathrm{~K}^{+} \pi^{-}\right)=0.06\right) \\
& \delta_{D}=\arg \left[\frac{A\left(\bar{D}^{0} \rightarrow f\right)}{A\left(D^{0} \rightarrow f\right)}\right]
\end{aligned}
$$

- ADS method useful at present to constrain r_{b}

ADS results

- Limits on r_{b} derived from $R_{\text {ADS }}$ Measurement of Belle below

$$
R_{A D S}\left(D^{0} K\right)<0.1910^{-3} @ 90 \% C L
$$

$R_{A D S}=r_{b}^{2}+r_{D}^{2}+2 r_{b} r_{D} \cos \left(\delta_{b}+\delta_{D}\right) \cos \gamma$
assuming $\cos \left(\delta_{b}+\delta_{\mathrm{d}}\right)=-1$ and $+2 \sigma$ shift in r_{d}

$$
\mathrm{r}_{\mathrm{b}}<0.19 @ 90 \% \mathrm{CL}
$$

$\mathbf{R}_{\text {ADS }}$ Averages CRELIMINARY

- No evidence of signal observed in any modes. Upper limits on $\mathrm{R}_{\text {ADS }}$ translated to upper limits on r_{b}

$\mathrm{B}^{ \pm} \rightarrow \mathrm{DK}$ altogether

Dalitz method with $\mathrm{B}^{0} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{* 0}$

- Same concept as the charged B analysis, with the flavour of $\mathrm{K}^{* 0} \rightarrow \mathrm{~K}^{+} \pi^{-}$ tagging the B^{0} flavour
- Main features
, w.r.t. charged B mode: much lower signal yield but expected larger $r_{b}(\sim 0.3)$
- $\mathrm{D}^{0} \rightarrow K_{s} \pi^{+} \pi^{-}$with same Dalitz model used for the charged B measurement
> likelihood fit (m_{ES} and event shape variables) to separate signal from background
b fit to the $\mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \pi^{+} \pi^{-}$Dalitz plot to constrain $\gamma, \delta_{\mathrm{b}}$ and r_{s}
, data sample: $371 \mathrm{M} B \bar{B}$

PRD79, 072003 (2009) arXiv:0805.200 Iv2

promising for next B-factories

$$
68 \% \mathrm{CL} \left\lvert\, \begin{aligned}
\gamma & =(162 \pm 56)^{\circ} \text { or }(342 \pm 56)^{\circ} \\
\delta_{S} & =(62 \pm 57)^{\circ} \text { or }(242 \pm 57)^{\circ} \\
r_{S} & <0.30
\end{aligned}\right.
$$

$$
\rightarrow \text { using } r_{\text {s }} \text { likelihood in }
$$

PRD74,03IIOI (2006)

ADS with $\mathrm{B}^{0} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{* 0}$

arXiv:0904.2||2v| sub. to PRD (RC)

- Selection of $\mathrm{B}^{0} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{*}\left[\mathrm{~K}^{+} \pi^{-}\right], \mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-}, \mathrm{K}^{+} \pi^{-} \pi^{0}$ and
$\mathrm{K}^{+} \pi^{+} \pi^{+} \pi^{-}$
- No evidence of signal on data set of $465 \mathrm{M} B \bar{B}$

$$
\mathrm{N}_{\text {sig }}(\mathrm{tot})=24_{-11}^{+14} \quad(2.2 \sigma \text { stat only })
$$

- Set limits on $R_{\text {ADS }}$ ($95 \% C L$)

$\mathrm{R}_{\mathrm{ADS}}(\mathrm{K} \pi \pi \pi)<0.39$ I

- Combining all modes and using external inputs:

$$
\begin{aligned}
& r_{b} \text { in }[0.18,0.34] @ 68 \% ~ C L \\
& r_{b} \text { in }[0.07,0.4 \mathrm{I}] @ 95 \% \mathrm{CL}
\end{aligned}
$$

r_{D} from PDG, $\delta_{D}(\mathrm{~K} \pi) \delta_{D}\left(K \pi \pi^{0}\right) \delta_{D}(K \pi \pi \pi)$ from CLEO-c

$\sin (2 \beta+\gamma)$ with $\mathrm{B}^{0} \rightarrow \mathrm{D}^{(*)} \pi^{ \pm} / \rho^{ \pm}$

$P\left(B^{0} \rightarrow D^{(*) \mp} h^{ \pm}, \Delta t\right) \propto 1 \pm C \cos \left(\Delta m_{d} \Delta t\right)+S^{\mp} \sin \left(\Delta m_{d} \Delta t\right)$ $P\left(\bar{B}^{0} \rightarrow D^{(*) \mp} h^{ \pm}, \Delta t\right) \propto 1 \mp C \cos \left(\Delta m_{d} \Delta t\right)-S^{ \pm} \sin \left(\Delta m_{d} \Delta t\right)$

$$
\begin{aligned}
& S^{ \pm}=\frac{2 r}{1+r^{2}} \sin (2 \beta+\gamma \pm \delta) \\
& C=\frac{1-r^{2}}{1+r^{2}} \cong 1 \\
& r=\left|\frac{A\left(\overline{B^{0}} \rightarrow D^{(0)}-h^{+}\right)}{A\left(B^{0} \rightarrow D^{(0)}-h^{+}\right)}\right| \sim 0.02
\end{aligned}
$$

- $\mathrm{S}^{ \pm}$and C measured from time-dependent rates
- r too small to be extracted from $C \rightarrow r$ fixed using external input $+\operatorname{SU}(3)$
- Effect of $b \rightarrow u$ vs. $b \rightarrow c$ interference in Btag must be taken into account.

$$
\frac{S^{ \pm} \rightarrow a \mp c \mp \eta b}{\left(\eta= \pm 1 \text { for } D^{(*) \mp} h^{ \pm}\right)}
$$

$\sin (2 \beta+\gamma)$ with $\mathrm{B}^{0} \rightarrow \mathrm{D}^{(*)} \pi^{ \pm} / \rho^{ \pm}$

Future experiments and perspectives

- B-factories have collected about $\mathrm{I} 300 \overline{\mathrm{M}} \mathrm{BB}$, allowing CKM test at $\sim 10 \%$ level precision
- Next generation B-factories are needed to go down to the I\% level b LHCb expected to start operations this year - $\mathrm{e}^{+} \mathrm{e}^{-}$SuperB factories proposed in Italy and Japan
- Will γ measurements be systematic-limited? In general, no.
- Dalitz model uncertainties seem hard to reduce below $\sim 5^{\circ}$, but a model independent ānalysis is possible. It benefits from $\psi(3770) \rightarrow$ DD data of CLEOc and BESIII
- Effects of charm mixing and CPV are small and under control PRD72,03150(2005)
- Decays that at present have a weak constraining power or are not reconstructed at all (e.g., $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}} \mathrm{K}$) might give significant contributions at next machines
- An uncertainty of about $2-3^{\circ}$ is expected at LHCb on $\mathrm{IOfb}{ }^{-1}$, and $\mathrm{I}-2^{\circ}$ at $\mathrm{e}^{+} \mathrm{e}^{-}$SuperB factories on $75 \mathrm{ab}^{-1}$

Summary

- Many measurements have been performed to improve the overall precision on γ / ϕ_{3}
- There is evidence of $C P$ violation in charged $B \rightarrow D K$
- Charged $B \rightarrow$ DK 'Dalitz' is currently the most sensitive method - $\sigma(\gamma) \sim 10 \div 20^{\circ}$
- Fluctuations in $\sigma(\gamma)$ due to the " I / r_{b} " effect should decrease as more data are analyzed and $\sigma\left(r_{b}\right) / r_{b}$ decreases
- On larger datasets a model-independent approach can possibly be used to eliminate the Dalitz model systematics
- New measurements are expected this year. Stay tuned.

backup slides

Sensitivity to γ over the Dalitz plot

- Sensitivity varies strongly over the Dalitz plane
b $2^{\text {nd }}$ derivative of the $\log (\mathrm{L})$ event-by-event weighs the event

$$
\begin{aligned}
& \sigma^{2}(\gamma) \sim \frac{1}{\frac{d^{2} \ln (L)}{d \gamma^{2}}} \\
& \text { weight }=\frac{d^{2} \ln (L)}{d \gamma^{2}} \\
& \text { events: points (weight }=1 \text {) }
\end{aligned}
$$

Interference of $B^{-} \rightarrow D^{0}\left[\rightarrow K_{S}^{0} \rho^{0}\right] K^{-}$ with $B^{-} \rightarrow \bar{D}^{0}\left[\rightarrow K_{S}^{0} \rho^{0}\right] K^{-}$
\equiv GLW like

Interference of $B^{-} \rightarrow D^{0}\left[\rightarrow K^{*+} \pi^{-}\right] K^{-}$ (suppressed) with $B^{-} \rightarrow \bar{D}^{0}\left[\rightarrow K^{*+} \pi^{-}\right] K^{-}$ \equiv ADS like

x, y results of $\mathrm{B} \rightarrow \mathrm{D}^{(*) 0} \mathrm{~K}^{(*)}, \mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \pi \pi / \mathrm{K}_{\mathrm{s}} \mathrm{KK}$

657M B		
Bar		
Parameter	$B^{+} \rightarrow D K^{+}$	$B^{+} \rightarrow D^{*} K^{+}$
x_{-}	$+0.105 \pm 0.047 \pm 0.011$	$+0.024 \pm 0.140 \pm 0.018$
y_{-}	$+0.177 \pm 0.060 \pm 0.018$	$-0.243 \pm 0.137 \pm 0.022$
x_{+}	$-0.107 \pm 0.043 \pm 0.011$	$+0.133 \pm 0.083 \pm 0.018$
y_{+}	$-0.067 \pm 0.059 \pm 0.018$	$+0.130 \pm 0.120 \pm 0.022$

Parameter	$B^{+} \rightarrow D K^{+}$mode	$B^{+} \rightarrow D^{*} K^{+}$mode
ϕ_{3}	$80.8^{\circ}{ }_{-14.8^{\circ}}^{+13.8^{\circ}} \pm 5.0^{\circ} \pm 8.7^{\circ}$	$63.8^{\circ}{ }_{-22.90^{\circ}}^{+20.8^{\circ}} \pm 4.7^{\circ} \pm 8.7^{\circ}$
r	$0.161_{-0.038}^{+0.040} \pm 0.011 \pm 0.049$	$0.208_{-0.083}^{+0.085} \pm 0.015 \pm 0.049$
δ	$137.4^{\circ}{ }_{-15.7^{\circ}}^{+13.0^{\circ}} \pm 4.0^{\circ} \pm 22.9^{\circ}$	$342.0^{\circ}{ }_{-22.9^{\circ}}^{+21.4} \pm 3.7^{\circ} \pm 22.9^{\circ}$

	Parameters	$B^{-} \rightarrow \tilde{D}^{0} K^{-}$	$B^{-} \rightarrow \tilde{D}^{* 0} K^{-}$	$B^{-} \rightarrow \tilde{D}^{0} K^{*-}$
${ }_{\text {Bup }}$	x_{-}, x_{-}^{*}, x_{s-}	$0.090 \pm 0.043 \pm 0.015 \pm 0.011$	$-0.111 \pm 0.069 \pm 0.014 \pm 0.004$	$0.115 \pm 0.138 \pm 0.039 \pm 0.014$
	$y_{-}, y_{*}^{*}, y_{s_{-}}$	$0.053 \pm 0.056 \pm 0.007 \pm 0.015$	$-0.051 \pm 0.080 \pm 0.009 \pm 0.010$	$0.226 \pm 0.142 \pm 0.058 \pm 0.011$
bABAR	x_{+}, x_{+}^{*}, x_{s+}	$-0.067 \pm 0.043 \pm 0.014 \pm 0.011$	$0.137 \pm 0.068 \pm 0.014 \pm 0.005$	$-0.113 \pm 0.107 \pm 0.028 \pm 0.018$
	y_{+}, y_{+}^{*}, y_{s+}	$-0.015 \pm 0.055 \pm 0.006 \pm 0.008$	$0.080 \pm 0.102 \pm 0.010 \pm 0.012$	$0.125 \pm 0.139 \pm 0.051 \pm 0.010$

	Source	x_{-}	y_{-}	x_{+}	y_{+}	x_{-}^{*}	y_{-}^{*}	x_{+}^{*}	y_{+}^{*}	x_{s-}	y_{s-}	x_{s+}	y_{s+}
	$m_{\mathrm{ES}}, \Delta E, \mathcal{F}$ shapes	0.001	0.001	0.001	0.002	0.002	0.004	0.004	0.005	0.003	0.002	0.001	0.00
	Real D^{0} fractions	0.001	0.001	0.001	0.001	0.001	0.001	0.004	0.001	0.002	0.004	0.001	0.00
	Charge-flavor correlation	0.002	0.002	0.001	0.001	0.002	0.00	0.002	0.001	0.001	0.00	0.00	00
	Efficiency in the Dalitz plot	0.002	0.002	0.002	0.002	0.001	0.001	0.001	0.001	0.00	0.00	0.00	0.00
	Background Dalitz plot shape	0.012	0.007	0.013	0.003	0.010	0.00	0.007	0.007	0.014	0.00	0.012	0.00
	$B^{-} \rightarrow D^{+0} K^{-}$cross feed		0.003	0.002	0.007	0.001				
	$C P$ violation in $D \pi$ and $B \bar{B}$ bkg	0.001	0.001	0.001	0.001	0.005	0.001	0.001	0.004	0.006	0.002	0.003	0.00
	Non- $K^{+} B^{-} \rightarrow \tilde{D}^{0} K_{S}^{0} \pi^{-}$decays									0.0	0.0	0.025	0.04
	Total experimental	0.015	0.007	0.014	0.006	0.014	0.009	0.014	0.010	0.039	0.058	0.028	0.0

