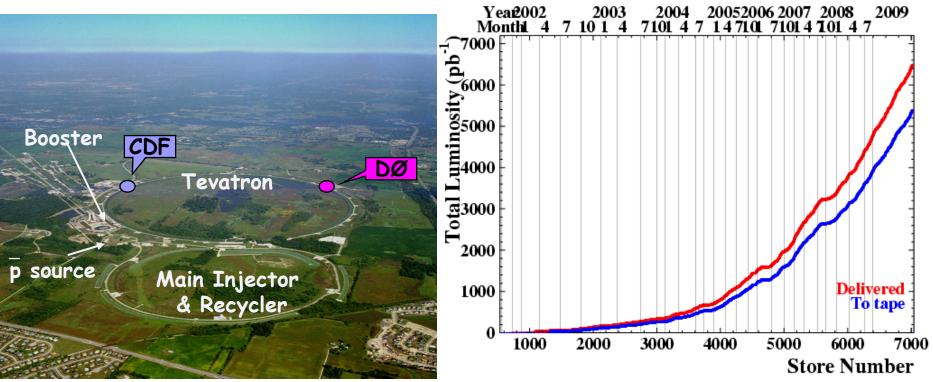


Measurement of Φ_s and $\Delta\Gamma_s$ at the Tevatron

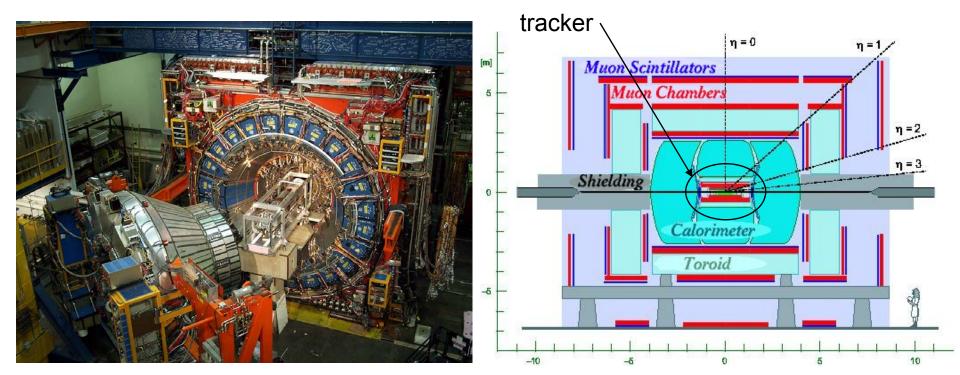
Gavril Giurgiu Johns Hopkins University on behalf of the CDF and DØ collaborations



Flavor Physics and CP Violation 2009 Lake Placid, NY May 28, 2009

Tevatron

- pp̄ collisions at 1.96 TeV
- 5 fb⁻¹ data on tape for each experiment
- Show analyses with 2.8 fb⁻¹


CDF II Detector

DØ Detector

- Central tracking: silicon vertex detector - drift chamber
 - $\rightarrow\,$ excellent vertex, momentum and mass resolution
- Particle identification: dE/dX and TOF
 Electron and muon ID by calorimeters and muon chambers

- Excellent tracking and muon coverage
- Excellent calorimetry and electron ID
- Silicon layer 0 installed in 2006 improves track parameter resolution

β_s Phase and the CKM Matrix

- CKM matrix connects mass and weak quark eigenstates
- Expand CKM matrix in $\lambda = \sin(\theta_{Cabibbo}) \approx 0.23$

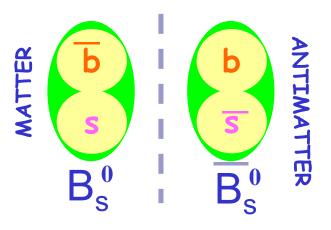
$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \approx \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda + \frac{1}{2}A^2\lambda^5[1 - 2(\rho + i\eta)] & 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4(1 + 4A^2) & A\lambda^2 \\ A\lambda^3[1 - (1 - \frac{1}{2}\lambda^2)(\rho + i\eta)] & -A\lambda^2 + \frac{1}{2}A\lambda^4[1 - 2(\rho + i\eta)] & 1 - \frac{1}{2}A^2\lambda^4 \end{pmatrix}$$

- To conserve probability CKM matrix must be unitary

 \rightarrow Unitary relations can be represented as "unitarity triangles"

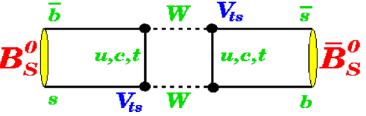
unitarity
relations:
$$V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$$
$$V_{us}V_{ub}^{*} + V_{cs}V_{cb}^{*} + V_{ts}V_{tb}^{*} = 0$$

unitarity
triangles:
$$\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}} = 0$$
$$\frac{V_{us}V_{ub}^{*}}{V_{cd}V_{cb}^{*}} = 0$$
$$\frac{V_{us}V_{ub}^{*}}{V_{cs}V_{cb}^{*}} = 0$$


Neutral B_s System

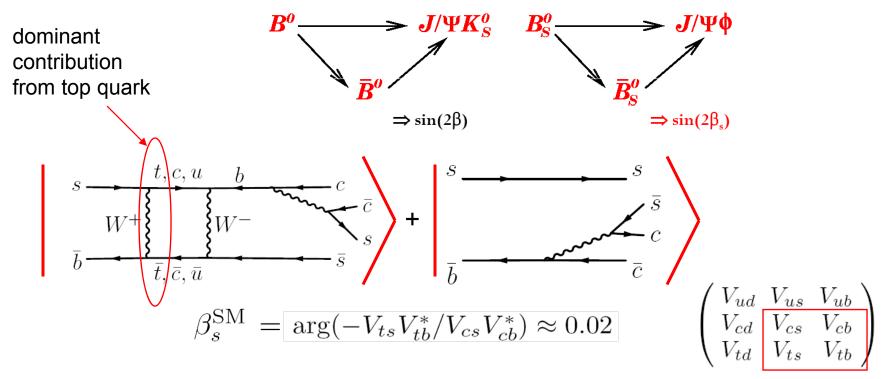
- Time evolution of B_s flavor eigenstates described by Schrodinger equation:

$$i\frac{d}{dt} \begin{pmatrix} |B_s^0(t)\rangle \\ |\bar{B}_s^0(t)\rangle \end{pmatrix} = \left(\mathbf{M} - \frac{i}{2}\mathbf{\Gamma}\right) \begin{pmatrix} |B_s^0(t)\rangle \\ |\bar{B}_s^0(t)\rangle \end{pmatrix}$$


- Diagonalize mass (M) and decay (Γ) matrices \rightarrow mass eigenstates :

$$|B_s^H\rangle = p |B_s^0\rangle - q |\bar{B}_s^0\rangle \qquad |B_s^L\rangle = p |B_s^0\rangle + q |\bar{B}_s^0\rangle$$

- Flavor eigenstates differ from mass eigenstates and mass eigenvalues are different ($\Delta m_s = m_H - m_I \approx 2|M_{12}|$) \rightarrow B_s oscillates with frequency Δ m_s W precisely measured by B_{s}^{\prime} u,c,tCDF $\Delta m_s = 17.77 + -0.12 \text{ ps}^{-1}$ $\Delta m_s = 18.56 + - 0.87 \text{ ps}^{-1}$ DØ


- Mass eigenstates have different decay widths $\Delta \Gamma = \Gamma_{\rm H} - \Gamma_{\rm H} \approx 2 |\Gamma_{12}| \cos(\boldsymbol{\Phi}_{\rm s})$ where

$$\phi_{\rm s}^{\rm SM} \equiv \arg\left(-\frac{M_{12}}{\Gamma_{12}}
ight) \approx 4 \ge 10^{-3}$$

CP Violation in $B_s \rightarrow J/\Psi\Phi$ Decays

- Analogously to the neutral B⁰ system, CP violation in B_s system occurs through interference of decays with and without mixing:

- CP violation phase β_s in SM is predicted to be very small, O(λ^2)

 \rightarrow New Physics CPV can compete or even dominate over small Standard Model CPV

- Ideal place to search for New Physics

$\beta_{s} \lor s \phi_{s}$

- Up to now, introduced two different phases:

$$\phi_{\rm s}^{\rm SM} = \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right) \approx 4 \times 10^{-3} \qquad \text{and} \qquad \beta_{s}^{\rm SM} = \arg\left(-V_{ts}V_{tb}^{*}/V_{cs}V_{cb}^{*}\right) \approx 0.02$$

- New Physics can affect both phases by same quantity $\phi_s^{
m NP}$ (A. Lenz, arxiv:0705.3802v2):

$$2\beta_s = 2\beta_s^{\rm SM} - \phi_s^{\rm NP}$$
$$\phi_s = \phi_s^{\rm SM} + \phi_s^{\rm NP}$$

- If the new physics phase ϕ_s^{NP} dominates over the SM phases $2\beta_s^{\text{SM}}$ and $\phi_s^{\text{SM}} \rightarrow$ neglect SM phases and obtain:

$$2\beta_s = -\phi_s^{\rm NP} = -\phi_s$$

$B_s \rightarrow J/\Psi \Phi$ Decays

- Extremely physics rich decay mode
- Can measure lifetime, decay width difference $\Delta\Gamma$ and CP violating phase β_s

- Decay of B_s (spin 0) to J/ Ψ (spin 1) Φ (spin 1) leads to three different angular momentum final states:

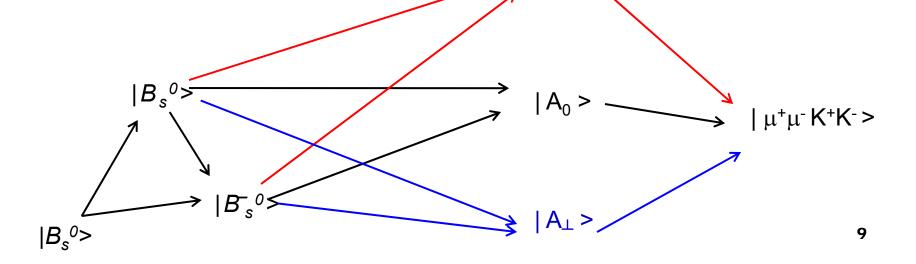
L = 0 (s-wave), 2 (d-wave) \rightarrow CP even (\approx short lived or light B_s if $\Phi_s \approx 0$)

L = 1 (p-wave)

$$\rightarrow$$
 CP odd (\approx long lived or heavy B_s if $\Phi_s \approx 0$)

- three decay angles $\overrightarrow{\rho} = (\theta, \phi, \psi)$ describe directions of final decay products

$B_s \rightarrow J/\Psi \Phi$ Decays


- Three angular momentum states form a basis for the final $J/\Psi\Phi$ state

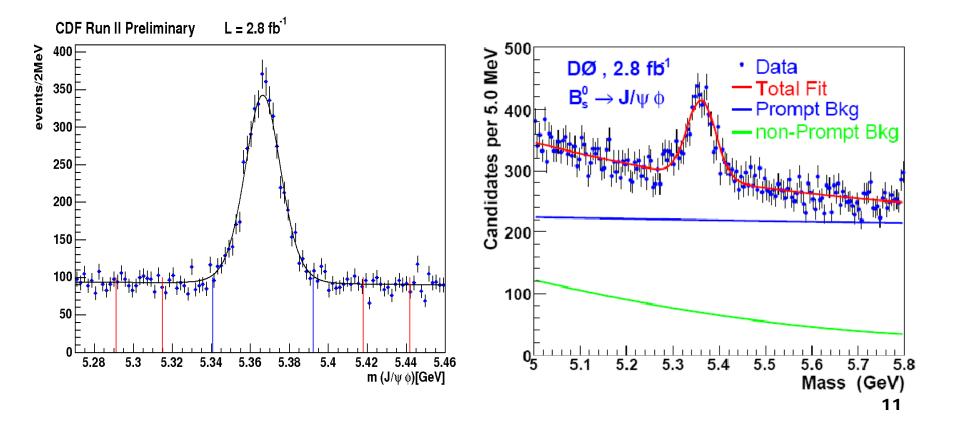
- Use alternative "transversity basis" in which the vector meson polarizations w.r.t. direction of motion are either (A.S. Dighe et all, Phys. Lett. B 369, 144 (1996), hep-ph/9511363):

- transverse ($^{\perp}$ perpendicular to each other) \rightarrow CP odd

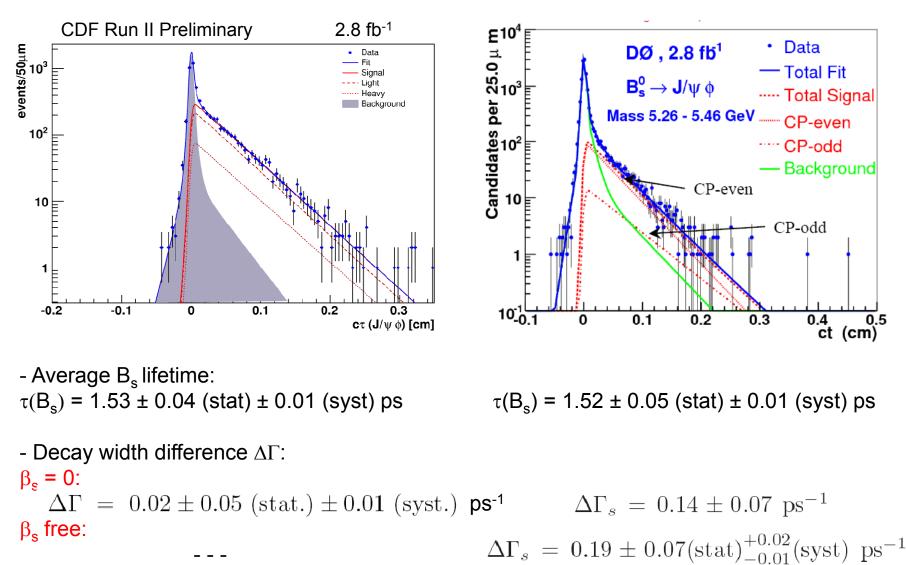
- transverse (|| parallel to each other) → CP even - longitudinal (0) → CP even

- Corresponding decay amplitudes: $A_0, A_{\parallel}, A_{\perp}$

- Identification of B flavor at production (flavor tagging) \rightarrow better sensitivity to β_s 10


Signal Reconstruction

- Both CDF and DØ reconstruct $B^{0}_{s} \rightarrow J/\psi(\rightarrow \mu + \mu -)\Phi(\rightarrow K + K -)$ in 2.8 fb⁻¹

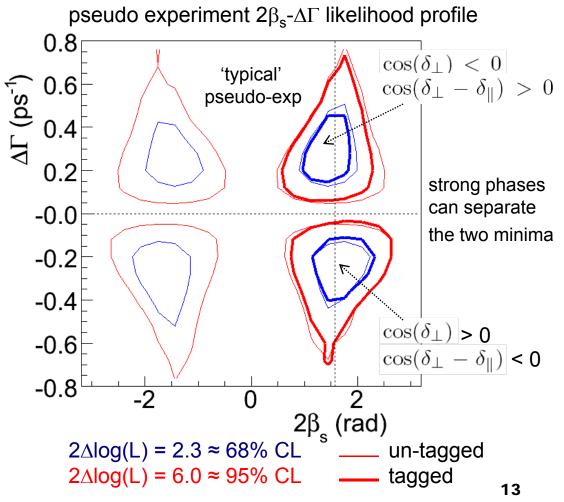

CDF ~3200 signal events (neural network selection)

DØ ~2000 signal events

(square cut selection)

Lifetime and Lifetime Difference

CP Violation Phase β_s in Tagged $B_s \rightarrow J/\Psi\Phi$ Decays


- Likelihood expression predicts better sensitivity to $\beta_{\rm s}$ but still double minima due to symmetry: $2\beta_s\to\pi-2\beta_s$

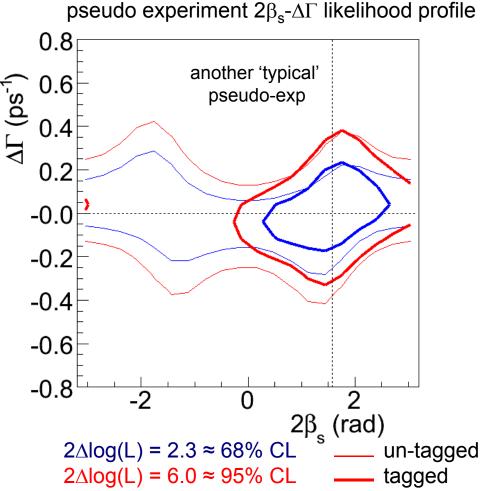
$$egin{aligned} &\Delta\Gamma
ightarrow -\Delta\Gamma \ &\delta_{\parallel}
ightarrow 2\pi - \delta_{\parallel}, \ &\delta_{\perp}
ightarrow \pi - \delta_{\perp}, \end{aligned}$$

- Study expected effect of tagging using pseudo-experiments

- Improvement of parameter resolution is small due to limited tagging power ($\varepsilon D^2 \sim 4.5\%$ compared to B factories ~30%)

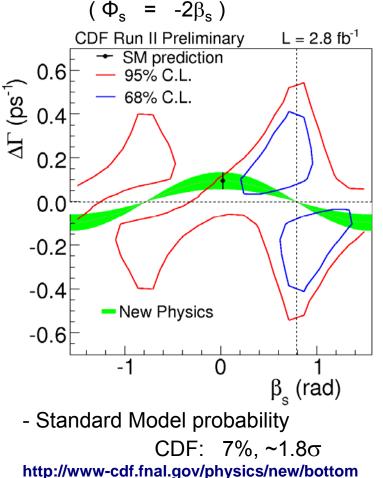
- However, $\beta_s \to -\beta_s$ no longer a symmetry
 - \rightarrow 4-fold ambiguity reduced to 2-fold ambiguity
 - \rightarrow allowed region for β_{s} is reduct to half

CP Violation Phase β_s in Tagged $B_s \rightarrow J/\Psi\Phi$ Decays

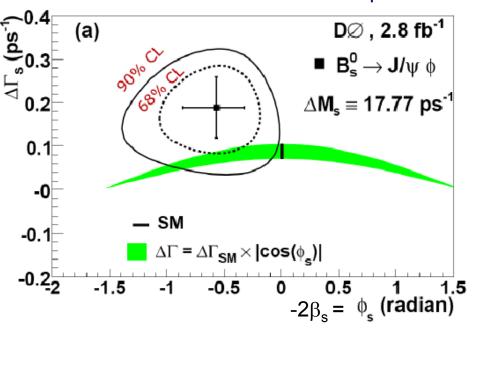

- Likelihood expression predicts better sensitivity to $\beta_{\rm s}$ but still double minima due to symmetry: $2\beta_s\to\pi-2\beta_s$

$$\begin{array}{c} \Delta\Gamma \to -\Delta\Gamma \\ \delta_{\parallel} \to 2\pi - \delta_{\parallel}, \\ \delta_{\perp} \to \pi - \delta_{\perp} \end{array}$$

- Study expected effect of tagging using pseudo-experiments


- Improvement of parameter resolution is small due to limited tagging power ($\varepsilon D^2 \sim 4.5\%$ compared to B factories ~30%)

- However, $\beta_s \to -\beta_s$ no longer a symmetry
 - \rightarrow 4-fold ambiguity reduced to 2-fold ambiguity
 - \rightarrow allowed region for β_{s} is reduc to half


CP Violation Phase β_s in Tagged $B_s \rightarrow J/\Psi\Phi$ Decays

- Both DØ and CDF results fluctuate in the same direction 1-2 σ from SM prediction

080724.blessedtagged BsJPsiPhi update prelim/

strong phases constrained to B factories measurements in $B^0 \rightarrow J/\Psi K^{*0} \rightarrow$ unique minimum

DØ: 6.6%, ~1.8σ

- Recent DØ analysis shows consistency of strong phase and amplitudes in $B_s \rightarrow J/\Psi \Phi$ and $B^0 \rightarrow J/\Psi K^{*0}$ and supports the strong phase constraint (arXiv:0810.0037v1) ¹⁵

Non-Gaussian Regime

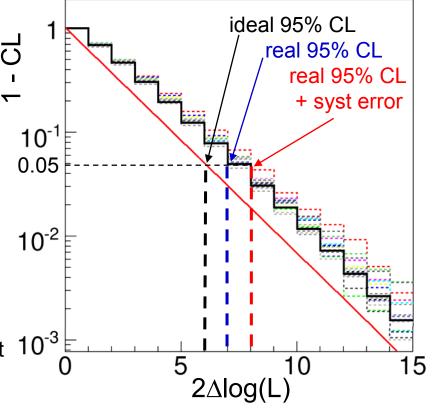
In ideal case (high statistics, Gaussian likelihood), to get the 2D 68% (95%) C.L.
 regions, take a slice through profile likelihood at 2.3 (6.0) units up from minimum

- In this analysis integrated likelihood ratio distribution (black histogram) deviates from ideal χ^2 with 2dof distribution (red continuous curve)

- Use pseudo-experiments to determine a map between CL and 2∆logL (e.g. 95% CL need to go up ~7 instead of 6 units from minimum)

- Procedure used by both CDF and DØ

- From pseudo experiments find that Gaussian regime is indeed reached as sample size increases

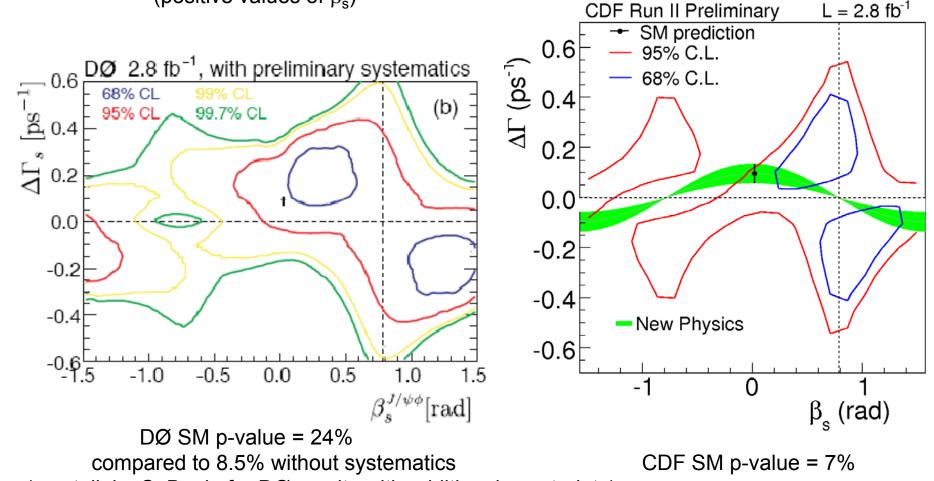


Systematic Uncertainties

- At CDF, systematic uncertainties studied by varying all nuisance parameters +/- 5σ from observed values and repeating LR curves (dotted histograms)

- Nuisance parameters:
 - lifetime, lifetime scale factor uncertainty,
 - strong phases,
 - transversity amplitudes,
 - background angular and decay time parameters,
 - dilution scale factors and tagging efficiency
 - mass signal and background parameters
- Take the most conservative curve (dotted red histogram) as final result
- DØ updated analysis includes similar treatment of dominant systematics:
 - dms, flavor dilution, detector acceptance parameter varied by +/- 1σ

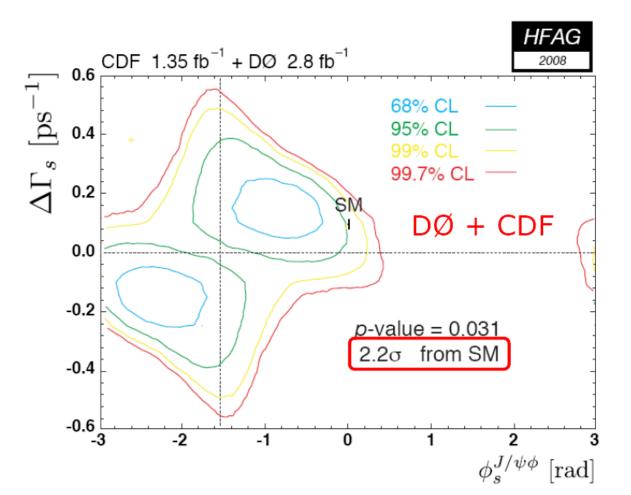
http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/B/B58/


17

CDF simulation

Comparison Between CDF and DØ

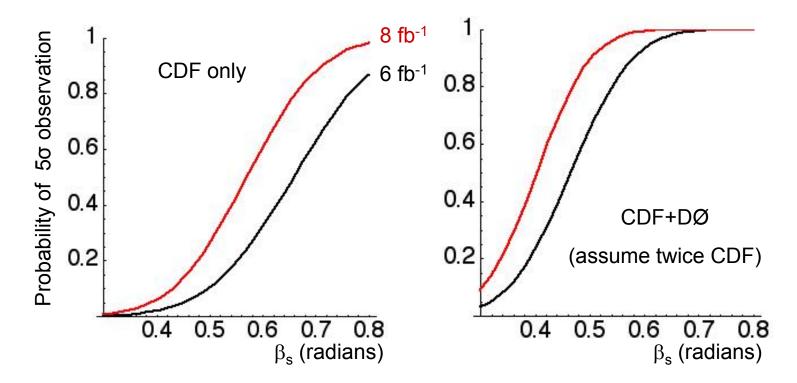
- CDF and DØ are in good agreement and both favor negative values of Φ_s = -2 β_s


(positive values of β_s)

(see talk by S. Beale for DØ results with additional constraints)

Combining CDF and DØ Results

- HFAG combination of old CDF (1.4 fb⁻¹, 1.5 σ from SM, PRL 100, 161802 (2008)) and old DØ (2.8 fb⁻¹, 1.7 σ from SM, no systematics) results yield a 2.2 σ deviation from SM (similar results found by UTFit and CKM collaborations)



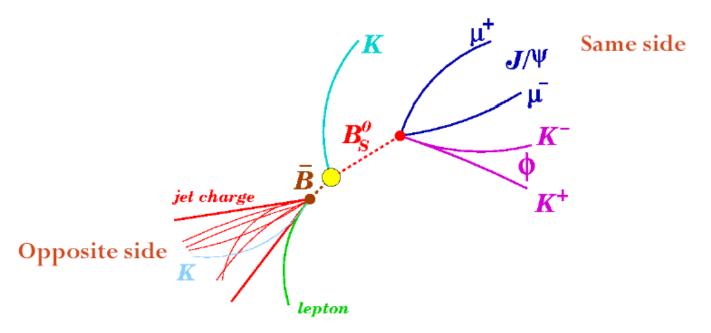
Tevatron β_s Average Coming Soon

- Ongoing CDF and DØ work to produce Tevatron $\Delta\Gamma$ β_s average using 2.8 fb⁻¹
- Significant progress made to ensure coherence of CDF and DØ analyses
 - similar treatment of:
 - strong phase
 - non-gaussian effects
 - systematic uncertainities
- Combined C.L. contours will be publicly available in numerical format
- Investigating two combination methods:
 - combine 2D profile likelihoods
 - will be ready very soon (still working on coherent treatment of systematics and inclusion of Tevatron constraints)
 - perform simultaneous fit of CDF and DØ data
 - expect to be more powerful, longer timescale

Future

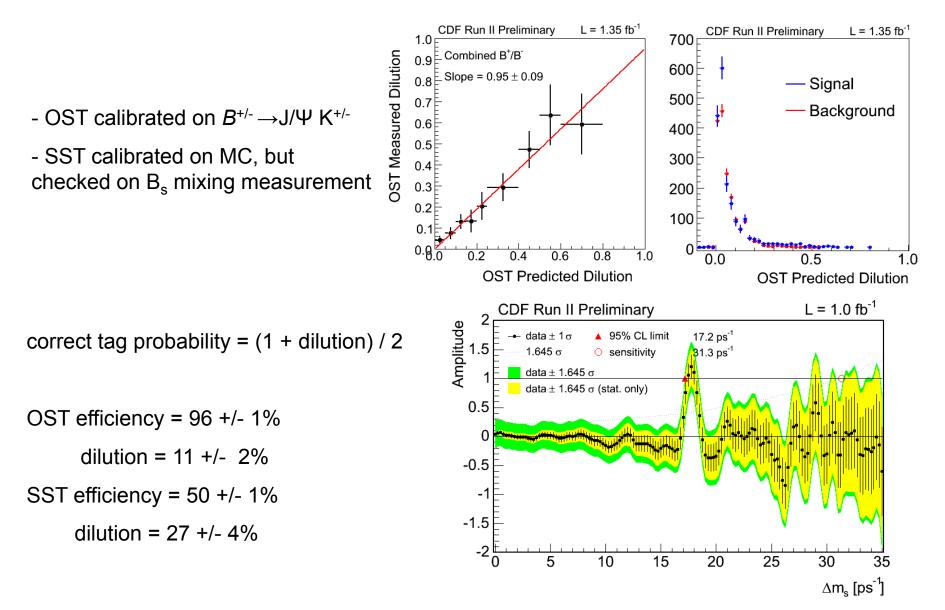
- Shown results with 2.8 fb⁻¹, but 5 fb⁻¹ already on tape to be analyzed
- Expect 8 fb⁻¹ by end of Run 2 in 2010 (maybe 10 fb⁻¹ by end of 2011 ?)

If β_s is indeed large combined CDF and DØ results have good chance to prove it


Conclusions

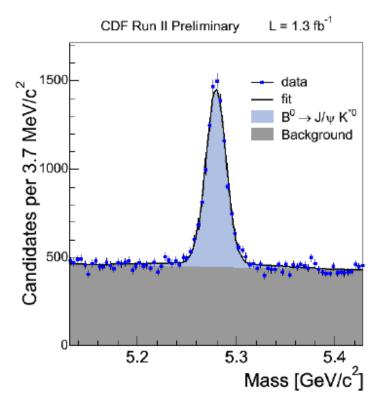
- Measurements of CPV in $\rm B_s$ system done by both CDF and DØ
- Significant regions in β_s space are ruled out
- Best measurements of ${\sf B}_{\sf s}$ lifetime and decay width difference $\Delta \Gamma$
- Both CDF and DØ observe 1-2 sigma β_s deviations from SM predictions
- Combined HFAG result 2.2 σ w.r.t SM expectation - updated Tevatron average expected soon
- Interesting to see how these effects evolve with more data
- Updated analyses from both CDF and D0 expected soon

Backup Slides


Flavor Tagging

- Tevatron: *b*-quarks mainly produced in *b* anti-*b*-pairs
 - \rightarrow flavor of the B meson at production inferred with
- OST: exploits decay products of other *b*-hadron in the event
- SST: exploits the correlations with particles produced in fragmentation

- Output: decision (b-quark or anti-b-quark) and probability the decision is correct
- Similar tagging power for both CDF and DØ ~4.5% (compared to ~30% at B factories)24

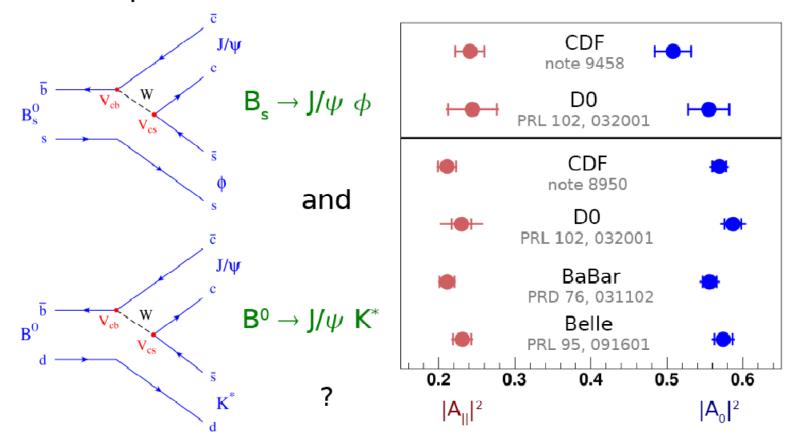

CDF Tagging Calibration and Performance

CDF Cross-check on $B^0 \rightarrow J/\Psi K^{*0}$

 $B^0 \rightarrow J/\psi K^{*0}$: high-statistics test of angular efficiencies and fitter

 $c\tau = 456 \pm 6 \text{ (stat)} \pm 6 \text{ (syst)} \ \mu\text{m}$ $|A_0(0)|^2 = 0.569 \pm 0.009 \text{ (stat)} \pm 0.009 \text{ (syst)}$ $|A_{\parallel}(0)|^2 = 0.211 \pm 0.012 \text{ (stat)} \pm 0.006 \text{ (syst)}$ $\delta_{\parallel} = -2.96 \pm 0.08 \text{ (stat)} \pm 0.03 \text{ (syst)}$ $\delta_{\perp} = -2.97 \pm 0.06 \text{ (stat)} \pm 0.01 \text{ (syst)}$

- Not only agree with latest BaBar results, (PRD 76,031102 (2007)) but also competitive
$$\begin{split} |A_0(0)|^2 &= 0.556 \pm 0.009 \text{ (stat)} \pm 0.010 \text{ (syst)} \\ |A_{\parallel}(0)|^2 &= 0.211 \pm 0.010 \text{ (stat)} \pm 0.006 \text{ (syst)} \\ \delta_{\parallel} &= -2.93 \pm 0.08 \text{ (stat)} \pm 0.04 \text{ (syst)} \\ \delta_{\perp} &= -2.91 \pm 0.05 \text{ (stat)} \pm 0.03 \text{ (syst)} \end{split}$$

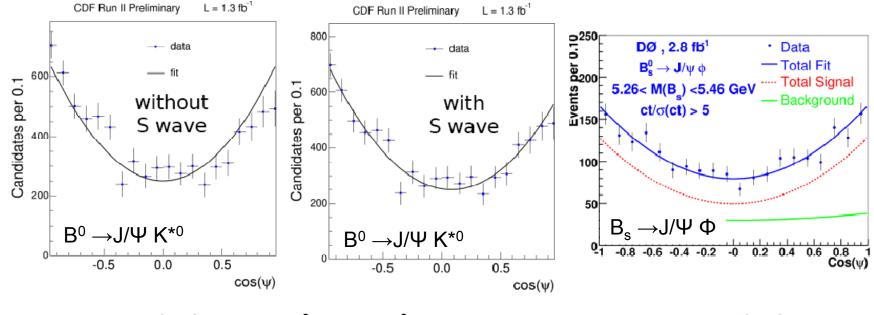

DØ Cross-check on $B^0 \to J/\Psi \; K^{*0}$

Parameter	B^0_d	B_s^0	Units	$\sum_{n=1}^{\infty} 5000 \begin{bmatrix} (a) & D0, 2.8 \text{ fb}^{-1} \\ \hline & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$
$ A_0 ^2$	0.587 ± 0.011	0.555 ± 0.027	_	
$ A_{ } ^2$	0.230 ± 0.013	0.244 ± 0.032	_	
δ_1	-0.38 ± 0.06	—	rad	
δ_2	3.21 ± 0.06	—	rad	
δ_{\parallel}	$3.59 \pm 0.08 \pm 0.08$	$2.72^{+1.12}_{-0.27}$	rad	2000 – Prompt background Non prompt background
au	1.414 ± 0.018	1.487 ± 0.060	\mathbf{ps}	
$\Delta\Gamma_s$	_	$0.085^{+0.072}_{-0.078}$	ps^{-1}	1000
N_{sig}	11195 ± 167	1926 ± 62	_	0 ^E
				5 5.1 5.2 5.3 5.4 5.5 5.6 Mass (GeV/c ²)

- Consistency of amplitudes and strong phase between B_s and B^0

arXiv:0810.0037v1

→ Same phases in



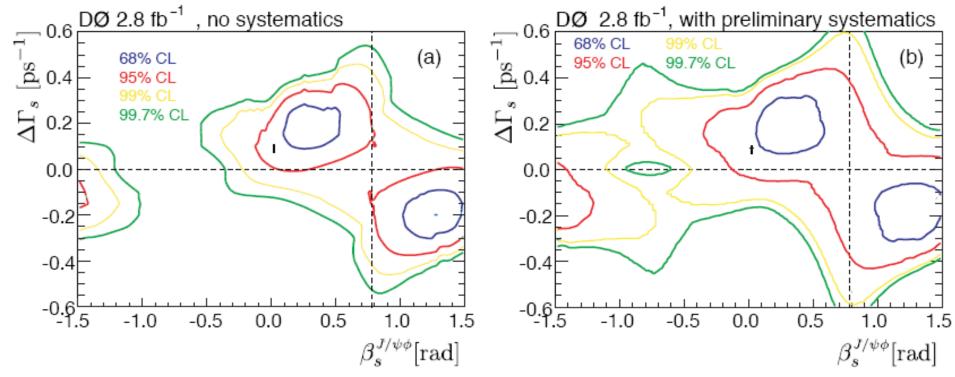
M. Gronau, J.L. Rosner, Phys.Lett.B669:321-326,2008, arXiv:0808.3761 \rightarrow argue that strong phases δ_{\parallel} and δ_{\perp} in $B_s \rightarrow J/\Psi\Phi$ and $B^0 \rightarrow J/\Psi$ K*⁰ should be within ~10 degrees from each other

S-wave Effect on Measurement of CP Violating Phases ? S.Stone, L.Zhang, arXiv:0812.2832

- What is effect of interference between S-wave $B_s \to J/\Psi~f^0~or~B_s \to J/\Psi~K^+K^-$ (non-resonant) and $B_s \to J/\Psi~\Phi~?$

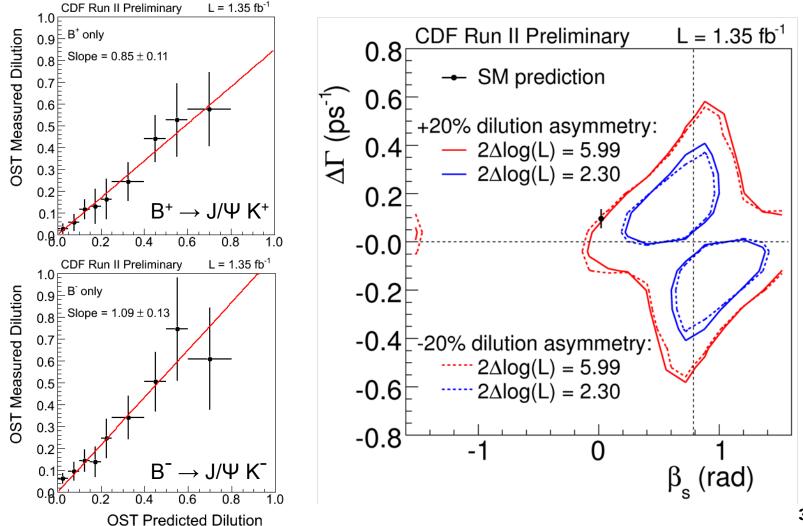
- Within statistics, no evidence for f^0 or non-resonant KK S-wave in $\Phi(KK)$ mass distribution
- $\cos(\Psi)$ distribution sensitive to S-wave interference:

Evidence for S-wave in $B^0 \rightarrow J/\Psi K^{*0}$


No evidence for S-wave in $B_s \rightarrow J/\Psi \Phi$

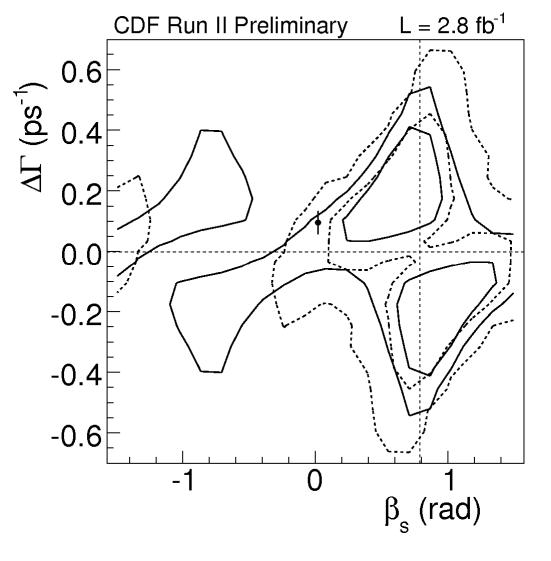
DØ Results Before and After Systematics

DØ dominant systematics included in CL contours:

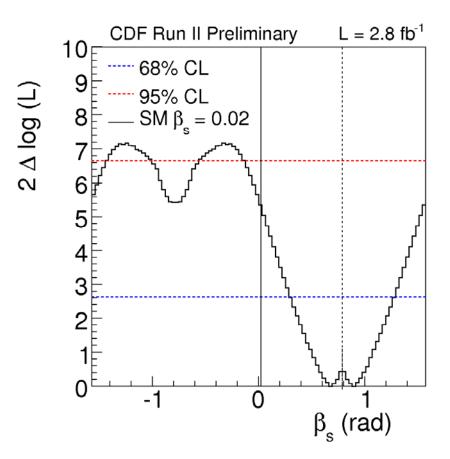

- dms, flavor dilution, detector acceptance (parameters varied by +/- 1σ)

SM p-value increases from 8.5% to 24% after inclusion of systematic uncertainties

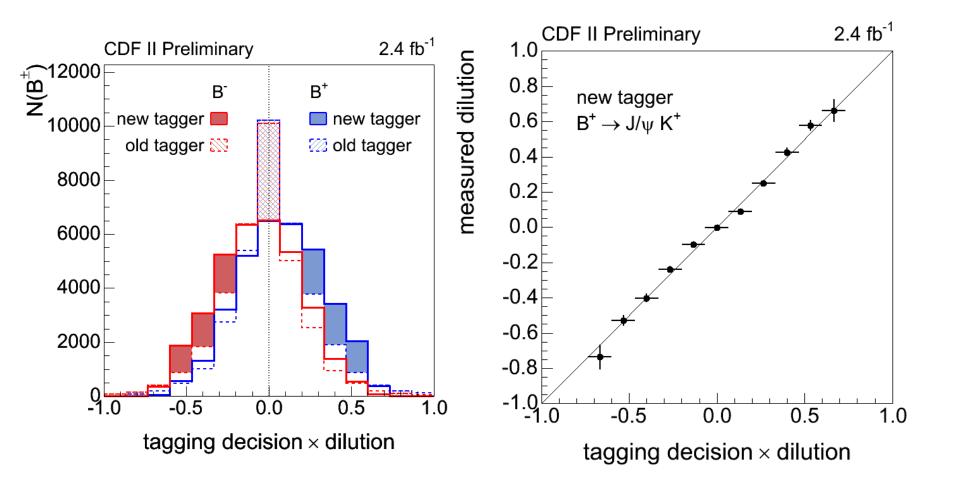
Effect of Dilution Asymmetry on β_s


- Effect of 20% b-bbar dilution asymmetry is very small

CDF Comparison Between 1.4 fb⁻¹ and 2.8 fb⁻¹

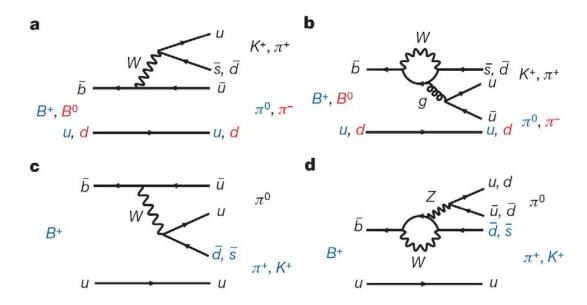

- dotted line = 1.4 fb^{-1}

- solid line = 2.8 fb^{-1}



CDF 1D Profile Likelihood

 β_{s} is within [0.28, 1.29] at the 68% CL



CDF Updated Tagger Coming Soon

Another Related Puzzle ?

- Direct CP in $B^+ \rightarrow K^+ \pi^0$ and $B^0 \rightarrow K^+ \pi^-$ should have the same magnitude.
- But Belle measures $\Delta A \equiv A_{K^{\pm}\pi^{0}} A_{K^{\pm}\pi^{\mp}} = +0.164 \pm 0.037$, (4.4 σ) Lin, S.-W. et al. (The Belle collaboration) Nature 452,332–335 (2008)
- Including BaBar measurements: > 5σ

- W.-S. Hou explains above effects by introducing the fourth fermion generation and predicts large β_s value (arXiv:0803.1234v1)

Asymmetry in the Mirror Lake !

Black hole ?

and the stand a stand

STATE AND IN COMPANY

Anti-Matter :-)

Matter