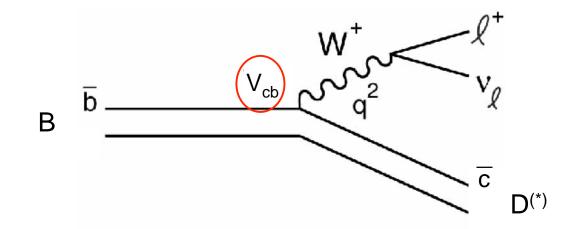


Measurements of $/V_{cb}/$


Christoph Schwanda, HEPHY Vienna representing the Belle collaboration

Flavor Physics and CP Violation 2009 May 27 - June 1, 2009, Lake Placid NY, USA

$|V_{cb}|$ from inclusive decays

Semileptonic width

- $\Gamma(B \rightarrow X_c I_v)$ can be expanded in powers of $1/m_b$ (Operator Product Expansion)
- At each order in 1/m_b: perturbative Wilson coefficient multiplied by expectation value of local operator which encodes soft QCD physics
- Lowest order: decay of free b-quark, linear order absent, non-perturbative corrections are O(1/m_b²)

from [Benson et al., Nucl. Phys. B665, 367 (2003)]

$$\begin{split} \Gamma_{\rm sl}(b \to c) &= \frac{G_F^2 \, m_b^5(\mu)}{192 \, \pi^3} \, |V_{cb}|^2 \, (1 + A_{\rm ew}) \, A^{\rm pert}(r, \mu) \\ & \left[z_0(r) \left(1 - \underbrace{\mu_{\pi}^2(\mu) + \mu_G^2(\mu) + \underbrace{\rho_D^3(\mu) \cdot \rho_{LS}^3(\mu)}_{m_b(\mu)}}_{2m_b^2(\mu)} \right) \\ & - 2(1 - r)^4 \underbrace{\mu_G^2(\mu) - \underbrace{\rho_D^3(\mu) \cdot \rho_{LS}^3(\mu)}_{m_b(\mu)}}_{m_b^2(\mu)} + d(r) \underbrace{\rho_D^3(\mu)}_{m_b^3(\mu)} + \dots \right] \end{split}$$

$$\begin{split} \mu_{\pi}^{2}(\mu) &\equiv \frac{1}{2M_{B}} \langle B|\overline{b}(i\vec{D})^{2}b|B\rangle_{\mu} , \qquad \mu_{G}^{2}(\mu) \equiv \frac{1}{2M_{B}} \langle B|\overline{b}\frac{i}{2}\sigma_{jk}G^{jk}b|B\rangle_{\mu} \\ \rho_{D}^{3}(\mu) &\equiv \frac{1}{2M_{B}} \langle B|\overline{b}(-\frac{1}{2}\vec{D}\cdot\vec{E})b|B\rangle_{\mu} , \qquad \rho_{LS}^{3}(\mu) \equiv \frac{1}{2M_{B}} \langle B|\overline{b}(\vec{\sigma}\cdot\vec{E}\times i\vec{D})b|B\rangle_{\mu} \end{split}$$

(result in kinetic scheme)

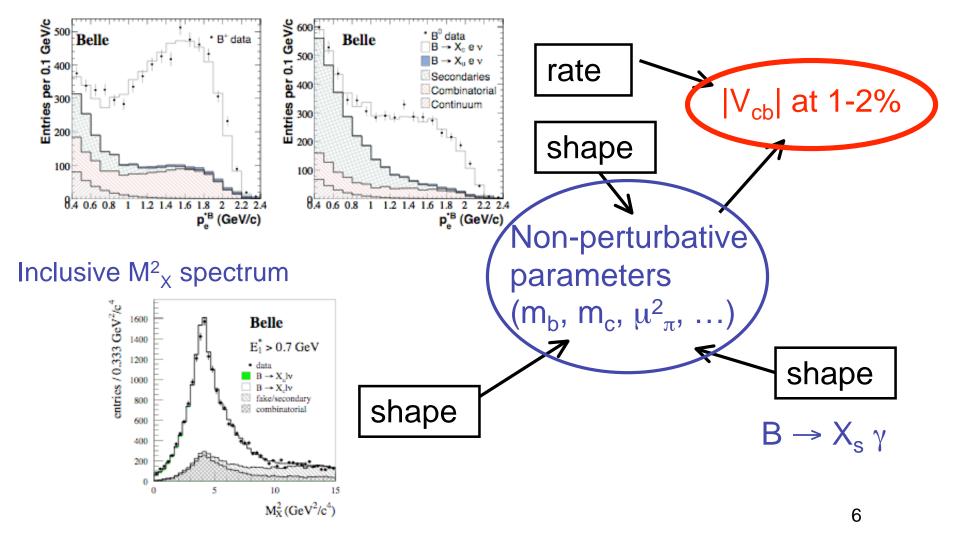
Other observables in B decays

• Moments of the lepton energy spectrum in $B \rightarrow X_c I_V$

$$R_n(E_{\rm cut},\mu) = \int_{E_{\rm cut}} \left(E_\ell - \mu\right)^n \, \frac{\mathrm{d}\Gamma}{\mathrm{d}E_\ell} \, \mathrm{d}E_\ell \,, \quad \langle E_\ell^n \rangle_{E_{\rm cut}} = \frac{R_n(E_{\rm cut},0)}{R_0(E_{\rm cut},0)}$$

• Moments of the hadronic mass spectrum in $B \rightarrow X_c I_V$

$$\langle m_X^{2n}\rangle_{E_{\rm cut}} = \frac{\displaystyle \int_{E_{\rm cut}} (m_X^2)^n \, \frac{{\rm d}\Gamma}{{\rm d}m_X^2} \, {\rm d}m_X^2} {\displaystyle \int_{E_{\rm cut}} \frac{{\rm d}\Gamma}{{\rm d}m_X^2} \, {\rm d}m_X^2} \label{eq:main_eq}$$


• Moments of the photon energy spectrum in $B \rightarrow X_{s\gamma}$

$$\langle E_{\gamma}^{n} \rangle_{E_{\rm cut}} = \frac{\int_{E_{\rm cut}} E_{\gamma}^{n} \frac{\mathrm{d}\Gamma}{\mathrm{d}E_{\gamma}} \,\mathrm{d}E_{\gamma}}{\int_{E_{\rm cut}} \frac{\mathrm{d}\Gamma}{\mathrm{d}E_{\gamma}} \,\mathrm{d}E_{\gamma}}$$

The OPEs of these inclusive observables contain the same HQ parameters

Non-perturbative parameters can be measured from inclusive observables in B decays

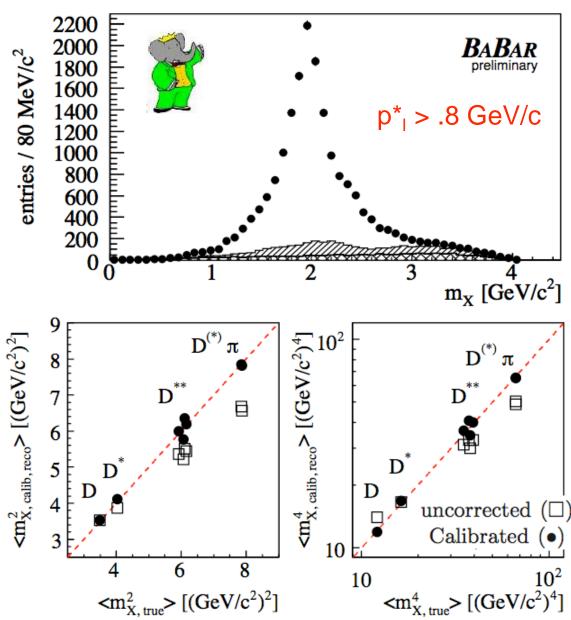
Inclusive E₁ spectrum

Available calculations

- Kinetic running mass
 - [P.Gambino, N.Uraltsev, Eur.Phys.J. C34, 181 (2004)]
 - [D.Beson, I.Bigi, N.Uraltsev, Nucl.Phys. B710, 371 (2005)]
- 1S mass

both calculations up to $O(1/m_b^3)$

7

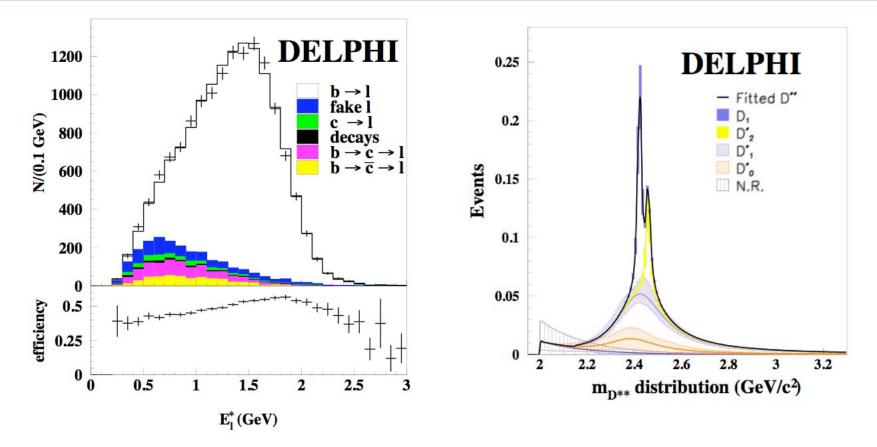

- [C.Bauer, Z.Ligeti, M.Luke, A.Manohar, M.Trott, Phys.Rev. D70, 094017 (2004)]
- Non-perturbative parameters in the 1/m_b expansion

	Kinetic scheme	1S scheme
O(1)	m _b , m _c	m _b
O(1/m ² _b)	μ^2_{π}, μ^2_G	λ_1, λ_2
O(1/m ³ _b)	ρ_{D}, ρ_{LS}	$ρ_1, τ_{1-3}$

BaBar M²_X moments

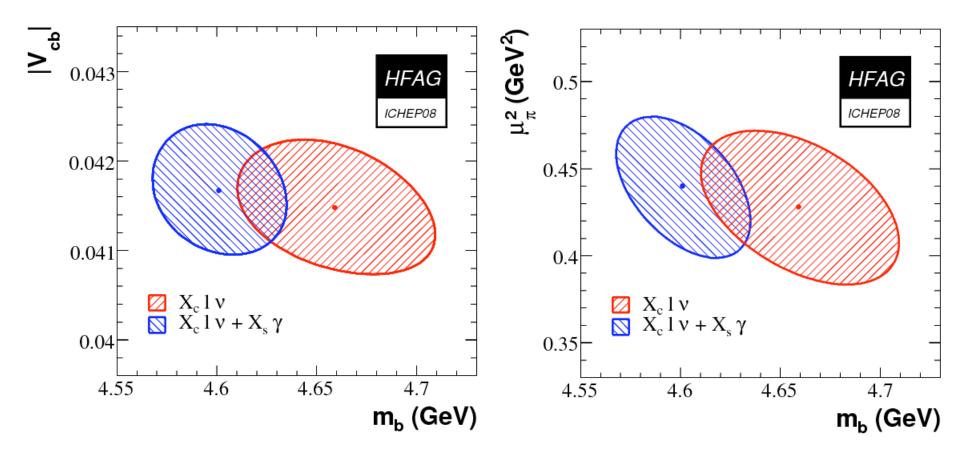
[arXiv:0707.2670] preliminary

- 210/fb of Y(4S) data
- Hadronic decay of one B meson fully reconstructed
- Semileptonic decay of other B selected by requiring identified lepton (e/µ)
- Reconstructed moments corrected event-by-event for detector effects
- <M^k_X> measured for k=1,...,6 and p*_{cut} from 0.8 to 1.9 GeV/c


Belle E₁ and M²_X moments [PRD 75, 032001 (2007)] [PRD 75, 032005 (2007)]

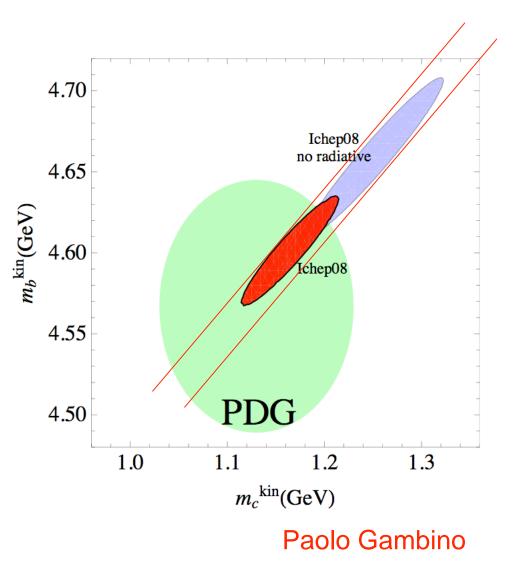
- 140/fb of Y(4S) data
- Measurement also done with fully reconstructed events
- The finite detector resolution is unfolded with SVD algorithm [NIM A372, 469 (1996)]
- $< E_e^n >$ measured for n=0,...,4 and E_{cut} =0.4-2.0 GeV
- $<M^{2n}_{X}>$ measured for n=1,2 and E_{cut}=0.7-1.9 GeV

DELPHI E_I and M_X^2 moments [EPJ C45, 35 (2006)]



- <Eⁿ_l>, n=1,...,3 and <M²ⁿ_X>, n=1,...,5 measured at E_{cut} = 0 as in Z events the b-quark is produced with a boost
- The hadronic moments are derived from the fitted D** mass spectrum; assumptions on the D** decay are made

HFAG kinetic scheme fit


BaBar	$: n=0,1,2,3$ [PRD 69, 111104 (2004)] $: n=1,2$ [arXiv:0707.2670] preliminary $: n=1,2$ [PRL 97, 171803 (2006)] and [PRD 72, 052004 (2005)]
Belle	$: n=0,1,2,3 [PRD 75, 032001 (2007)]$ $: n=1,2 [PRD 75, 032005 (2007)]$ $: n=1,2 [arXiv:0804.1580] preliminary$
CDF	<m<sup>2n_X>: n=1,2 [PRD 71, 051103 (2005)]</m<sup>
CLEO	<pre><m<sup>2n_X>: n=1,2 [PRD 70, 032002 (2004)]</m<sup></pre> <e<sup>n_γ>: n=1 [PRL 87, 251807 (2001)]</e<sup>
DELPHI	<e<sup>n_l>: n=1,2,3 <m<sup>2n_X>: n=1,2 [EPJ C45, 35 (2006)]</m<sup></e<sup>

 27 moments from BaBar, 25 moments from Belle and 12 11 moments from other experiments

Input	V _{cb} (10 ⁻³)	m _b (GeV)	μ^2_{π} (GeV ²)	χ²/ndf
All moments	41.67+/-0.43(fit)+/- 0.08(τ _B)+/-0.58(th)	4.601+/- 0.034	0.440+/- 0.040	29.7/57
X _c l∿ only	41.48+/-0.47(fit)+/- 0.08(τ _B)+/-0.58(th)	4.659+/- 0.049	0.428+/- 0.044	24.1/46 12

- B → X_cI_v moments only determine a band in the (m_b, m_c)plane
- $B \rightarrow X_{s\gamma}$ needed to fix b-quark mass m_b
- m_b from global fit (with $B \rightarrow X_s \gamma$) consistent with PDG estimate

$|V_{cb}|$ from exclusive decays

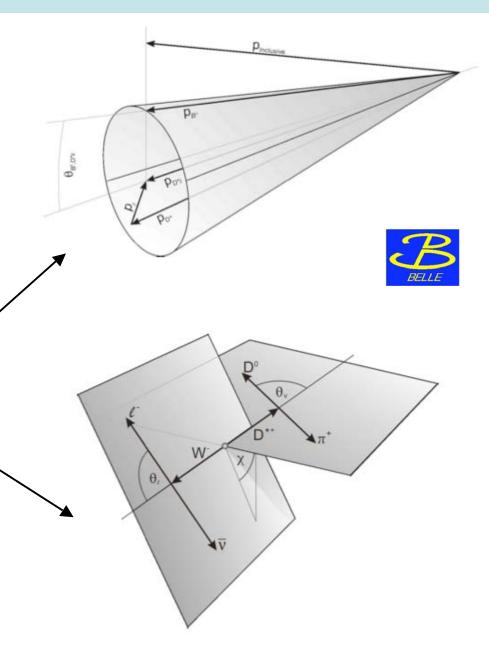
$$B^0 \rightarrow D^{(*)} + v$$
 width

$$\begin{aligned} \frac{d\Gamma}{dw}(\overline{B} \to D^* \ell \overline{\nu}_{\ell}) &= \frac{G_F^2}{48\pi^3} |V_{cb}|^2 m_{D^*}^3 (w^2 - 1)^{1/2} P(u(\mathcal{F}(w))^2) \\ \frac{d\Gamma}{dw}(\overline{B} \to D \ell \overline{\nu}_{\ell}) &= & \text{form factor} \\ \frac{G_F^2}{48\pi^3} |V_{cb}|^2 (m_B + m_D)^2 m_D^3 (w^2 - 1)^{3/2} (\mathcal{G}(w))^2 \qquad w \equiv v \cdot v' \\ \end{aligned}$$

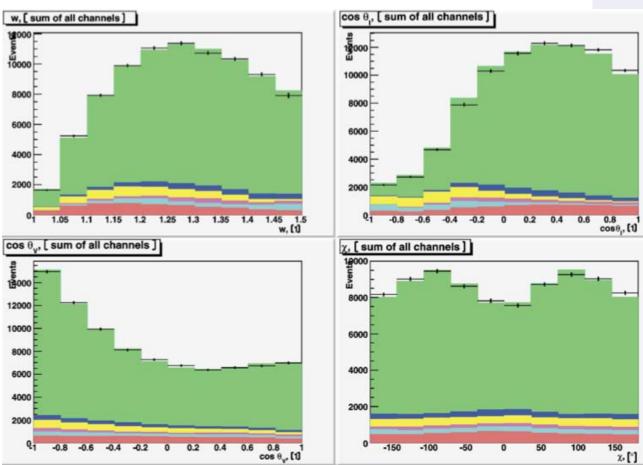
- Experiments fit F(1)|V_{cb}| and G(1)|V_{cb}| using a form factor parameterization based on HQET and dispersion relations [Caprini et al., Nucl. Phys. B530, 153 (1998)]
- Form factor parameters are ρ^2 , R₁, R₂ (ρ^2) for D*Iv (DIv)
- Form factor normalizations from lattice QCD

F(1) = 0.921 +/- 0.013 +/- 0.020	C.Bernard et al. [Phys.Rev.D79, 014506 (2009)]	ew I
G(1) = 1.074 +/- 0.018 +/- 0.016	M.Okamoto et al. [Nucl.Phys.Proc.Suppl. 140, 461 (2005)]	

Belle $B^0 \rightarrow D^{*-} |_{+} v$


[arXiv:0810.1657] preliminary

 Reconstruct the decay in 140/fb of Y(4S) data


•
$$\overline{B}^0 \rightarrow D^{*+} \ell^- \overline{\nu}_\ell$$
,
• $D^{*+} \rightarrow D^0 \pi^+$
• $D^0 \rightarrow K^- \pi^+$
• $D^0 \rightarrow K^- \pi^+ \pi^- \pi^+$

- Reconstruct the neutrino momentum using kinematics and the remaining particles in the event, to estimate B direction
- Reconstruct w and three angles that describe the decay

•
$$W = \frac{p_B^{\mu} \cdot p_{D^*,\mu}}{m_B m_{D^*}}$$

• $\cos \theta_\ell, \cos \theta_V, \chi$

Fit the 4 observables to the HQET parameterization of the quadruple differential cross section (binned least squares fit to the marginal distributions)

$$\frac{d^{4}\Gamma(B^{0} \rightarrow D^{*-\ell+\nu_{\ell}})}{dwd(\cos \theta_{\ell})d(\cos \theta_{V})d\chi} =$$

$$= \frac{6m_{B}m_{D^{*}}^{2}}{8(4\pi)^{4}}\sqrt{w^{2}-1}(1-2wr+r^{2})G_{F}^{2}|V_{cb}|^{2}$$

$$\times \{(1-\cos \theta_{\ell})^{2}\sin^{2}\theta_{V}H_{+}^{2}(w)$$

$$+(1+\cos \theta_{\ell})^{2}\sin^{2}\theta_{V}H_{-}^{2}(w)$$

$$+4\sin^{2}\theta_{\ell}\cos^{2}\theta_{V}H_{0}^{2}(w)$$

$$-2\sin^{2}\theta_{\ell}\sin^{2}\theta_{V}\cos 2\chi H_{+}(w)H_{-}(w)$$

$$-4\sin \theta_{\ell}(1-\cos \theta_{\ell})$$

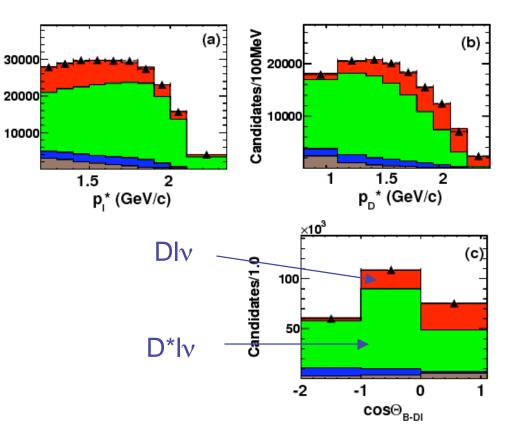
$$\sin \theta_{V}\cos \theta_{V}\cos \chi H_{+}(w)H_{0}(w)$$

d⁴Γ(

17

ρ^2	$1.293 \pm 0.045 \pm 0.029$
<i>R</i> ₁ (1)	$1.495 \pm 0.050 \pm 0.062$
<i>R</i> ₂ (1)	$0.844 \pm 0.034 \pm 0.019$
$R_{K3\pi/K\pi}$	$\textbf{2.153} \pm \textbf{0.011}$
${\cal B}(B^0 o D^{*-} \ell^+ u_\ell)$	$(4.42 \pm 0.03 \pm 0.25)\%$
$\mathcal{F}(1) \left \textit{V_{cb}} ight imes 10^3$	$\textbf{34.4} \pm \textbf{0.2} \pm \textbf{1.0}$
$\chi^2/\text{n.d.f.}$	138.8/155
P_{χ^2}	82.0%

	ρ^2	<i>R</i> ₁ (1)	$R_{2}(1)$	$\mathcal{B}(B^0)$	$\mathcal{F}(1) V_{cb} $
Stat. error	0.050	0.060	0.043	0.030	0.22
D**	0.015	0.038	0.011	0.051	0.25
Uncorr.	0.009	0.028	0.002	0.003	0.04
Sig.corr.	0.003	0.003	0.007	0.028	0.14
Fake ℓ	0.020	0.037	0.009	0.002	0.04
Fake D*	0.012	0.011	0.009	0.034	0.33
Continuum	0.003	0.008	0.000	0.001	0.02
Trk., det.eff.	-	-	-	0.221	0.86
$\mathcal{B}\left(\mathcal{D}^{0} ight)$	-	-	-	0.081	0.31
$\mathcal{B}(D^*)$	-	-	-	0.033	0.13
B ⁰ life time	-	-	-	0.026	0.10
N _{BB}	-	-	-	0.036	0.14
$f_{+-}/f_{0\bar{0}}$	0.003	0.011	0.005	0.001	0.04
Syst. error	0.029	0.062	0.019	0.251	1.04

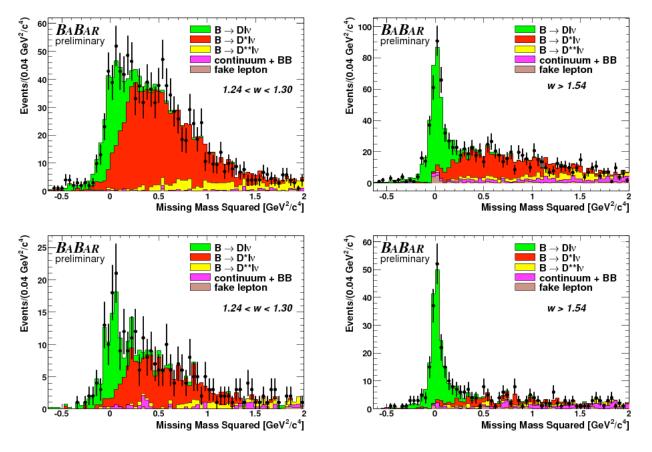

Preliminary results

Systematic uncertainty

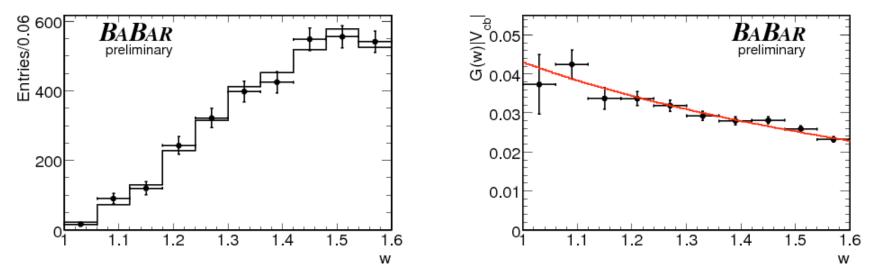
BaBar B \rightarrow DXIv global fit [PRD 79, 012002 (2009)]

Candidates/100MeV

- Reconstruct D⁰I and D⁺I (I=e,µ) combinations in 207/fb of Y(4S) data
- Fit F(1) $|V_{cb}|$, G(1) $|V_{cb}|$, $\rho^2_{D^*}$ and ρ^2_{D} using the kinematic variables p^*_{I} , p^*_{D} and $\cos \theta_{B-DI}$
- No slow pion systematics for D*Iv



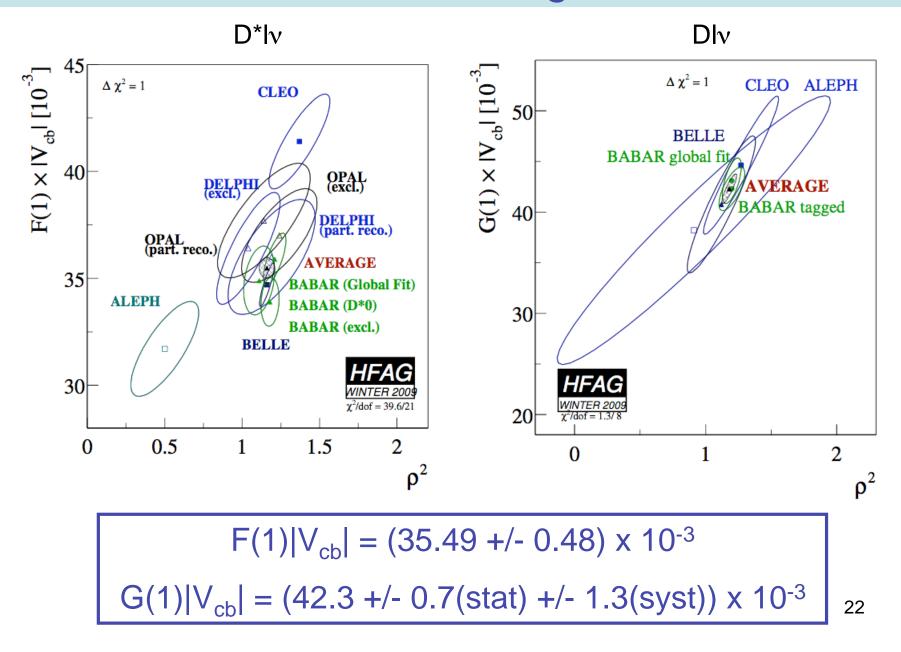
 $F(1)|V_{cb}| = (35.9 + - 0.2 + - 1.2) \times 10^{-3}$ $G(1)|V_{cb}| = (43.1 + - 0.8 + - 2.3) \times 10^{-3}$


BaBar $B \rightarrow Dlv$ with hadronic tag

[arXiv:0807.4978] prel.

- Use 417/fb of Y(4S) data in which the hadronic decay of one B is fully reconstructed
- Reconstruct $B^0 \rightarrow D^-l^+\nu$ and $B^+ \rightarrow D^0l^+\nu$ on signal side in 10 bins of w and fit $G(1)|V_{cb}|$ and ρ^2 20

	$B^- \to D^0 \ell^- \bar{\nu}_\ell$	$\overline{B}{}^0 \to D^+ \ell^- \bar{\nu}_\ell$	$\overline{B} \to D \ell^- \bar{\nu}_\ell$
$\mathcal{G}(1) V_{cb} \cdot 10^3$	41.7 ± 2.1	$45.6 \pm \ 3.3$	43.0 ± 1.9
$ ho^2$	1.14 ± 0.11	1.29 ± 0.14	1.20 ± 0.09
$ ho_{ m corr}$	0.943	0.950	0.952
χ^2/ndf	3.4/8	5.6/8	9.9/18
Signal Yield	2147 ± 69	1108 ± 45	-
Recon. efficiency	$(1.99 \pm 0.02) \cdot 10^{-4}$	$(1.09 \pm 0.02) \cdot 10^{-4}$	-
B	$(2.31 \pm 0.08)\%$	$(2.23 \pm 0.11)\%$	$(2.17 \pm 0.06)\%$



 $G(1)|V_{cb}| = (43.0 + - 1.9 + - 1.4) \times 10^{-3}$

21

HFAG winter 09 average

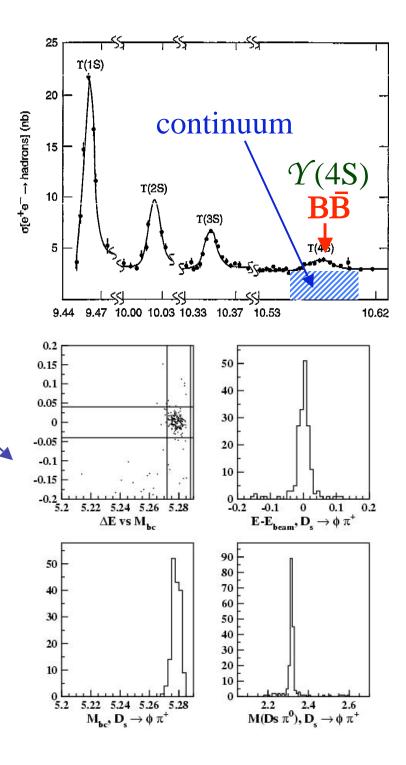
Summary and conclusions

• $|V_{cb}|$ inclusive

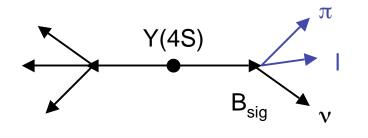
	V _{cb} (10 ⁻³)	m _b (GeV)
HFAG ICHEP08	$41.67 \pm 0.43_{fit} \pm 0.08_{\tau B} \pm 0.58_{th}$	4.601 ± 0.034

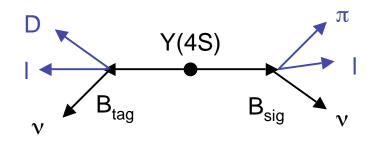
• |V_{cb}| exclusive (HFAG winter 09)

	V _{cb} (10⁻³)
HFAG D*Iv / C. Bernard et al.	38.3±0.5 _{exp} ±1.0 _{th}
HFAG DIv / M. Okamoto et al.	39.1±1.4 _{exp} ±0.9 _{th}


- 2.5 sigma discrepancy between $|V_{cb}|$ inclusive and exclusive (D*Iv)

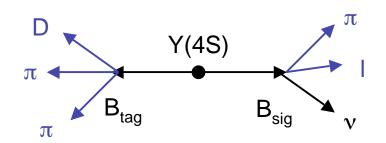
Backup


- At the Y(4S), BB are produced at threshold
- This allows to
 - Select a B signal using two nearly independent variables


 $\Delta E = \Sigma E_i - E_{beam}$ Determine the 4-momentum of one B by reconstructing the

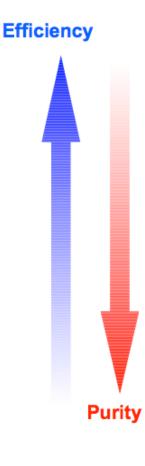
- other
- Distinguish BB (spherical) from continuum events (jet-like)

Tagging



Untagged

- •Only signal reconstructed
- •High efficiency


Semileptonic tag

- •Good statistics, clean events
- •Kinematics not fully reconstructed

Fullrecon tag

- •Kinematics fully known
- •Low statistics

