Bs mixing \& interpertation
 Amarjit Soni HET, BNL

FPCP09 Lake Placid, NY

Outline

- Introduction, Motivation, Basics
- Theoretical underpinnings of SM predictions
- Possible Hints: Bs \& relation with others
- Sample BSM scenarios
- Summary \& Outlook

©Flavor=2 processes extremely powerful test

- $2^{\text {nd }}$ order $->$ severe suppresion-> FLAVOR PUZZLE ->extraordinary opportunity to further our understanding of basic physics at short distances \& test alignment->FLAVOR PROBLEM for many if not most BSMs
- Kaon Mixing -> GIM, CHARM, CPV
- Bd Mixing -> Large m_t, O(1) CP asy, precision test of UT \& CKM paradigm, possible anomalies.....
- Bs MIXING STUDIES EXPECTED TO BE EXTREMELY RICH -> POSSIBILTY OF NEW DISCOVERIES IS A SUPERB BET!

A UNIQUE GIFT: EVASION of the decoupling theorem

MIXING $A m_{p} \propto m_{\text {vintuol fanion }}^{2}$ HIGHLY counter intuitive!

Importance of being Bs: NULL TESTS GALORE!

- Because of limitations of theory viability of CP-conserving observables is limited
- Much more precious are CP violating observables:
- CKM predicts: ~ 0 phase in b->s (penguin)
- (related) ~ 0 phase in ${ }^{4} s$ box-> zilch time-dependent/mixing-induced CP Asyms $\sim .02$
- Semi-leptonic asy ..TINY

Bs mixing preliminaries

- Time evolution:

$$
i \frac{\mathrm{~d}}{\mathrm{~d} t}\binom{\left|B_{s}^{0}(t)\right\rangle}{\left|\bar{B}_{s}^{0}(t)\right\rangle}=\left(\mathrm{M}-\frac{i}{2} \Gamma\right)\binom{\left|B_{s}^{0}(t)\right\rangle}{\left|\bar{B}_{s}^{0}(t)\right\rangle}
$$

MASS Eigenstates $B_{L}^{S}\left(m_{L}^{s}\right), B_{H}^{S}\left(m_{H}^{s}\right)$
OBSERVABLES

Mean mass $m_{S}=\left(m_{L}^{S}+m_{B A}^{S}\right) / 2$
11 lifetime $\tau_{s}=\frac{1}{\Gamma_{s}}=2 /\left(\Gamma_{M}^{s}+\Pi_{L}^{s}\right)$
CPV phase $\phi_{s} \equiv$ and $\left(-M_{12} / \Gamma_{12}\right)$
$I \cdot \Delta m_{s} \equiv 2\left|M_{12}\right| ; \pi \cdot \Delta T_{s}=2\left|\Gamma_{12}\right| \cos \phi_{s}$
II $\left.a_{f s}^{s}=\operatorname{lm}\left(\Gamma_{12} / M_{12}\right)^{\text {FPCPO9: 5128890; AA Soil }}=\underset{s}{=}\right) \tan \phi_{s}$

$$
\begin{aligned}
& \Delta M_{B_{q}}=2\left|M_{12}^{q}\right|=\frac{\mid\left\langle\bar{B}_{q}^{0}\right| \mathcal{H}_{\mathrm{eff}}\left|B_{q}^{0} \eta\right|}{m_{B_{q}}}=\frac{G_{F}^{2}}{12 \pi^{2}} m_{W}^{2} m_{B_{q}} f_{B_{q}}^{2} \hat{B}_{B_{q}} \eta_{B} S_{0}\left(x_{t}\right)\left|V_{t b} V_{t q}^{*}\right|^{2} \\
& C D F+D \phi \cdots W A \\
& \Delta M_{s}=17.78 \pm .12 \mid p s
\end{aligned}
$$

$0(.7 \%$ THEORY CONSISTENT $\sim O(30 \%)$ BUTLLAGS SIGNIFICANTLY

$$
\frac{\Delta M_{B_{s}}}{\Delta M_{B_{d}}}=\xi^{2} \frac{m_{B_{s}}}{m_{B_{d}}}\left|\frac{V_{t s}}{V_{t d}}\right|^{2}
$$

$$
\Rightarrow\left|\frac{V_{t d}}{V_{t s}}\right|=.206 \pm .001+-.007
$$ a ato

$$
\begin{aligned}
& \text { PROS } \\
\Rightarrow & \text { TEST OLDES STRINGEST } \\
& U T O C K M
\end{aligned}
$$

$\left\{\begin{array}{l}1.21 \pm .05\end{array}\right.$ MORE PROGRESS TEST OGUTO CKM FPCP09：5／2809；A．soni lender way；RUTH レカWン

Width Diff

3uchalla,Beneke, Lenz, \& Nierste '98

$$
\Gamma_{21}=\frac{1}{2 M_{B_{e}}}\left\langle\bar{B}_{s}\right| \mathcal{T}\left|B_{s}\right\rangle
$$

$$
\mathcal{T}=\operatorname{Im} i \int d^{4} x T \mathcal{H}_{e f f}(x) \mathcal{H}_{e f f}(0)
$$

$$
\left(\frac{\Delta \Gamma}{\Gamma}\right)_{B_{s}}=\left(\frac{f_{B_{s}}}{210 \mathrm{MeV}}\right)^{2}\left[0.006 \underset{\left.\left.B\left(m_{b}\right)+0.150 \gamma_{\mu}\left(1-\gamma_{S}\right) s\right)^{B_{S}}\left(m_{b}\right)-0.063\right]}{\rightarrow\left\{T\left(1+\gamma_{c} s\right\}^{2}\right.}\right.
$$

Lenz\&Nierste'07

$$
T_{e_{2}}\left(1+\gamma_{5}\right) S_{\beta} T_{\beta}\left(1+\gamma_{5} s_{\alpha}\right.
$$

$$
\frac{\Delta r_{s}}{r_{S}} \simeq 0.15 \pm \underset{\text { FPCPO9: 5/28099; A. Soni }}{0} \pm
$$

$$
\rightarrow\left[\frac{b}{c}\left(1+\gamma_{s} s\right]^{2}\right.
$$

$$
\Delta \Gamma_{s}^{\mathrm{SM}}=\left(\frac{f_{B_{s}}}{240 \mathrm{MeV}}\right)^{2}\left[(0.105 \pm 0.016) B+(0.024 \pm 0.004) \tilde{B}_{S}^{\prime} \ldots \ldots\right.
$$

Combination

- Old CDF result
- No constraint on strong phases

- Constraints on B_{s} lifetime and $\mathrm{a}_{\mathrm{sL}}{ }^{\text {s }}$
\rightarrow Hint for new physics?

Summary of B-CP Anomalies

- CDF+D0 HINTS of New Physics in Bs-> $\Psi \varphi$ esp. intriguing as nicely fits with indications from B-Factories
- $\operatorname{Dir} \mathbf{C P}$ in $\mathrm{K}+\pi-\mathrm{vs} \mathrm{K}+\boldsymbol{\pi} 0$

- Fitted ("SM-predicted") value of $\sin 2 \beta$ vs directly measured a) via tree decays
- LUNGH1 108 A ${ }^{\text {b }}$) via loop decays

EACH ~2 to ~3.56
$\triangle \mathrm{ACP}(\mathrm{K} \pi)$ (Lunghi +A S,'07)

where the first error corresponds to uncertainties on the CKM parameters and the other three correspond to variation of various hadronic parameters; in particular, the fourth one caresponds to the unknown power corrections. The main point is that the uncertainties in the two asymmetries are highly correlated. This fact is reflected in the prediction for their difference; we find:

$$
\begin{aligned}
& \text { RELATED BY ISOSPIN } \\
& \Delta A_{C P}=A_{C P}\left(B^{-} \rightarrow K^{-} \pi^{0}\right)-A_{C P}\left(\bar{B}^{0} \rightarrow K^{-} \pi^{+}\right)=(2.5 \pm 1.5) \% \text {. }
\end{aligned}
$$

In evaluating the theory error for this case, we followed the analysis presented in Ref. [31] and even allowed for some extreme scenarios (labeled S1-S4 in Ref. [31]) in which several inputs are simultaneously pushed to the border of their allowed ranges. The comparison of the SM prediction in Eq. (3) to the experimental determination of the same quantity [14]
$A_{C P} K+\pi=-9.5 \pm 1.3^{2} / 6$ $K^{+} \pi^{0}=4.7 \pm 2.6 \%$ yields a 3.5σ effect.

For an alternate explanation See Gronau \& Rosner(PLB,'07)

$$
\begin{equation*}
\Delta A_{C P}^{\exp }=(14.4 \pm 2.9) \% \tag{4}
\end{equation*}
$$

$$
\approx 3.56
$$

Ben eke nelezget

FPCP09: 5/28/09; A. Soni

Lunghi+AS,arXiv.0707.0212
 $(\sin 2 \beta=0.78+-.04)$

Figure 1: Unitarity triangle fit in the SM. The constraints from $\left|V_{w b} / V_{d b}\right|, \varepsilon_{K}, \Delta M_{B_{s}} / \Delta M_{B_{d}}$ are included in the fit; the region allowed by $a_{\psi K}$ is superimposed.

Important to Examine only DeltaF=2 observables:Leave out Vub $\sin 2 \beta=0.87+-.09\{$ Lunghi+AS,hep-ph/08034340\} (became possible only due significantly reduced error in B_{K})

2.1-2.7 σ-deviation from the directly measured values of $\sin 2 \beta$ requires careful follow-up

Anomalies in $B\left(B_{s}\right)$-CP asymmetries

MORE RECENTLY

- Increased accuracy in B_{K} from the lattice(+ important correction from Buras \& Guadagnoli), along
with ξ_{s} from the lattice suffices now \{w/o use of V_{ub} \} to determine $\sin 2 \beta$ to be around $0.87+-0.09^{*}$ (Lunghi+AS, 0803.4340)[thanx to lattice remove |V $\mathrm{V}_{\mathrm{ub}} \mid$ CONCERN] but heightens discrepancy for SM
-> If true suggests problem in $\Delta b=2 \& / 0) \Delta s=2$ (ASSOUYING
Vcl is not too far off)
\{See L\&S abowe, Buras \& Guadagnoli $0805.38 \& 7\}$

$$
\begin{aligned}
& \Delta S \equiv S_{\text {penguin }}-S_{\psi K_{S}}=O\left(\lambda^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\sqrt[4]{w_{m}} \frac{b_{c}}{c}}{\bar{a}} \\
& S_{\text {\&K }}^{\text {Des }}=0 \\
& S_{4 K_{3}}=0 L_{L} t
\end{aligned}
$$

$\sin \left(2 \beta^{\mathrm{eff}}\right) \equiv \sin \left(2 \phi_{1}^{\text {eff }}\right) \underset{\text { CKMMO208 }}{\text { HF AG }}$

\rightarrow

(herg)	anses ars HBLE I: Some expec	M.benele		
Mode	QCDF +FSI [20, 21]	QCDF [23]	QCDF [24]	SCET [25]
$\eta^{\prime} K^{0}$	$0.00_{-0.04}^{+0.00}$	0.01 ± 0.01	0.01 ± 0.02	$\begin{aligned} & -0.019 \pm 0.009 \\ & -0.010 \pm 0.001 \end{aligned}$
ϕK^{0}	$0.03_{-0.04}^{+0.01}$	0.02 ± 0.01	0.02 ± 0.01	
$K_{S} K_{S} K^{0}$	$0.02_{-0.04}^{+0.00}$			

CLEANEST MODES

Courtesy: Tom Browder
Critical Role of the B factories in the verification of the KM hypothesis was recognized and cited by the Nobel Foundation

A single irreducible phase in the weak interaction matrix accounts for most of the CPV observed in kaons and B's.

A

CP violating effects in the B sector are $\mathrm{O}(1)$ rather than $\mathrm{O}\left(10^{-3}\right)$ as in the kaon system. 18

Lunghi + AS, arXiv:0903.5059

YET ANOTHER!

Adapted from Browder

A lesson from history (I)

"A special search at Dubna was carried out by E. Okonov and his group. They did not find a single $\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-}$event among 600 decays into charged particles [12] (Anikira et al., JETP 1962). At that stage the search was terminated by the administration of the Lab. The group was unlucky."
-Lev Okun, "The Vacuum as Seen from Moscow"

1964: $B F=2 \times 10^{-3}$

A failure of imagination ? Lack of patience ?

Model independent determination of scale of new physics with a non-standard CP phase
needed to fix B-CP anomalies
\{Lunghi + AS ‘09\}

Scenario	Operator	$\Lambda(\mathrm{TeV})$	$\varphi\left(^{\circ}\right.$)
B_{d} mixing	$O_{1}^{(d)}$	$\begin{cases}1.1 \div 2.1 & \text { no } V_{u b} \\ 1.4 \div 2.3 & \text { with } V_{u b}\end{cases}$	$\begin{cases}15 \div 92 & \text { no } V_{u b} \\ 6 \div 60 & \text { with } V_{u b}\end{cases}$
$B_{d}=B_{s}$ mixing	$O_{1}^{(d)} \& O_{1}^{(s)}$	$\begin{cases}1.0 \div 1.4 & \text { no } V_{u b} \\ 1.1 \div 2.0 & \text { with } V_{u b}\end{cases}$	$\begin{cases}25 \div 73 & \text { no } V_{u b} \\ 9 \div 60 & \text { with } V_{u b}\end{cases}$
K mixing	$\begin{aligned} & O_{1}^{(K)} \\ & O_{4}^{(K)} L R \end{aligned}$	$\begin{aligned} & <1.9 \\ & <24 \end{aligned}$	$130 \div 320$
$\mathcal{A}_{b \rightarrow s}$	$\begin{aligned} & O_{4}^{b \rightarrow s} \\ & O_{3 Q}^{b \rightarrow s} \end{aligned}$	$\begin{aligned} & .25 \div .43 \\ & .09 \div .2 \end{aligned}$	$\begin{aligned} & 0 \div 70 \\ & 0 \div 30 \end{aligned}$

WHODUNIT?

Honest answer \&

- Don't really know (too many possibilities...)
- But theoretically the most interesting possibility is that we may be witnessing Dawning of the age of "Warped Quantum Flavordynamics"

Many other possiblities

- Susy¹...
- Extra Higgs, Extra Z,...
- Extra gen....
- In past few years have studied few possibilities: WEXD,T2HDM $\& 4^{\text {th }}$ gen
- What's the simplest solution that "can do the job"

[^0](Davoudiasl, Hewett, Rizzo; Pomarol; Grossman, Neubert; Chang, Hisano, Nakano, Okada,Yamaguchi; Gherghetta, Pomarol)

Flavor hierarchy from profiles

flavor violation from KK's

- Non-universal, but diagonal coupling to gauge KK's in gauge/weak basis...
$\left(\bar{d}_{L_{\text {weak }}}{\overline{s_{L}}}_{\text {weak }}\right)\left(\begin{array}{cc}g_{d}^{K K} & 0 \\ 0 & g_{s}^{K K}\end{array}\right) \gamma^{\mu} A_{\mu}^{(n)}\binom{d_{L \text { weak }}}{s_{L \text { weak }}}$

- off-diagonal in mass basis (in general):
$\ldots \mathrm{D}_{L}^{\dagger} \operatorname{diag}\left(g_{d}^{K K}, g_{s}^{K K}\right) D_{L} \cdots \rightarrow\left(g_{s}^{K K}-g_{d}^{K K}\right)\left(D_{L}\right)_{12} \times$
$\bar{d}_{L \text { mass }} \gamma^{\mu} A_{\mu}^{(n)} s_{L}$ mass

Contrasting B-Factory Signals from WED with those from SM

Agashe, Perez \&AS, PRL'04 (Assumed Bd-mixing is SM) $O(1)$ uncertainties stressed

Recently many very nice extensions (Buras,Falkowski, Perez,Weiler,Neubert)et al

Meson mixing: Neutral B_{d} mesons*

- Even after imposing $\left|\varepsilon_{K}\right|$ constraint, sizable effects in magnitude and phase of B_{d} meson mixing amplitude possible

$$
\begin{aligned}
& C_{B_{d}} e^{2 i \phi_{B_{d}}}=\frac{\left\langle B_{d}\right| \mathcal{H}_{\mathrm{eff}}^{\Delta B=2}\left|\bar{B}_{d}\right\rangle}{\left\langle B_{d}\right| \mathcal{H}_{\mathrm{eff}, \mathrm{SM}}^{\Delta B=2}\left|\bar{B}_{d}\right\rangle} \\
& \star \text { SM: } C_{B_{d}}=1, \phi_{B_{d}}=0^{\circ} \\
& \text { - consistent with quark masses, } \\
& \text { CKM parameters, and } 95 \% \mathrm{CL} \\
& \text { limit }\left|\varepsilon_{K}\right| \in[1.3,3.3] \cdot 10^{-3}
\end{aligned}
$$

Meson mixing: Neutral B_{s} mesons*

- Constraint from $\left|\varepsilon_{K}\right|$ does not exclude $\mathrm{O}(1)$ effects in width difference $\Delta \Gamma_{s} / \Gamma_{s}$ of B_{s} system

$$
\begin{aligned}
& \qquad \begin{array}{l}
\Delta \Gamma_{s}= \\
\qquad \quad \Gamma_{L}^{s}-\Gamma_{S}^{s} \\
\quad=2\left|\Gamma_{12}^{s}\right| \cos \left(2\left|\beta_{s}\right|-2 \phi_{B_{s}}\right) \\
\star \mathrm{SM}: \Delta \Gamma_{s} / \Gamma_{s} \approx 0.13, S_{\psi \varphi} \approx 0.04 \\
\text { - consistent with quark masses, } \\
\text { CKM parameters, and } 95 \% \mathrm{CL} \\
\quad \text { limit }\left|\varepsilon_{K}\right| \in[1.3,3.3] \cdot 10^{-3}
\end{array}
\end{aligned}
$$

Meson mixing: Neutral B_{s} mesons*

- In RS model significant corrections to semileptonic CP asymmetry $A_{S L}^{s}$ and $S_{\psi \rho}=\sin \left(2\left|\beta_{s}\right|-2 \phi_{B_{s}}\right)$, consistent with $\left|\varepsilon_{K}\right|$, can arise

$$
\begin{aligned}
& \begin{array}{l}
A_{S L}^{s}=\frac{\Gamma\left(\bar{B}_{s} \rightarrow l^{+} X\right)-\Gamma\left(B_{s} \rightarrow l^{-} X\right)}{\Gamma\left(\bar{B}_{s} \rightarrow l^{+} X\right)+\Gamma\left(B_{s} \rightarrow l^{-} X\right)} \\
\quad=\operatorname{Im}\left(\frac{\Gamma_{12}^{s}}{M_{12}^{s}}\right) \\
\star \mathrm{SM}: A_{S L}^{s} \approx 2 \cdot 10^{-5}, S_{\psi \varphi} \approx 0.04 \\
\text { model-independent prediction } \\
\text { - consistent with quark masses, } \\
\text { CKM parameters, and } 95 \% \mathrm{CL} \\
\text { limit }\left|\varepsilon_{K}\right| \in[1.3,3.3] \cdot 10^{-3}
\end{array}
\end{aligned}
$$

TWO important subtleties: I.The flavor puzzle

LHC/Super B factory synergy discussion on US TV comedy

D. Saltzberg, Science Advisor

CBS, "Big Bang Theory" averages 9 million viewers per episode.

Courtesy Tom
Browder

II. EXTREMELY INTERESTING SUBTELTY of warped models

- Maldacena conjecture
- "Warped Quantum Flavordynamics" is

DUAL to strong dynamics->
Focus for now on the SIMPLEST 4d
Explanation(s): I T2HDM 107
II SM4 \rightarrow Now
Thus by process of elimination one arrives at

More explicitly How does $4^{\text {th }}$ family fit in?

For details see AS+ Alok,Giri, Mohanta \& Soumitra in WHEPPX (see published Proceedings Jan,'08) \& arXiv:0807.1971 \& in progress

HINTS

I. CP observables are crucial; CP conserving processes seem to see hardly any effect.
II. EWP seems to have a NP component to it:

Reminiscent of the non-decoupling effects in SBGT's
III. NP seems to depend on b->d versus b->s (s->d is
also a possibilty)
->This is suggestive of a " 4 th family"...PERHAPS THE SIMPLEST SOLUTION
-> 2 entirely new phases..THEREFORE NOT A PERTURBATION for CPV..NULL TESTS of SM-CKM MAY FAIL A LOT...Bs-> $\Psi \varphi$, Bd-> φ Ks are null tests whereas Brs show little effect.
-> 3 new mixing angles, 2 new masses: totall of 7 parameters...
-> 4th family with rather heavy t'(b'), masses ~400-600 GeV provides perhaps the simplest explanation (AS et al, 0807.1971)

```
\{suggestion of 4th family also made by Hou et al JHEP'06;PRL'05;PRL'07.... though their discussions seem confined to lighter mt'\}
```

-> IN OUR WORK mt' $400-600 \mathrm{GeV}$-> If true then it likely plays an impt. ROLE IN DYNAMICAL EWSB thereby providing a possible resolution to EW-Planck hierarchy\{ see, e.g. He, Hill \& Tait, hepph/0108041\}

TABLE I: Inputs that we use in order to constrain the SM4 parameter space, we have considered the 2σ range for $V_{u b}$.

FIG. 3: Correlation between $S_{\phi K_{s}}$ and $S_{\psi \phi}$ for $m_{t^{\prime}}=400$ (red), 600 (green), 800 (magenta) and 1000 (blue) GeV respectively. The horizontal lines represent the experimental 1σ range for $S_{\phi K_{s}}$ whereas the vertical lines (Black 1- σ and red $2-\sigma$) represent that for $S_{\psi \phi}$.

FIG. 2: The allowed range for $S_{\psi \phi}$ in the $\left(S_{\psi \phi}-\phi_{t^{\prime}}^{s}\right)$ plane for $m_{t^{\prime}}=400$ (red), 500 (green), 600 (magenta) and 700 (blue) GeV respectively. Black and red horizontal lines in the figure indicate 1- σ and 2- σ experimental ranges for $S_{\psi \phi}$ respectively.

FIG. 1: The allowed range of the CP asymmetry difference $\left(\Delta A_{C P}\right)$ in the $\left(\Delta A_{C P}-\lambda_{t^{\prime}}^{s}\right)$ plane, where the red, green, magenta and blue regions correspond to $m_{t^{\prime}}=400,500,600$ and 700 GeV . The 30% error bars due to hadronic uncertainties [5] are shown by grey bands. The balck and red horizontall lines correspond to the experimentally allowed 1 and $2-\sigma$ range respectively.

Possible relevance of SM4: This is a revisit

Early (~87-88) studies on $4^{\text {th }}$ gen.

- Hou, Willey and AS, PRL (88)..b->s I I...
- Hou, AS, Steger, PRL 87......b-> s g
- Hou, AS, Steger, PLB 87 4X4 mixing matrix and b-> s gamma Importance of B-decays for studying $4^{\text {th }}$ gen. due to non-decour emphasized long ago

The Fourth Family of Quarks and Leptons
 Second International Symposium

Editors
DAVID B. CLINE ०AMARJIT SONI

- The CKM-paradigm of CP violation accounts for the observed CP patterns to an accuracy of about 15% !
- SM3-CKM predicted value of $\sin 2 \beta$ tends to be high compared to direct ($\Psi \mathrm{K}$) measurements by about 15-20\%...t is dominant

$$
\text { in } \sin 2 \beta
$$

- Hierarchical structure of SM4 mixing matrix NATURALLY lets t' be subdominant here but due to its large mass (and decoupling theorem) not negligible Leads to small $\sim 15 \%$. deviations
- Dynamics of EW gauge interactions (evasion of decoupling theorem) by EWpenguins and the large mt' plays an important role in the large "isospin" violating $\Delta \mathrm{A}_{\mathrm{CP}}(\mathrm{K} \pi)$
- SM3 says B_{s} mixing has negligible CP-odd phase therein t' plays a dominant role ($\& t$ is subdominant)

BORING REPETITION?

- If the mt^{\prime} is heavy $\sim(400-600) \mathrm{GeV}$, then for sure it will have a very serious role to play in EWSB .(NOTE CDF+D0 latest bound $\mathrm{m}_{\mathfrak{t}^{\prime}}>350 \mathrm{GeV}$).
- It will clearly have significant impact on CP violation phenomena, given that now we will 2 additional CP-odd phases
- It may play an interesting role in baryogenesis (W.-S. Hou, 0803.1234; Fok \& Kribs, 0803.4207)
- CANNOT BE A CONVENTIONAL $4^{\text {th }}$ Gen..mv4>mZ/2
- Possible DMC (if no mixing with lighter 3 nu's)..see e.g. Volovik
- An important CAVEAT...such heavy mass of t' means Yukawa couplings are somewhat large so perturbation theory calculations used in here are likely to have non-negligible corrections

SUMMARY \& OUTLOOK

- Bs mixing is an EXTREMELY VALUABLE TREASURE...most likely will enrichen our understanding significantly.
- SEVERAL ANOMALIES involving Bs,Bd mixings \& decays should be scrutinized with the highest priority...Underlying cause may well be NP in a sub-TeV range..." $4^{\text {th }}$ Gen" seems to offer a simple solution
- These indications imply lots of accessible manifestations at LHC but also, for sure, means that LHC(b), SBF \& (S)LHCb will have a very important role to play

Backup slides

It is perhaps of some use to extract the values of \hat{B}_{K}, ξ_{s} and $V_{c b}$ that are required to reduce to the 1- σ level the discrepancy between the prediction given in Eq. (5) and $a_{\left(\psi+\phi+\eta^{\prime}+K_{S} K_{s}\right) K_{S}}=0.66 \pm 0.024$. We find that one has to choose either $\hat{B}_{K}^{\text {new }}=0.96 \pm 0.04, \xi_{s}^{\text {new }}=1.37 \pm 0.06$ or $V_{c b}=(44.3 \pm 0.6) \times 10^{-3}$.
$\left[\right.$ USED $\hat{B}_{K}=0.72 \pm .04 i\{s=1.20 \pm .06 ;$

Continuing saga of Vub

- For past 2 years or so exclusive \& inclusive ~small discrepancy:
- Exc $\sim(3.7+-.2+-.5) \times 10^{-3}$
- $\operatorname{Inc} \sim(4.3+-.2+-.3) \times 10^{-3}$
-> Let's try NOT use Vub

RBC-UKQCD 2+1 dynamical DWQ,hep-ph/0702042

$$
B_{K}^{\overline{\mathrm{MS}}}(2 \mathrm{GeV})=0.524(10)(28) \quad \mathrm{PRL} \text { Jan25,08 }
$$

Cons: "Cancellations"

- Extra contributions to EWP observables due mt', mb' need to be cancelled by the heavier "higgs"
- Similarly, |mt'-mb'| < ~ 60 GeV for mt' O(500 GeV)
- So how much of a concern should one give to these cons?
- Let's just remember $\Delta(m n-m p)<0(0.1 \%)$ We understand this now as due ISOSPIN
t \& t' Role Reversals in Bd \& Bs mixing

108
*Buras \& Guadagnoli correction
They stressed that due imencased demands on precision, O $5 \%, \underbrace{(\text { below) should not be ignored any made }}$

$$
\begin{align*}
\left|\varepsilon_{K}\right|= & \frac{G_{F}^{2} m_{W}^{2} f_{K}^{2} m_{K}}{12 \sqrt{2} \pi^{2} \Delta m_{K}^{\exp }} \hat{B}_{K} \kappa_{\varepsilon} \operatorname{Im}\left(\eta_{1} S_{0}\left(x_{c}\right)\left(V_{c s} x_{c<}^{*}\right)^{2}+2 \eta_{3} S_{0}\left(x_{c}, x_{t}\right) V_{c s} V_{c d}^{*} V_{t s} V_{t d}^{*}\right. \\
& \left.+\eta_{2} S_{0}\left(x_{t}\right)\left(V_{t s} V_{t d}^{*}\right)^{2}\right) \cdot(2 \tag{2.3}\\
& L M N G H I+A S \\
& \epsilon_{K}=\frac{\exp (i \pi / 4)}{\sqrt{2} \Delta M_{K}}\left(\operatorname{Im}\left(M_{12}^{K}\right)+2 \xi \operatorname{Re}\left(M_{12}^{K}\right)\right),
\end{align*}
$$

$$
\begin{equation*}
\xi=\frac{\operatorname{Im} A_{\mathrm{o}}}{\operatorname{Re} A_{\mathrm{o}}} \tag{9}
\end{equation*}
$$ SM

FIG. 2 (color online). The 68% and 95\% C.L. constraints on the (S, T) parameters obtained by the LEP Electroweak Working Group $[34,35]$. The shift in (S, T) resulting from increasing the Higgs mass is shown in red (solid line). The shifts in ΔS and ΔT from a fourth generation with several of the parameter sets given in Table I are shown in blue (arrow lines).

TABLE I. Examples of the total contributions to ΔS and ΔT from a fourth generation. The lepton masses are fixed to $m_{\nu_{4}}=$ 100 GeV and $m_{\ell_{4}}=155 \mathrm{GeV}$, giving $\Delta S_{\nu \ell}=0.00$ and $\Delta T_{\nu \ell}=$ 0.05. The best fit to data is $(S, T)=(0.06,0.11)$ [35]. The standard model is normalized to $(0,0)$ for $m_{t}=170.9 \mathrm{GeV}$ and $m_{H}=115 \mathrm{GeV}$. All points are within the 68% C.L. contour defined by the LEP EWWG [35].

Parameter set	$m_{u_{4}}$	$m_{d_{4}}$	m_{H}	$\Delta S_{\text {tot }}$	$\Delta T_{\text {tot }}$
(a)	310	260	115	0.15	0.19
(b)	320	260	200	0.19	0.20
(c)	330	260	300	0.21	0.22
(d)	400	350	115	0.15	0.19
(e)	400	340	200	0.19	0.20
(f)	400	325	300	0.21	0.25

Improved prospects for baryogenesis in SM4

WMAP Data:

$$
\begin{aligned}
& \therefore \frac{n_{B}}{n_{\gamma}}=\left(5.1+\frac{.3}{-2}\right) 10^{-10} \\
& \text { But } \frac{n_{B}}{n_{6}} \sim 0 \\
& A_{\text {BALI }}=\frac{n_{B}-n_{B}}{n_{B}+m_{B}} \approx 100^{0} / 0
\end{aligned}
$$

$$
J_{3}=\frac{\left(m_{t}^{2}-m_{c} c^{2}\right)\left(m_{c}^{2}-m_{u}^{2}\right)\left(m_{t}^{2}-m_{u}^{2}\right)\left(m_{k}^{2}-m_{s}^{2}\right)\left(m_{s}^{2}-m_{d}^{2}\right)\left(m_{k}^{2}-m_{d}^{2}\right) A}{m_{w}^{12}} \quad \text { with } A \sim 6 \times 10^{-5}
$$

WITH 4 gemenation, there are 3 sets of 3 generations. One of Hem en $(w / 0$ the list gen$)$ has a huge enhancement over J_{3}

$$
\begin{aligned}
J^{2,3,4}= & \left(m_{t}^{2}-m_{t}^{2}\right)\left(m_{t}^{1}-m_{c}^{2}\right)\left(m_{t}^{2}-m_{c}^{2}\right)\left(m_{6}^{2}-m_{l}^{2}\right)\left(m_{6}^{2}-m_{s}^{2}\right) * \\
& *\left(m^{2}-m_{s}^{2}\right) A^{2,3,4} \\
\frac{J^{2,3,4}}{J_{3}}= & \frac{m_{t}^{2}}{m_{c}^{2}}\left(\frac{m_{t}^{12}}{m_{t}^{2}}-1\right) \frac{m_{6}^{4}}{m_{k}^{2} 2 m_{s}^{2}} \frac{A^{2,3,4}}{A} \sim 10^{14} \frac{A^{2,3,4}}{A} \|_{1}!
\end{aligned}
$$

[^0]: ${ }^{1 \text { "Can do everything except make coffee" - } \square \text { Physics Book }}$

