Abstract

 difference in rates is measured to be $0.08 \pm 0.08(4.8 \pm 6.1 \%)$ for $D^{+}\left(D_{s}^{+}\right)$mesons. We also set 90% confidence level upper limits on $\mathcal{B}\left(D^{+} \rightarrow \tau^{+} v\right)<1.2 \times 10^{-3}, \mathcal{B}\left(D^{+} \rightarrow \mathrm{e}^{+} v\right)<8.8 \times 10^{-6}$ and $\mathcal{B}\left(D_{\mathrm{s}}^{+} \rightarrow \mathrm{e}^{+} v\right)<1.2 \times 10^{-4}$.

1-Introduction

Purely leptonic decays of heavy mesons

 involve both weak and strong interactions. The weak part is easy to describe as the annihilation of the quark antiquark pair viathe Standard Model (SM) W^{+}boson. The
 the Standard Model (SM) W^{+}boson. The figure 1 d (s)
strong interactions arise due to gluon exchanges between the charm (strange) quark and the light anti-quark. These are parameterized in terms of the "decay constants" for the D^{+}and D_{s}^{+}mesons as $f_{0^{+}}$and $f_{\mathrm{s}^{+}}$. The decay rates are given by
$\Gamma\left(\mathrm{D}_{(s)}^{+} \rightarrow \ell^{+} v\right)=\frac{1}{8 \pi} G_{F}^{2} f_{D_{(s)}}^{2} m_{e}^{2} M_{D+}\left(1-\frac{m_{i}^{2}}{M_{D+}^{2}}\right)^{2}\left|V_{c d(s)}\right|^{2}$
and we use $\left|V_{\text {cd }}\right|=\left|V_{\text {us }}\right|=0.2256$ and $\left|V_{\text {cs }}=\left|V_{\text {ud }}\right|=0.97418(26)\right.$. The SM decay rates are predicted using Lattice QCD (LQCD) theoretical calculations of the decay constants. Meson decay constants in the B system are used to translate measurements of $B \bar{B}$ mixing to CKM matrix elements. If LQCD calculations disagree with the measured values of the decay constants for D mesons, they may be questionable on B mesons. If, on the other hand new physics is present, it is imperaitive to
predictions of the B decay constants.

2-Data Sample and CLEO-c detector
In these studies we use $818 \mathrm{pb} \mathrm{b}^{-1}$ and $600 \mathrm{pb} b^{-1}$ of CLEO-c data collected from e'e- collisions at the $\psi(3770)$ and $\psi(4170)$ resonances respectively. The CLEO-c detector is equipped to measure the momenta and direction determine their directions and energies with good precision.

At the $\psi(3770)$ resonance, only $D \bar{D}$ pairs are produced, where D represents D^{0} or D^{+}. At the $\psi(4170)$ resonance, $D \bar{D}^{*}, D^{*} \bar{D}^{*}, D \bar{D}$ are we use to study D_{s} leptonic decays.

3-Analysis techniques for $D^{+} \rightarrow \mu^{+} v$
We tag one D - decay and search for our
signal in the other D^{+}decay signal in the other D^{+}decay. Tagging modes
are fully reconstructed by first evaluating ΔE, the difference in the energy of the decay products and the beam energy.

For the selected events we then view the reconstructed D - beam-constrained mass defined as

$\mathrm{m}_{\mathrm{BC}}=\sqrt{E_{\text {beam }}^{2}-\left(\sum_{i} \vec{p}_{i}\right)^{2}}$
This sample includes $460,055 \pm 787 \pm 2,760$ signal events and 89,472 background events.

4- $D^{+} \rightarrow \mu^{+} v$ Selection Criteria and Fits to the Data
Using our sample of D event candidates we search for events with a single additional charged track presumed to be a μ^{+}. Then we infer the existence of the neutrino by requiring a measured value of the missing mass squared (MM²) near zero (the neutrino mass), where
$\mathrm{MM}^{2}=\left(E_{D^{+}}-E_{f}\right)^{2}-\left(\vec{p}_{D^{+}}-\vec{p}_{f t}\right)^{2}$,
Here $\vec{P}_{D^{+}}$is the three-momentum of the fully reconstructed D^{+}, and E_{1+} is the
energy (momentum) of the candidate μ^{+}
As muons deposit less than 300 MeV of
As muons deposit less han 300 MeV
the time, we define two cases, where deposit less than 300 MeV , while hadrons often inosit < 300 MeV (muon significantly more energy) and

- case (ii) is for candidates depositing $>300 \mathrm{MeV}$., which we use to check the background estimation.
We evaluate backgrounds comprising of $\overline{\mathrm{K}} \pi^{+}$peak in MM^{2} spectrum near
$0.25 \mathrm{GeV}{ }^{2}, \pi^{+} \pi^{0}$ laying within the $0.25 \mathrm{GeV}^{2}, \pi^{+} \pi^{0}$ laying within the $\mu^{+} v$ signal region, $\tau^{+} v$, where $\tau^{+} \rightarrow \pi^{+} v$
and other τ^{+}decay modes as $\rho^{+} \bar{v}, \mu^{+} v \bar{v}, \rho^{+} \pi^{0}$ and $\pi^{0} \mu^{+} v$ forming acck and other τ^{+}decay modes as $\rho^{+} v, \mu^{+} v v, \rho^{+} \pi^{0}$ and $\pi^{0} \mu^{+} v$ forming a cocktail.
We obtain the line shape of $K^{0} \pi^{\top}$ fit from $D^{0} \rightarrow K \pi^{+}$and rest from MC. We also evaluate backgrounds from D^{\prime} modes and continuum, which sums to 2.4 ± 1.0 events. Then we fit the data to obtain signal events, first by keeping the
$\tau^{+} \vee / \mu^{+} v$ ratio fixed to $S M$ ratio and then floated

Fixed
$149.7+12.0 \mu^{+} v$ vents
$25.8 \tau^{+} v$ vevents
5-Branching fraction and decay constan
The branching fraction determined by fixing the $\tau^{+} v$ contribution relative to th The branching fraction determined by fixing the $\tau^{+} v$ contribution relative to the
$\mu^{+} v$ contribution to the $S M$ ratio is $\mathcal{B}\left(D^{+} \rightarrow \mu^{+} v\right)=(3.82 \pm 0.32 \pm 0.09) \times 10^{-4}$. The decay constant $f_{0}+$ is then obtained using 1040 ± 7 fs as the D^{+}lifetime and 0.2256 as $\left|V_{\text {col }}\right|$ Our final result is $f_{0^{+}}=(205.8 \pm 8.5 \pm 2.5) \mathrm{MeV}$.

A somewhat less precise value is obtained by floating the $\tau^{+} v$ to $\mu^{+} v$ ratio. That fit gives $\mathcal{B}\left(D^{+} \rightarrow \mu^{+} v\right)=(3.93 \pm 0.35 \pm 0.10) \times 10$
The corresponding value of the decay constant is
$f_{0}+=(207.6 \pm 9.3 \pm 2.5) \mathrm{MeV}$ [radiatively corrected]
6-Search for $D^{+} \rightarrow \tau^{+} v$ and $D^{+} \rightarrow e^{+} v$
We fit both case(i) \& case(ii) constraining the relative $\tau^{\tau} v$ vield to the pion
acceptance in calorimeter $=55 / 45$. The fity yields a sum of $27.8 \pm 16.4 \tau^{+} v$, $\tau^{+} \rightarrow \pi^{+} \bar{v}$ event. We find that
$\mathcal{B}\left(D^{+} \rightarrow \tau^{+} v\right)<1.2 \times 10^{-3}, @ 90 \%$ c.l.,
The SM ratio of $\tau^{+} v$ to $\mu^{+} v$ is 2.65 . We find $\mathcal{B}\left(D^{+} \rightarrow \tau^{+} v\right) / 2.65 \mathcal{B}\left(D^{+} \rightarrow \mu^{+} v\right)<1.2 @ 90 \%$ c.

For $\mathrm{e}^{+} \mathrm{v}$, we do not find any candidates allowing us to set an limit $B\left(D^{+} \rightarrow e^{+} v\right)<8.8 \times 10^{-6}, @ 90 \% \mathrm{cl}$ PRD 78, 052003 (2008)

Floatius
$153.9 \pm 13.5 \mu^{+} v$ events
$135 \pm 15 \tau^{\tau}+v$ events

9-Branching fraction and decay constant

The branching fraction determined from the fit to sum of case 1 and case 2 by fixing the $\tau^{+} v$ contribution relative to the $\mu^{+} v$ is $f_{\mathrm{S}^{+}}=(263.3 \pm 8.2 \pm 3.7) \mathrm{MeV}$

The branching fraction determined from simultaneous fit to case 1 and without SM assumption is
$B\left(D_{s} \rightarrow \mu v\right)=(0.565 \pm 0.045 \pm 0.016) \%$ [radiatively corrected] $\mathrm{f}_{\mathrm{D}^{+}}=(257.3 \pm 10.3 \pm 3.6) \mathrm{MeV}$ $\mathcal{B}\left(\mathrm{D}_{\mathrm{s}} \rightarrow \tau \mathrm{VV}\right)=(6.42 \pm 0.81 \pm 0.18){ }^{(1)}$
$\mathrm{f} \mathrm{f}_{\mathrm{D}}^{+}=(278.7 \pm 17.1 \pm 3.8 \mathrm{MeV}$
$\mathrm{R}=11.4 \pm 1.7 \pm 0.2$ [SM value 9.72]
The 90% C. L upper limit on the branching fraction of $D^{+} \mathrm{s} \rightarrow \mathrm{e}^{+} v$ is
PRD $79,052001(2009)$
$\mathcal{B}\left(D_{s}^{+} \rightarrow \mathrm{e}^{+} v\right)<1.2 \times 10^{-4} \mathrm{~s}$

10-Analysis Technique for $D_{s}^{\dagger} \rightarrow \tau^{+} v\left(\tau^{+} \rightarrow \mathrm{e}^{+} v v\right)$
We reconstruct one D_{s} to tag the events with a D_{s} single tag (ST). We identify against the tag. The $M_{\text {recoillos }}$ is defined as
$\mathrm{M}_{\text {recoil }\left(\mathrm{O}_{\mathrm{s}}\right)}=\sqrt{\vec{p}\left(E_{c e}-E_{D_{s}}\right)^{2}-\left|\vec{p}_{c e}-\vec{p}_{D_{D}}\right|^{2}}$
and is required to be within 55 MeV of the $\mathrm{D}_{\text {* }}$, mass. To estimate the tags and backgrounds due to the wrong tag combinations, we use the tag $M_{D_{s}}$ sidebands. The signal and side band regions are defined as
$-20 \mathrm{MeV}<\Delta \mathrm{M}_{0}<+20 \mathrm{MeV}$ and $-55 \mathrm{MeV}<\Delta \mathrm{M}_{0}<-35 \mathrm{MeV}$ or $+35 \mathrm{MeV}<\Delta M_{D s}<+55 \mathrm{MeV}$, respectively, where $\Delta M_{D s} \equiv M_{D s}-\mathrm{m}_{\mathrm{Ds}}$. We find a scaled sideband subtracted yield equal to 26334 ± 213 STs.

11-Signal Reconstruction of $D_{\mathrm{s}}^{+} \rightarrow \tau^{+} v$
Using the ST sample, we search for events with a single additional charged track, presumed to be a e^{+}with momentum of at least 200 MeV . We then find neutral clusters in the calorimeter
that are not matched with the ST tracks or e^{+} that are not matched win the STtracks or ef
candidate and that are consistent with being photons above 30 MeV . We then study the total energy $E_{\text {extra }}$ of these clusters and $\Delta M_{D S}$ sideband regions. The signal and sideband regions are chosenantog to $E_{m \text { micon }}<40 \mathrm{MeV}$ and $600 \mathrm{MeV}<E_{\text {extra }}<2 \mathrm{GeV}$ respectively. The contributions of several . The signal region yields, 80.6 ± 15.9 events after background subtraction.

12-Branching fraction and decay constant
The branching fraction and decay constant are determined to be
$\mathcal{B}\left(\mathrm{D}_{\mathrm{s}} \rightarrow \tau \tau\right)=(5.30 \pm 0.47 \pm 0.22) \%$
$f_{\mathrm{s}_{\mathrm{s}^{+}}=(252.5 \pm 11.1 \pm 5.2) \mathrm{MeV}}$
Combining this result of $f_{0^{+}}$with our result for $f_{\text {os }^{+}}$from the $\mu^{+} v$ plus $\tau^{+} v$ analysis with the SM consitraint, we find
$S M$ consiraint, we find
$\mathcal{B}\left(D_{\mathrm{s}} \rightarrow \tau v\right)=(5.62 \pm 0.41 \pm 0.16) \%$
$\mathrm{f}_{\mathrm{s}+}=(259.5 \pm 6.6 \pm 3.1) \mathrm{MeV}$
Using the $f_{f^{+}}$calculation from $D^{+} \rightarrow \mu^{+} v$ analysis, we find
$f_{o_{s^{+}} / f_{D^{+}}}=1.26 \pm 0.06 \pm 0.02$
$f_{D_{\Delta^{+}}} / f_{D_{+}}=1.26 \pm 0.06 \pm \pm$
PRD 79, 052002 (2009)

13-Conclusions

Our result of $f_{0}=206(9)$ is in agreement with LQCD calculations of $f_{0}=207(4)$ from the HPQCD \& UKQCD and $f_{0^{+}}=207(11)$ Fermilab/MLLC collaborations. Our combined result of $f_{\mathrm{s}^{+}}=259(7)$ is 2.3σ and 0.7σ awa from the resulis of $f_{\mathrm{os}^{+}}=241(3)$ and $\delta_{\mathrm{os}^{+}}=249$ (1) of tho LQCD SM or statistical and systematic uncertanties in the experiment and LOCD SM, or statisisical
calculations.

