
B

$b \rightarrow s / d l^{+} l^{-}$ and

$b \rightarrow s / d \gamma$

Emmanuele Salvati
 University of Massachusetts - Amherst

> FPCP 2009 - Lake Placid, NY May 28

Angular Asymmetries
Isospin and CP Asymmetries
Branching Fractions and other measurements

Radiative $E W b \rightarrow s l^{+} l^{-}$decays

- Forbidden at tree level in SM
- higher order penguin and box diagrams

- Contributing short-distance Wilson coefficients:
- $\mathrm{C}_{7} \leftrightarrow$ magnetic penguin operator
- (size determined by $b \rightarrow s \gamma$, sign by $b \rightarrow s l l)$
- $\mathrm{C}_{9}, \mathrm{C}_{10} \leftrightarrow$ vector and axial-vector electroweak operator
- Forward-Backward Asymmetry

$$
A_{\mathrm{FB}}\left(q^{2}\right)=-C_{10}^{\mathrm{eff}} \xi\left(q^{2}\right)\left[\operatorname{Re}\left(C_{9}^{\mathrm{eff}}\right) F_{1}+\frac{1}{q^{2}} C_{7}^{\mathrm{eff}} F_{2}\right] \quad q^{2}=m_{l l}^{2}
$$

$\underline{B \rightarrow K^{(*)} l^{+} l^{-} \text {analysis }}$

- $\mathrm{N}_{\mathrm{BB}}=384 \mathrm{M} \mathrm{BaBar}$
- $\mathrm{N}_{\mathrm{BB}}=657 \mathrm{M}$ Belle
- Reconstruct 10 final states

| $\mathrm{B} \rightarrow$$\mathrm{K}^{+}$ $\mathrm{Ks}\left(\rightarrow \pi^{+} \pi^{-}\right)$
 $\mathrm{K}^{+} \pi^{-}$
 $\mathrm{K}^{+} \pi^{0}$ $\mathrm{~K}_{\mathrm{s}} \pi^{+}$ | | $\mathrm{e}^{+} \mathrm{e}^{-}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mu^{+} \mu^{-}$ | | |

- Measure angular asymmetries, direct CP, LFV, isospin asymmetries
- in 2 bins of q^{2} : below and above J / ψ mass (BaBar)
- in 6 bins of q^{2} (Belle)
- K^{*} longitudinal polarization F_{L}
- obtained from a fit to $\cos \left(\theta_{\mathrm{K}}\right)$, the angle between K and B in the K^{*} rest frame

- Lepton Forward-Backward Asymmetry $\mathrm{A}_{\text {FB }}$
- obtained from a fit to $\cos \left(\theta_{l}\right)$, the angle between $l^{+}\left(l^{-}\right)$and $\mathrm{B}(\overline{\mathrm{B}})$ in the $l^{+} l^{-}$rest frame

Angular fits and Asymmetries in $B \rightarrow K^{*} l^{+} l^{-}$ BABAR

Isospin Asymmetry in $B \rightarrow K^{(*)} l^{+} l^{-}$

$$
A_{I}^{K^{(*)}} \equiv \frac{\mathcal{B}\left(B^{0} \rightarrow K^{(*) 0} \ell^{+} \ell^{-}\right)-r \mathcal{B}\left(B^{ \pm} \rightarrow K^{(*) \pm} \ell^{+} \ell^{-}\right)}{\mathcal{B}\left(B^{0} \rightarrow K^{(*) 0} \ell^{+} \ell^{-}\right)+r \mathcal{B}\left(B^{ \pm} \rightarrow K^{(*) \pm} \ell^{+} \ell^{-}\right)} \quad r \equiv \tau_{B^{0}} / \tau_{B^{+}}=1 /(1.07 \pm 0.01) ~ \$
$$

- No significant A_{I} measured in high mass region
- A_{I} different from zero in low mass region with significance:
- Kll: 3.2σ

$$
\begin{array}{cc}
\hline K \mu^{+} \mu^{-} & -0.91_{-\infty}^{+1.2} \pm 0.18 \\
K e^{+} e^{-} & -1.41_{-0.69}^{+0.49} \pm 0.04 \\
K \ell^{+} \ell^{-} & -1.43_{-0.56}^{+0.56} \pm 0.05 \\
K^{*} \mu^{+} \mu^{-}-0.26_{-0.34}^{+0.50} \pm 0.05 \\
K^{*} e^{+} e^{-} & -0.66_{-0.17}^{+0.19} \pm 0.02 \\
K^{*} \ell^{+} \ell^{-} & -0.56_{-0.15}^{+0.17} \pm 0.03 \\
\hline
\end{array}
$$

- K*11: 2.7σ
- K (*) 11: 3.9σ

$B A B A$

Other in $B \rightarrow K^{(*)} l^{+} l^{-}$

$$
\begin{aligned}
\mathcal{B}\left(B \rightarrow K^{*} l^{+} l^{-}\right) & =(11.1 \pm 1.9 \pm 0.7) \times 10^{-7} \\
\mathcal{B}\left(B \rightarrow K l^{+} l^{-}\right) & =(3.9 \pm 0.7 \pm 0.2) \times 10^{-7} \\
\mathcal{B}\left(B \rightarrow K^{*} l^{+} l^{-}\right) & =\left(10.7_{-1.0}^{+1.1} \pm 0.9\right) \times 10^{-7} \\
\mathcal{B}\left(B \rightarrow K l^{+} l^{-}\right) & =\left(4.8_{-0.4}^{+0.5} \pm 0.3\right) \times 10^{-7}
\end{aligned}
$$

Direct Acp

 zero in SMboth BaBar and Belle's results consistent with zero

Mode	combined q^{2}	low q^{2}	high q^{2}
$K^{+} \ell^{+} \ell^{-}$	$-0.18_{-0.18}^{+0.18} \pm 0.01$	$-0.18_{-0.19}^{+0.19} \pm 0.01$	$-0.09_{-0.39}^{+0.36} \pm 0.02$
$K^{* 0} \ell^{+} \ell^{-}$	$0.02_{-0.20}^{+0.20} \pm 0.02$	$-0.23_{-0.38}^{+0.38} \pm 0.02$	$0.17_{-0.24}^{+0.24} \pm 0.02$
$K^{*+} \ell^{+} \ell^{-}$	$0.01_{-0.24}^{+0.26} \pm 0.02$	$0.10_{-0.24}^{+0.25} \pm 0.02$	$-0.18_{-0.55}^{+0.45} \pm 0.04$
$K^{*} \ell^{+} \ell^{-}$	$0.01_{-0.15}^{+0.16} \pm 0.01$	$0.01_{-0.20}^{+0.21} \pm 0.01$	$0.09_{-0.21}^{+0.21} \pm 0.02$
	$A_{C P}\left(K^{*} l^{+} l^{-}\right)=-0.10 \pm 0.10 \pm 0.01$		
$A_{C P}\left(K^{+} l^{+} l^{-}\right)=0.04 \pm 0.10 \pm 0.02$			

Inclusive branching fraction
Time-dependent CP Asymmetry
$\mathrm{B}_{\mathrm{s}} \rightarrow \varphi \gamma$

$B \rightarrow X_{s y}$

- Fully inclusive photon spectrum, $\mathrm{N}_{\mathrm{BB}}=657 \mathrm{M}$
- High background subtraction
- first subtract continuum by scaling to offpeak data
- then subtract BB events using MC distribution scaled by data samples

$$
\mathcal{B}\left(B \rightarrow X_{s} \gamma\right)=(3.31 \pm 0.19 \pm 0.37 \pm 0.01) \times 10^{-4}
$$

- Photon energy cut at 1.7 GeV
- previously Babar $\mathrm{E}_{\gamma}>1.9 @ 81 \mathrm{fb}^{-1}$
- Belle $\mathrm{E}_{\gamma}>1.8$ @ $140 \mathrm{fb}^{-1}$

$$
\left\langle E_{\gamma}\right\rangle=2.281 \pm 0.032 \pm 0.053 \pm 0.002 \mathrm{GeV}
$$

$$
\left\langle E_{\gamma}^{2}\right\rangle-\left\langle E_{\gamma}\right\rangle^{2}=0.0396 \pm 0.0156 \pm 0.0214 \pm 0.0012 \mathrm{GeV}^{2}
$$

Status of $b \rightarrow s \gamma$ rates

- Latest result in agreement with NNLO calculation
- Experimental errors comparable with theoretical ones

Time-dependent CP Asymmetry in $B^{0} \rightarrow K_{s} \pi^{0} \psi$

$$
\mathcal{P}_{ \pm}(\Delta t)=\frac{e^{-|\Delta t| / \tau}}{4 \tau}[1 \pm S \sin (\Delta m \Delta t) \mp \not \subset \cos (\Delta m \Delta t)]
$$

- Photon predominantly left-handed in $b \rightarrow s \gamma$
- Photon predominantly right-handed in $\bar{b} \rightarrow \bar{s} \gamma$
- In the $S M$ no common $f_{s \gamma}$, so $S \sim 0$
- NP scenarios predict S different from 0
- for instance in L-R symmetric model or SUSY where S can be large being consistent with Γ measurements [PRL 79, 185 (1997)]
- Final BaBar data set : $\mathrm{N}_{\mathrm{BB}}=467 \mathrm{M}$
$\underline{B^{0} \rightarrow K_{s} \pi^{0} \gamma}$
- Flavor tagging from other-B
- Perform a Maximum Likelihood Fit in two regions:
- K^{*} region : $0.8<\mathrm{m}\left(\mathrm{K}_{s} \pi^{0}\right)<1.0 \mathrm{GeV}$
- non- K^{*} region : $1.1<\mathrm{m}\left(\mathrm{K}_{s} \pi^{0}\right)<1.8 \mathrm{GeV}$

$S_{K^{*} \gamma}=-0.03 \pm 0.29 \pm 0.03$
$C_{K^{*} \gamma}=-0.14 \pm 0.16 \pm 0.03$
$S_{K_{s} \pi^{0} \gamma}=-0.78 \pm 0.59 \pm 0.09$
$C_{K_{s} \pi^{0} \gamma}=-0.36 \pm 0.33 \pm 0.04$
All consistent with SM

K* region

non- ${ }^{*}$ region

Time-dependent CPV in $B \rightarrow K \eta \gamma$

- Final BaBar data set $\mathrm{N}_{\mathrm{BB}}=467 \mathrm{M}$
- First measurement of TDCPV in this channel
- Includes also BF and A_{CP} of charged channel
- Technique similar to $\mathrm{K}_{s} \pi^{0} \gamma$
- ML Fit includes invariant mass of $\eta \rightarrow \gamma \gamma$ and $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$
- Results consistent with SM

$$
\begin{gathered}
S_{K_{s} \eta \gamma}=-0.18_{-0.46}^{+0.49} \pm 0.12 \\
C_{K_{s} \eta \gamma}=-0.32_{-0.39}^{+0.40} \pm 0.07 \\
\mathcal{B}\left(B^{0} \rightarrow K_{s} \eta \gamma\right)=\left(7.1_{-2.0}^{+2.1} \pm 0.4\right) \times 10^{-6} \\
\mathcal{B}\left(B^{+} \rightarrow K^{+} \eta \gamma\right)=(7.7 \pm 1.0 \pm 0.4) \times 10^{-6} \\
A_{C P}\left(B^{+} \rightarrow K^{+} \eta \gamma\right)=\left(-9.0_{-9.8}^{+10.4} \pm 1.4\right) \times 10^{-2}
\end{gathered}
$$

Search for $B \rightarrow K \eta^{\prime} \gamma$

- Possible suppression with respect to $\mathrm{K} \eta \gamma$ due to interference between two penguin diagrams (similar to $K^{*} \eta$ ', but opposite to $\mathrm{K} \eta$ ')
- $\mathrm{N}_{\mathrm{BB}}=657 \mathrm{M}$
- η ' reconstructed in decay to $\eta \pi \pi$ or to $\rho \gamma$
- Continuum suppression: Likelihood built with event shape variables, $\Delta \mathrm{z}$ and B direction
- ML fit with $m_{B C}$ and ΔE

$$
B^{+} \rightarrow K^{+} \eta^{\prime} \gamma
$$

$$
\underbrace{\mathcal{B}\left(B^{+} \rightarrow K \eta^{\prime} \gamma\right)=\left(3.2_{-1.1}^{+1.2} \pm 0.3\right) \times 10^{-6}(3.3 \sigma) \text { First evidence }}_{B^{0} \rightarrow K^{0} \eta^{\prime} \gamma<6.3 \times 10^{-6}(90 \% \text { C.L. })}
$$

Time-dependent CPV in $B \rightarrow K_{s} \rho^{\rho} \gamma$

- Vertex from $\rho^{0} \rightarrow \pi^{+} \pi^{-}$
- Dilution due to $\mathrm{B} \rightarrow \mathrm{K}^{*} \pi \gamma$ is small (measured in $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \pi^{+} \pi^{-} \gamma$)

$$
\begin{gathered}
S_{K_{s} \rho^{0} \gamma}=+0.11 \pm 0.33_{-0.09}^{+0.05} \\
A_{K_{s} \rho^{0} \gamma}=+0.05 \pm 0.18 \pm 0.06
\end{gathered}
$$

- first perform a CP fit in the $m_{B C}$ signal region to find effective S and A parameters
- then correct by the D factor estimated from a fit

$\underline{B_{s} \rightarrow \varphi \gamma}$
- First radiative decay of B_{s}
- BF $\sim 40 \times 10^{-6}$ in SM
- $23.6 \mathrm{fb}^{-1}$ at $\mathrm{Y}(5 \mathrm{~S})$ resonance
- $\varphi \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$reconstruction
- Continuum suppressed with Fisher
- Signal from ML fit to $\mathrm{m}_{\mathrm{BC}}, \Delta \mathrm{E}$ and helicity angle
- Three different signals

$$
B_{s}^{*} \bar{B}_{s}^{*}, B_{s}^{*} \bar{B}_{s}^{0} \text {, and } B_{s}^{0} \bar{B}_{s}^{0}
$$

- contribution only from the first one

Mode	$\epsilon(\%)$	$S_{B_{s}^{0} \bar{B}_{s}^{0}}$	$S_{B_{s}^{*} \bar{B}_{s}^{0}}$	$S_{B_{s}^{*} \bar{B}_{s}^{*}}$	$\mathcal{B}\left(10^{-6}\right)$	Significance
$B_{s}^{0} \rightarrow \phi \gamma$	24.7	$-0.7_{-1.6}^{+2.5}$	$0.5_{-1.9}^{+2.9}$	18_{-5}^{+6}	57_{-15-11}^{+18+12}	5.5
$B_{s}^{0} \rightarrow \gamma \gamma$	17.8	$-4.7_{-2.8}^{+3.9}$	$-0.8_{-3.8}^{+4.8}$	$-7.3_{-2.0}^{+2.4}$	<8.7	\cdots

$b \rightarrow d \gamma$

$\left|\mathrm{V}_{\mathrm{td}} / \mathrm{V}_{\mathrm{ts}}\right|$
Isospin Asymmetry $\Delta(\rho \gamma)$
Time-dependent CP Asymmetry in $B \rightarrow \rho \gamma$

Semi-inclusive $b \rightarrow d \gamma$ and $\left|V_{t d} / V_{t s}\right|$

- Reconstruct 7 final X_{d} states and the corresponding X_{s} states with $\pi \rightarrow K$

$B \rightarrow X_{d} \gamma$	$B \rightarrow X_{s} \gamma$
$B^{0} \rightarrow \pi^{+} \pi^{-} \gamma$	$B^{0} \rightarrow K^{+} \pi^{-} \gamma$
$B^{+} \rightarrow \pi^{+} \pi^{0} \gamma$	$B^{+} \rightarrow K^{+} \pi^{0} \gamma$
$B^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+} \gamma$	$B^{+} \rightarrow K^{+} \pi^{-} \pi^{+} \gamma$
$B^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0} \gamma$	$B^{0} \rightarrow K^{+} \pi^{-} \pi^{0} \gamma$
$B^{0} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-} \gamma$	$B^{0} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-} \gamma$
$B^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{0} \gamma$	$B^{+} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{0} \gamma$
$B^{+} \rightarrow \pi^{+} \eta \gamma$	$B^{+} \rightarrow K^{+} \eta \gamma$

- $\mathrm{N}_{\mathrm{BB}}=383 \mathrm{M}$
- Two mass regions studied:
- $0.6<\mathrm{m}\left(\mathrm{X}_{\mathrm{d}}\right)<1.0 \mathrm{GeV} / \mathrm{c}^{2}$ (ρ / ω mass region)
- $1.0<\mathrm{m}\left(\mathrm{X}_{\mathrm{d}}\right)<1.8 \mathrm{GeV} / \mathrm{c}^{2}$ (previously unmeasured)

$B A B A R$

- Many systematics cancel in the ratio, but $\sim 2 \mathrm{x}$ corrections due to missing states
low $m\left(\mathrm{X}_{\mathrm{d}}\right)$

$$
\mathcal{B}\left(B \rightarrow X_{d} \gamma\right)=(7.2 \pm 2.7 \pm 2.3) \times 10^{-6}
$$

high $m\left(X_{d}\right)$

X_{d}

$\left|V_{t d} / V_{t s}\right|=0.177 \pm 0.043$

$\underline{B \rightarrow \rho / \omega \gamma \text { and }\left|V_{t d} / V_{t s}\right|}$

$\mathrm{N}_{\mathrm{BB}}=465 \mathrm{M}$

$$
\mathcal{B}\left(B^{+} \rightarrow \rho^{+} \gamma\right)=\left(1.20_{-0.37}^{+0.42} \pm 0.20\right) \times 10^{-6}
$$

$$
\mathcal{B}\left(B^{0} \rightarrow \rho^{0} \gamma\right)=\left(0.97_{-0.22}^{+0.24} \pm 0.06\right) \times 10^{-6}
$$

$$
\text { B }\left(B^{0} \rightarrow \omega \gamma\right)<0.9 \times 10^{-6}(90 \% \text { C.L. })
$$

$\mathrm{N}_{\mathrm{BB}}=657 \mathrm{M}$
$\mathcal{B}\left(B^{+} \rightarrow \rho^{+} \gamma\right)=\left(8.7_{-2.7-1.1}^{+2.9+0.9}\right) \times 10^{-7}$ $\mathcal{B}\left(B^{0} \rightarrow \rho^{0} \gamma\right)=\left(7.8_{-1.7^{-1}+1.9}^{+1.9}\right) \times 10^{-7}$ $\mathcal{B}\left(B^{0} \rightarrow \omega \gamma\right)=\left(4.0_{-1.7}^{+1.9} \pm 1.3\right) \times 10^{-7}$

Status of $\backslash V_{t d} / V_{t s} \mid$

$$
\left|V_{t d} / V_{t s}\right|_{\rho / \omega}=0.233_{-0.024-0.021}^{+0.025+0.022} \quad\left|V_{t d} / V_{t s}\right|_{\rho / \omega}=0.195_{-0.019}^{+0.020} \pm 0.015
$$

$$
\left|V_{t d} / V_{t s}\right|_{\text {mixing }}=0.209 \pm 0.001 \pm 0.006
$$

- All results compatible with the B_{s} and B_{d} mixing
- No evidence of NP

Isospin Asymmetry in $B \rightarrow \rho \gamma$

- Test of isospin symmetry
- Most theoretical calculation predict a small $\Delta(\rho \gamma)$

$$
\Delta(\rho \gamma)=\frac{\Gamma\left(B^{+} \rightarrow \rho^{+} \gamma\right)}{2 \Gamma\left(B^{0} \rightarrow \rho^{0} \gamma\right)}-1
$$

- Large values can be signs of NP [Ali,Lunghi EPJ C26, 195 (2002)]
- or could be explained by non-perturbative charming penguins [Kim et al. PRD 78, 054024 (2008)]

	Belle	BaBar
$R\left(\rho \gamma / \mathrm{K}^{+} \gamma\right)$	$0.0302_{-0.0055}^{+0.0060}-0.00028$	0.042 ± 0.009
$A_{C P}\left(\rho^{+} \gamma\right)$	$-0.11 \pm 0.32 \pm 0.09$	-
$\Delta(\rho \gamma)$	$-0.48_{-0.19}^{+0.21}+0.08$	$-0.43_{-0.09}^{+0.25} \pm 0.10$

E. Salvati - FPCP $2009: \mathrm{b} \rightarrow \mathrm{s} / \mathrm{d}^{+} \mathrm{l}^{-}$and $\mathrm{b} \rightarrow \mathrm{s} / \mathrm{d} \gamma$

Time-dependent CP Asymmetry in $B^{0} \rightarrow \rho^{0} \psi$

- $\mathrm{N}_{\mathrm{BB}}=657 \mathrm{M}$
- $\mathrm{S}=0, \mathrm{~A}=-0.1$ in SM
- $\rho \rightarrow \pi^{+} \pi^{-}$reconstruction
- likelihood ratio with Fisher, $\cos \theta_{\mathrm{B}}$ and $\cos \theta_{\mathrm{h}}$ to suppress continuum
- After selection, big $\mathrm{K}^{*} \gamma \boldsymbol{\gamma}$ background component, included in the ML fit
- Result consistent with SM

$$
\begin{array}{r}
S_{\rho^{0} \gamma}=-0.83 \pm 0.65 \pm 0.18 \\
A_{\rho^{0} \gamma}=-0.44 \pm 0.49 \pm 0.14
\end{array}
$$

Summary

- Radiative and electroweak penguin decays at BaBar and Belle
- $\mathrm{B} \rightarrow \mathrm{K}^{(*)} 1^{+} 1^{-}$: Angular and Isospin Asymmetries
- Inclusive B $\rightarrow \mathrm{X}_{\mathrm{s}} \gamma$
- Time dependent CP Asymmetries in exclusive $\mathrm{b} \rightarrow \mathrm{s} \gamma$
- First radiative decay of B_{s}
- $\left|\mathrm{V}_{\mathrm{td}} / \mathrm{V}_{\mathrm{ts}}\right|$ measurement with semi-inclusive and exclusive $\mathrm{b} \rightarrow \mathrm{d} \gamma$
- Isospin Asymmetry in $\mathrm{B} \rightarrow \rho \gamma$
- TCPV in $\mathrm{B}^{0} \rightarrow \rho^{0} \gamma$
- Most results consistent with SM
- but statistical errors still large
- $B \rightarrow K^{*} l l$ will be studied at LHC , but for the others...
... we DO need the next generation B factories

E. Salvati - FPCP $2009: \mathrm{b} \rightarrow \mathrm{s} / \mathrm{d}^{+} \mathrm{l}^{-}$and $\mathrm{b} \rightarrow \mathrm{s} / \mathrm{d} \gamma$

$B \rightarrow K^{(*)} l^{+} l:$ Analysis details

- $349 \mathrm{fb}^{-1}$
- Reconstruct 10 final states
- Use Neural Networks to remove random combinatoric backgrounds coming from B,D semileptonic decays
- Simultaneously optimize NN and $\Delta \mathrm{E}$
- Final signal yield extracted from fit to mes
- Veto J / ψ and $\psi(2 \mathrm{~S})$ dilepton events
- Measure angular asymmetries, direct CP, LFV, isospin asymmetries
- all results in low/high mass range below/above J/ ψ
- $605 \mathrm{fb}^{-1}$
- Reconstruct 10 final states
- Semileptonic decay suppression relies on missing mass, lepton vertex separation and $\cos \theta_{\mathrm{B}}$
- 2D ML fit to ($m_{K \pi}, m_{B C}$) for $K^{*} 11,1 D$ ML fit to $m_{B C}$ for Kll
- Veto J / ψ and $\psi(2 \mathrm{~S})$ dilepton events
- Measure angular asymmetries, direct CP, LFV, isospin asymmetries
- all results in 6 bins of q^{2}

$\underline{B \rightarrow K^{(*)} l^{+} l^{-}: \text {Angular asymmetries }}$

	$M_{\ell^{+} \ell^{-}}<2.5 \mathrm{GeV}$	$M_{\ell^{+} \ell^{-}}>3.2 \mathrm{GeV}$
A_{FB}	$0.24_{-0.23}^{+0.18} \pm 0.05$	$0.76_{-0.32}^{+0.52} \pm 0.07$
F_{L}	$0.35 \pm 0.16 \pm 0.04$	$0.71_{-0.22}^{+0.20} \pm 0.04$

Fit to $\cos \theta_{\mathrm{K}}$ in $\mathrm{m}_{\mathrm{ES}}>5.27$ region sighaquatract F_{L}

Fit to $\cos \theta_{1}$ in $m_{E S}>5.27$ region to extract A_{FB}

$\underline{B \rightarrow K^{(*)} l^{+} l^{-}: \text {Asymmetries }}$

$B \rightarrow K^{(*)} l^{+} l^{-}$

$$
\begin{array}{rll}
A_{I}\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right) & =-0.29_{-0.16}^{+0.16} \pm 0.03 & \sigma=1.40, \\
A_{I}\left(B \rightarrow K \ell^{+} \ell^{-}\right) & =-0.31_{-0.14}^{+0.17} \pm 0.05 & \sigma=1.75, \\
A_{I}\left(B \rightarrow K^{(*)} \ell^{+} \ell^{-}\right) & =-0.30_{-0.11}^{+0.12} \pm 0.04 & \sigma=2.24,
\end{array}
$$

$B \rightarrow \pi l^{+} l^{-}$

- $\mathrm{N}_{\mathrm{BB}}=657 \mathrm{M}$

$$
\begin{array}{ccccc}
\hline & & \pi \mu^{+} \mu^{-} & \pi e^{+} e^{-} & \pi \ell^{+} \ell^{-} \\
\cline { 2 - 6 } \mathcal{B}\left(B \rightarrow \pi l^{+} l^{-}\right)<6.2 \times 10^{-8} & B^{+} & <6.9 \times 10^{-8} & <8.0 \times 10^{-8} & <22.7 \times 10^{-8} \\
& B^{0} & <18.4 \times 10^{-8} & <4.9 \times 10^{-8} & <15.4 \times 10^{-8} \\
\hline
\end{array}
$$

PRD 78, 011101(R) (2008)

Time-dependent $C P V$ in $B \rightarrow K_{s} \rho^{\rho} \gamma$

	$K_{S}^{0} \rho^{0} \gamma$	$K^{*} \pi \gamma$	interf	
			$K \rho / K^{*} \pi$	$K^{*} / \overline{K^{*}}$
1^{+}	151.0	35.1	7.5	4.4
1^{-}	11.3	8.0	4.9	1.3
K_{2}^{*}	2.2	6.1	2.0	4.5
total	164.4	49.2	14.5	10.2
$\mathcal{D}=0.83_{-0.03}^{+0.19}$				

$A_{C P}\left(B \rightarrow X_{s} \gamma\right)$ sum of exclusive modes

- $\mathrm{N}_{\mathrm{BB}}=384 \mathrm{M}$
- Sum of 16 exclusive modes with $\mathrm{m}\left(\mathrm{X}_{\mathrm{s}}\right)<2.8 \mathrm{GeV}$

$$
\begin{aligned}
B^{-} \rightarrow & K_{S}^{0} \pi^{-} \gamma, K^{-} \pi^{0} \gamma, K^{-} \pi^{+} \pi^{-} \gamma, K_{S}^{0} \pi^{-} \pi^{0} \gamma \\
& K^{-} \pi^{0} \pi^{0} \gamma, K_{S}^{0} \pi^{+} \pi^{-} \pi^{-} \gamma, K^{-} \pi^{+} \pi^{-} \pi^{0} \gamma, \\
& K_{s}^{0} \pi^{-} \pi^{0} \pi^{0} \gamma, K^{-} \eta \gamma, K^{+} K^{-} K^{-} \gamma, \\
\bar{B}^{0} \rightarrow & K^{-} \pi^{+} \gamma, K^{-} \pi^{+} \pi^{0} \gamma, K^{-} \pi^{+} \pi^{-} \pi^{+} \gamma, K^{-} \pi^{+} \pi^{0} \pi^{0} \gamma, \\
& K^{-} \pi^{+} \eta \gamma, K^{+} K^{-} K^{-} \pi^{+} \gamma,
\end{aligned}
$$

$M_{X s}$ $\left(\mathrm{GeV} / c^{2}\right)$	$A_{C P}$
$0.6-1.1$	$0.010 \pm 0.029 \pm 0.015$
$1.1-1.5$	$0.000 \pm 0.049 \pm 0.016$
$1.5-2.0$	$-0.047 \pm 0.077 \pm 0.014$
$2.0-2.8$	$-0.077 \pm 0.180 \pm 0.182$
$0.6-2.8$	$-0.011 \pm 0.030 \pm 0.014$

Status of $\left|V_{t d} / V_{t s}\right|$

