$\left|V_{ub} ight|$ and $\left|V_{cb} ight|$ from Inclusive B Decays

Frank Tackmann

Massachusetts Institute of Technology

Flavor Physics and CP Violation 2009 Lake Placid, May 27 - June 1, 2009

< 67 >

Outline

- Inclusive |V_{cb}|
 Global Fits
- 3 Inclusive $|V_{ub}|$
 - Current Status
 - New Developments

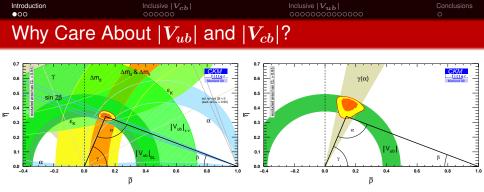
< **∂** >

Outline

Introduction

- Inclusive |V_{cb}|
 Global Fits
- Inclusive |V_{ub}|
 Current Status
 - New Developments

< **∂** >



 $\left|V_{ub}\right|$ and $\left|V_{cb}\right|$ are important ingredients in Unitarity Triangle

- $|V_{ub}|$ dominant uncertainty in side opposite β
 - $\sin 2\beta$ favors small $|V_{ub}| \Rightarrow > 2\sigma$ tension (amplified by $B \to \tau \nu$)
- Constraint from ϵ_K depends on $|V_{cb}|^4$
- Crucial to obtain SM reference UT to compare tree and loop processes

To turn small discrepancies into hints of New Physics, model independent predictions are mandatory

< A >

Introduction ⊙●○	Inclusive $ V_{cb} $	Inclusive $ V_{ub} $	Conclusions O
Inclusive vs. E	xclusive vs. L	eptonic $ V_{ub} $	
Small but persistent s	•	ce between inclusive and e $=5.2~\pm 0.5_{\mathrm{[exp]}}~\pm 0.4$	
Inclusive OPE: Inclusive SCET:	$10^3 V_{ub} _{ m BLL}$ $10^3 V_{ub} _{ m BLNP}$	$=4.87\pm0.24_{\mathrm{[exp]}}\pm0.32_{\mathrm{[exp]}}\pm0.32_{\mathrm{[exp]}}=4.32\pm0.16_{\mathrm{[exp]}}+0.32_{-0.27}$	
Exclusive:	$10^3 V_{ub} _{B ightarrow \pi \ell u}$	$= 3.38 \pm 0.36_{ ext{[exp+lattice]}}$	e]

- Uncertainties in inclusive determinations are underestimated
- Exclusive almost at 10% from improved lattice calculation combined with model independent treatment of $B \rightarrow \pi \ell \nu$ form factor [Fermilab/MILC (2008)] [\rightarrow see talk by Ruth Van de Water]

Before starting to get excited about a charged Higgs in B
ightarrow au
u

- Inclusive and exclusive $|V_{ub}|$ have to converge
- Uncertainty on *f_B* should go down

< A⊒ >

Looks like $|V_{cb}|$ wants to get some attention as well

 $[\rightarrow$ see talk by Christoph Schwanda]

- Exclusive $|V_{cb}|$ is 8% lower than inclusive (> 2σ discrepancy)
- Hard to imagine how inclusive $|V_{cb}|$ could go down more than $\sim 0.5\%$

< 67 >

Outline

Inclusive |V_{cb}| Global Fits

- Inclusive |V_{ub}|
 Current Status
 - New Developments

< **∂** >

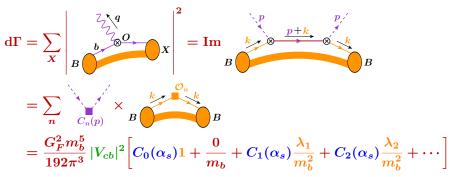
Inclusive $|V_{cb}|$

Inclusive $|V_{ub}|$

Conclusions O

OPE for Inclusive Decays

Dependence on final state X drops out when summing over all X



• LD properties of *B* meson parametrized by MEs of local operators

 $\blacktriangleright \ \mu_{\pi}^2 \sim -\lambda_1 \sim \langle k^2 \rangle, \quad \mu_G^2 \sim 3\lambda_2 \sim \langle \sigma_{\mu\nu} G^{\mu\nu} \rangle \sim m_{B^*}^2 - m_B^2$

• SD physics contained in perturbative coefficients $C_n(p)$

- $C_0(\alpha_s)$ given by perturbative quark decay
- ▶ To get well-behaved α_s series need a SD mass $m_b^{1S}, m_b^{ ext{kin}}, \dots$

< A >

Introduction

Inclusive |*V_{cb}* | ○●○○○○

Inclusive $|V_{ub}|$

Conclusions O

Global $|V_{cb}|$ Fits

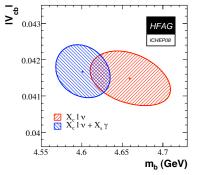
$\left|V_{cb}\right|$ is determined from a combined fit

- $B \to X_c \ell \nu$ partial rates (with cut on E_ℓ)
 - Normalization determines |V_{cb}|
- $B \rightarrow X_c \ell \nu$ lepton energy and hadronic mass moments
 - Shapes of distributions (moments) determine quark masses m_{b,c} and nonperturbative parameters λ_{1,2}, ...

Two schemes

• 1S [Bauer et al. (2002, 2004)], kinetic [Benson et al. (2003); Gambino, Uraltsev (2004)]

Current HFAG result in kinetic scheme



 $[\rightarrow$ see talk by Christoph Schwanda]

$$|V_{cb}| = 41.48 \cdot 10^{-3} imes ig(1 \pm 1.1\%_{ ext{[fit]}} \pm 0.2\%_{ ext{[} au_{B} ext{]}} \pm 1.4\%_{ ext{[theory]}}ig)$$

\Rightarrow Limited by theory uncertainty

Frank Tackmann (MIT)

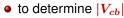
FPCP 2009 5/24

< 67 →

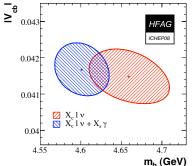
 Input
 $|V_{cb}| \ [10^{-3}]$ $m_b^{\rm kin} \ [{\rm GeV}]$
 $B \to X_c \ell \nu + X_s \gamma$ $41.67 \pm 0.43_{\rm [fit]} \pm \cdots$ 4.601 ± 0.034
 $B \to X_c \ell \nu$ only
 $41.48 \pm 0.47_{\rm [fit]} \pm \cdots$ 4.659 ± 0.049

• Application of local OPE to $B \to X_s \gamma$ moments is on much less solid ground than for $B \to X_c \ell \nu$ moments

If goal is



- $B \to X_c \ell \nu$ alone is as precise, so no reason to include $B \to X_s \gamma$ here
- to obtain precise m_b as input for $|V_{ub}|$ determination
 - There is a better way to include $B \rightarrow X_s \gamma$ data (as I will show)



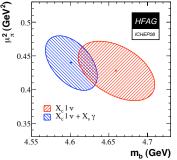
Introduction 000	Inclusive $ V_{cb} $		Inclusive $ V_{ub} $	Conclusions O
Theory Statu	IS			
Rate is a double of $\mathrm{d}\Gamma=rac{G_F^2m_b^5}{192\pi^3} V$	· · _ ·		$(m_b)^n (lpha_s) rac{\lambda_1}{m_b^2} + C_2(lpha_s) rac{\lambda_2}{m_b^2} +$]
n	$lpha_s^0 lpha_s^1$	$lpha_s^2eta_0$ full $lpha_s^2$	_	
0	$\sqrt{}$	($$)	-	
$2 \lambda_1 \sim \mu_\pi^2$	($$)	(×)	included in fits	
$2 \lambda_2 \sim \mu_G^2$	✓ (×)	×	() known, not yet in	cluded
$3~\sim 1/m_b^3$	×	×	(\mathbf{x}) being calculated	oladoa
$egin{array}{ccc} 4 & \sim 1/m_b^4 \ 4 & \sim 1/m_c^2 m_b^3 \end{array}$	$(\sqrt{)}$ ×	×	× not known/neede	ed
$4~\sim 1/m_c^2 m_b^3$	$(x) \times$	×		

• Probably most important missing pieces are $\alpha_s \mu_G^2$ corrections

FPCP 2009 7 / 24

< 🗗 🕨

- $\alpha_s \mu_{\pi}^2$: Expect ~ 20% shift in value of μ_{π}^2 [Becher, Boos, Lunghi (2007)]
 - Likely no effect on |V_{cb}|, but will be interesting to see effect on m_b
- full α²_s vs. α²_sβ₀: Mostly affect total rate [Melnikov; Czarnecki, Pak (2008)]
 - Shift |V_{cb}| by −0.5% (kinetic scheme) or −0.3% (1S scheme)



• $1/m_b^4$: Small effect ($\sim 0.25\%$ on total rate) [Dassinger, Turczyk, Mannel (2007)]

Limiting 1.4% theory uncertainty in kinetic scheme fit comes from first fitting for total $\mathcal{B}(B \to X_c \ell \nu)$ and then converting to $|V_{cb}|$

- Was obtained from estimates of now (mostly) known contributions
- With total and differential rates known at same level in expansion should avoid additional step and directly fit for $|V_{cb}|$

< A >

Introduction	Inclusive V _{cb}	Inclusive $ V_{ub} $	Conclusions
Wishlist for Fut	ure Fits		

$$|V_{cb}| = 41.48 \cdot 10^{-3} imes ig(1 \pm 1.1\%_{ ext{[fit]}} \pm 0.2\%_{ ext{[} au_{B} ext{]}} \pm 1.4\%_{ ext{[theory]}}ig)$$

Eagerly awaiting updated HFAG fit in the 1S scheme ...

How to gain confidence in $\mathcal{O}(1\%)$ (theory) uncertainties

- Please provide the theory expressions that are actually going into fits
- Compare separate fits at $\mathcal{O}(1, \alpha_s, \alpha_s^2)$
- Keep α_s as free fit parameter?
- How do you feel about adding theory errors in quadrature at 1% level?
 - Separate out fit uncertainties into experimental and theoretical parts
 - Should think carefully about theory correlations
 - ► If feasible, should also try RFit [CKM Fitter] treatment of theory uncertainties

< A⊒ >

Outline

Introduction

- Inclusive |V_{cb}|
 Global Fits
- 3 Inclusive $|V_{ub}|$
 - Current Status
 - New Developments

< 67 ►

Introduction

Inclusive |*V_{cb}*|

Inclusive $|V_{ub}|$

Conclusions O

$|V_{ub}|$ from Inclusive $B o X_u \ell u$

Removing huge charm background requires stringent phase space cuts

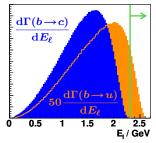
 ${\cal B}(B o X_c \ell
u) / {\cal B}(B o X_u \ell
u) \simeq 50$

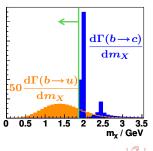
• Cuts can drastically enhance perturbative and nonperturbative corrections

Rates become sensitive to *b*-quark PDFs in *B* meson

- Determine shape of spectra
- Leading order: Universal shape function (SF) [Neubert (1993); Bigi et al. (1993)]
- $\mathcal{O}(\Lambda_{\rm QCD}/m_b)$: Several more subleading shape functions [Bauer, Luke, Mannel (2001)]
- Need to be extracted from data (like any PDF)

 $[\rightarrow$ see talk by Elisabetta Barberio for recent measurements and averages]





Inclusive |V_{cb}|

Inclusive $|V_{ub}|$

5

Conclusions O

Regions of Phase Space

Kinematic variables: $p_X^{\pm} = E_X \mp |\vec{p}_X|$

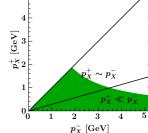
Shape function region (SCET region): $p_X^+ \ll p_X^-$

Leading order in 1/m_b requires nonperturbative shape function S(ω)

[Korchemsky, Sterman (1994); Bauer et al. (2001)]

$$\mathrm{d}\Gamma = H(E_\ell,p_X^\pm)\!\int\!\mathrm{d}\omega\,J[p_X^-\,(p_X^+-\omega)]S(\omega)$$

 O(α²_s) corrections recently completed
 [Becher, Neubert (2005, 2006); Bonciani, Ferroglia; Asatrian et al.; Beneke et al.; Bell (2008)]



Local OPE region: $p_X^+ \sim p_X^-$ (large q^2 , small E_ℓ)

• Leading order in $1/m_b$ given by quark decay (as in $B \to X_c \ell \nu$) known to $\mathcal{O}(\alpha_s, \alpha_s^2 \beta_0)$ [De Fazio, Neubert (1999); Gardi, Ridolfi, Gambino (2006)]

Cut on $m_X < m_D$ does not imply $p_X^+ \ll p_X^- \Rightarrow$ depends on both regions

< 67 →

Inclusive |V_{cb}|

Inclusive $|V_{ub}|$

Current Approaches

Current approaches are essentially based on theory for one region and are extrapolated/modeled into other region

	BLNP [Bosch et al. (2004, 2005)]	GGOU [Gambino et al. (2007)]	
based on	SCET region	local OPE region	
SCET region	$\mathcal{O}(\alpha_s)$ NLL resummation	$\mathcal{O}(lpha_s, lpha_s^2eta_0)$ no resummation	
local OPE region	partly $\mathcal{O}(\alpha_s)$, partly model	$\mathcal{O}(lpha_s, lpha_s^2eta_0)$	
m _b scheme	tied to SF scheme $m_b^{ m SF}$	uses kinetic scheme $m_b^{ m kin}$	
nonpert. input	LO: universal SF $\frac{S(\omega)}{1/m_b}$: 3 subleading SFs	3 LO distribution functions $F_i(k_+,q^2)$	

- BLL: local OPE at large q² (consistency important cross check) [Bauer, Ligeti, Luke (2000, 2001)]
- DGE: Fixed perturbative model for SF (from renormalon resummation)
 [Andersen, Gardi (2006, 2008)]

Frank Tackmann (MIT)

FPCP 2009 12 / 24

Non-Experimental Uncertainties

Theoretical uncertainties

- Unknown higher orders in $\alpha_s, 1/m_b$ expansions
- Weak annihilation (open question \Rightarrow separate data into B^+ and B^0)

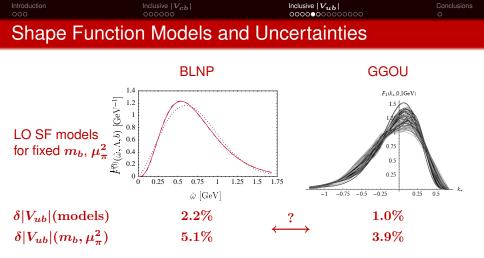
Uncertainties from input parameters

- m_b : Total rate $\sim |V_{ub}|^2 m_b^5$, partial rates with cuts $\sim |V_{ub}|^2 m_b^{\mathcal{O}(10)}$
 - Need precise m_b to get precise $|V_{ub}|$
 - Like to avoid scheme changes $(m_b^{1S} \leftrightarrow m_b^{ ext{SF}} \leftrightarrow m_b^{ ext{kin}})$
 - Currently taken from $B
 ightarrow X_c \ell
 u + X_s \gamma$ global $|V_{cb}|$ fits

• Leading shape/distribution function(s): Observables can depend on

- (a) only 1st moment $\simeq m_b$: total rate, q^2 spectrum
- (b) all moments, i.e. the full shape: p_X^+ , large E_ℓ
- (c) something in between: m_X
 - Ideally: Extract from data (e.g. $B \rightarrow X_s \gamma$ spectrum)
 - Currently: Modeled with 1st+2nd moment fixed by m_b, μ_π^2

< 67 >



These model/SF uncertainties are an underestimate

- Use precise $m_b, \, \mu_\pi^2$ from $|V_{cb}|$ fits but otherwise fixed model functions
- Shape variation should reflect the actual information we have

\Rightarrow Currently, we do not know inclusive $|V_{ub}|$ to better than 10%

Frank Tackmann (MIT)

< 67 →

Inclusive $|V_{ub}|$

< 67 >

Caveats in Measurements

Introduction

Monte Carlo signal model depends on the shape function

Inclusive |V_{cb}|

- Corresponding systematic uncertainty is correlated with m_b and SF uncertainty in the theory
- Can become dominant systematic uncertainty if signal shape is needed for background subtraction, e.g. Babar lepton endpoint [PRD 73, 012006 (2006)]

${\cal B}$ with $E_\ell^{ m cut}~[{ m GeV}]$	2.0	2.1	2.2	2.3
other sys unc. [%]		8.6	7.9	6.6
SF sys unc. [%]	6.0 - 13.3	3.5 - 8.6	1.6 - 4.0	0.3 - 0.8

for background subtraction, e.g. Babar lepton endpoint [PRD 73, 012006 (2006)]				
${\cal B}$ with $E_\ell^{ m cut}~[{ m GeV}]$	2.0	2.1	2.2	2.3
other sys unc. [%]	8.8	8.6	7.9	6.6
SF sys unc. [%]	6.0 - 13.3	3.5 - 8.6	1.6 - 4.0	0.3 - 0.8
'				· · · · · · · · · · · · · · · · · · ·

Inclusive |V₁₁|

Introduction

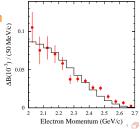
Monte Carlo signal model depends on the shape function

Inclusive |Vcb|

- Corresponding systematic uncertainty is correlated with m_b and SF uncertainty in the theory
- Can become dominant systematic uncertainty if signal shape is needed for backgro

Lepton-endpoint measurements define signal region with an explicit upper cut $E_{\ell}^{\Upsilon} < 2.6 \, {
m GeV}$

- Kinematic endpoint in $\Upsilon(4S)$ frame is $E_{\ell}^{\Upsilon} < 2.81 \, \mathrm{GeV}$
- Rate is clearly nonzero for $E_{\ell}^{\Upsilon} > 2.6 \,\mathrm{GeV}$
- Impossible to calculate on theory side



Precision of inclusive $|V_{ub}|$ depends on

- How well we know m_b and SF and correlation between them
- Ability to (consistently) combine many different measurements
 - Different kinematic cuts: E_{ℓ} , m_X , q^2 , p_X^+
 - Different analysis techniques: hadronic tag, untagged

First, reduce SF uncertainties by incorporating all available information on it

- Perturbative constraints (perturbative tail and RGE)
- Moment constraints $(m_b, \lambda_1 \text{ from } B \to X_c \ell \nu)$
- Shape information from $B o X_s \gamma$ and $B o X_u \ell
 u$ spectra

Then repeat success strategy of inclusive $|V_{cb}|$

- Perform global fit to all available data
- Simultaneously determine |V_{ub}| and inputs (m_b, SF) [Bernlochner, Lacker, Ligeti, Stewart, FT, K. Tackmann (work in progress)]

Frank Tackmann (MIT)

[Ligeti, Stewart, FT (2008)]

Introduction

Start with perturbative constraints on shape function. Derive factorized form

$$S(\omega,\mu_\Lambda) = \int\!\mathrm{d}k\,\widehat{C}_0(\omega-k,\mu_\Lambda)\,\widehat{F}(k) \,,$$

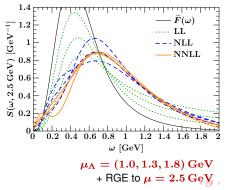
Inclusive $|V_{ub}|$

$\widehat{F}(k)$ purely nonperturbative part

Determines peak region

$\widehat{C}_0(\omega,\mu_\Lambda)$ perturbative (partonic SF)

- Determines tail consistent with RGE
- Known to $\mathcal{O}(\alpha_s, \alpha_s^2)$ [Bauer, Manohar (2003); Becher, Neubert (2005)]
- For given $\widehat{F}(k)$ can calculate $S(\omega)$ order by order in α_s , vary μ_{Λ} to estimate perturbative uncertainty



Introduction

Inclusive |V_{cb}|

Inclusive $|V_{ub}|$

Conclusions O

Different Short Distance Schemes

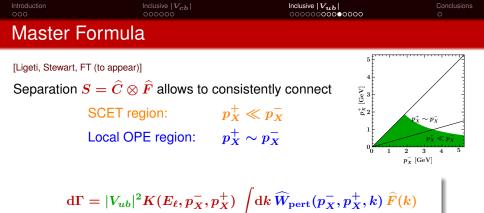
 \widehat{C} and \widehat{F} defined in generic short distance scheme, can use any m_b scheme!

$$\begin{split} S(\omega) &= \int dk \, C_0^{\text{pole}}(\omega - k) \, F^{\text{pole}}(k) \\ &= \int dk \, C_0^{1S}(\omega - k) \, F^{1S}(k) \\ &= \int dk \, C_0^{\text{kin}}(\omega - k) \, F^{\text{kin}}(k) \\ &= \int dk \, C_0^{\text{SF}}(\omega - k) \, F^{\text{SF}}(k) = \dots \end{split}$$

Moments of $\widehat{F}(k)$ given by corresponding SD HQE parameters \widehat{m}_b , $\widehat{\lambda}_1$, ... (at any order in α_s), e.g.

$$\int dk \, k^n \, F^{1S_1}(k) = M_n = \begin{cases} 1 & (n=0) \\ m_B - m_b^{1S} & (n=1) \\ -\lambda_1^i/3 + (m_B - m_b^{1S})^2 & (n=2) \end{cases}$$

 \Rightarrow Can avoid having to switch from different m_b scheme used for $B \to X_c \ell
u_{ab}$



- Combines optimal descriptions for different phase space regions
- Smooth transition between correct fixed-order result in local OPE region and RGE improved result in SCET region
- Not the case in any previous approach!

Next: Determine nonperturbative input function $\widehat{F}(k)$

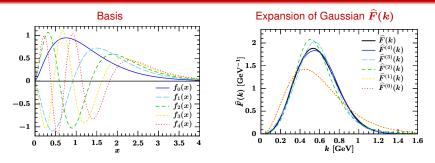
< 67 >

Inclusive |V_{ct}

Inclusive $|V_{ub}|$

Conclusions O

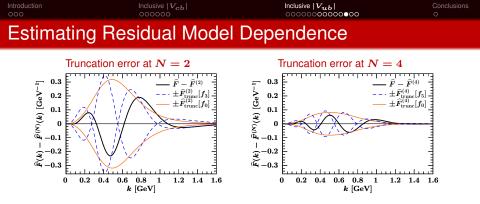
Designer Orthonormal Basis Functions



Design suitable orthonormal basis for $\widehat{F}(k)$ (formally model independent)

$$\widehat{F}(\lambda x) = rac{1}{\lambda} iggl[\sum_{n=0}^{\infty} c_n f_n(x) iggr]^2 \qquad ext{with} \qquad \int ext{d}k \ \widehat{F}(k) = \sum_{n=0}^{\infty} c_n^2 = 1$$

- Builds an orthonormal basis on top of any given model function
- Keep terms up to $n \leq N$ as required by precision of data
- Experimental uncertainties and correlations can be properly captured by uncertainties and correlations in basis coefficients c_n



Truncating series at $n \leq N$ introduces residual dependence on basis model

- Overall size of truncation error scales with $1 \sum_{n=0}^{\infty} c_n^2$
- Can test expansion by varying N and underlying basis model
- Choose final *N* so that truncation error is small compared to experimental uncertainties in coefficients
- \Rightarrow Allows for systematic, fully data driven SF uncertainties

< A >

Introduction

Inclusive |V_{cb}|

Inclusive $|V_{ub}|$

Conclusions O

Setup for Global $|V_{ub}|$ Fit

Use expansion $\widehat{F}(k) = \left[\sum_{n} c_{n} f_{n}(k)\right]^{2}$ in master formula and moments $d\Gamma = |V_{ub}|^{2} \sum_{n,m} c_{n} c_{m} K(E_{\ell}, p_{X}^{\pm}) \int dk \, \widehat{W}_{pert}(p_{X}^{\pm}, k) f_{n}(k) f_{m}(k)$

$$M_j(m_b^{1S},\lambda_1^{ ext{i}}) = \sum\limits_{n,m} c_n c_m \!\int\! \mathrm{d}k\,k^j\,f_n(k)f_m(k)$$

Perform combined fit (similar to $|V_{cb}|$)

- $B \rightarrow X_u \ell \nu$ partial rates
 - Normalization determines $|V_{ub}|$
- ullet $B
 ightarrow X_s \gamma$ and $B
 ightarrow X_u \ell
 u$ spectra
 - Shapes of distributions constrain $\widehat{F}(k)$ through basis coefficients c_n
- Known moments of $\widehat{F}(k)$
 - Consistently combines existing constraints on m^{1S}_b, λⁱ₁ (from
 - $B o X_c \ell
 u$ or anywhere else) with $B o X_u \ell
 u$ and $B o X_s \gamma$ data

Inclusive |Vcb|

Inclusive |V₁₁| 000000000000

1.9

2.12.2

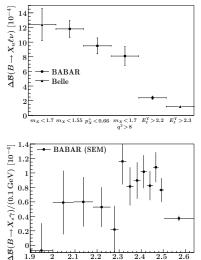
Proof-of-Concept

[Bernlochner, Lacker, Ligeti, Stewart, FT, K, Tackmann (work in progress)]

As proof-of-concept, fit to

- $B \to X_{\mu} \ell \nu$ hadronic tag
 - **•** BABAR: $m_X, m_X q^2, p_X^+$
 - Belle: mx
- $B \to X_u \ell \nu$ lepton endpoint
 - BABAR: $E_{\ell}^{\Upsilon} > 2.2 \,\mathrm{GeV}$
 - Belle: $E_{\ell}^{\Upsilon} > 2.3 \,\mathrm{GeV}$
- $B \rightarrow X_s \gamma$ spectra
 - Babar sum over exclusive modes
 - Babar hadronic tag (not shown)
- m_b^{1S}, λ_1 from $B \to X_c \ell \nu$
 - Belle fit in 1S scheme

 $m_{\rm h}^{1S} = (4.72 \pm 0.12) \, {
m GeV}$ $\lambda_1 = (-0.31 \pm 0.09) \, {
m GeV}^2$



 E_{\sim} [GeV]

< A >

2.42.52.6

2.3

Introduction

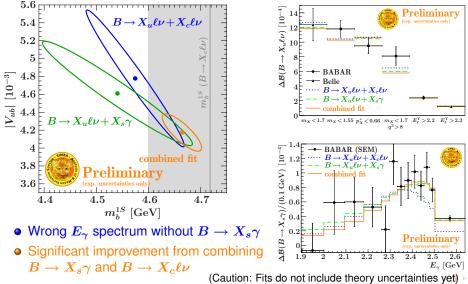
Inclusive |V_c

Inclusive $|V_{ub}|$

Conclusions O

Proof-of-Concept

[Bernlochner, Lacker, Ligeti, Stewart, FT, K. Tackmann (work in progress)]



Conclusions

Tensions between inclusive and exclusive determinations

- Somewhat disturbing for $|V_{cb}|$
- For |V_{ub}| remains to be seen with improved analyses

Inclusive $|V_{cb}|$ from global fits between 1%-2%

- Already theory limited, pushing theory below 1% very hard
- Need to be careful how to treat theory uncertainties at $\mathcal{O}(1\%)$ level
- ⇒ Some theory improvements still possible, will increase confidence

Inclusive $|V_{ub}|$

- Improved treatment of SF and multiple phase space regions
- Work in progress towards combining all information into global fit similar to |V_{cb}|
- Will provide more rigorous uncertainties and test of theory
- Key to precision inclusive |V_{ub}| from Super Flavor Factory

