Hadronic Charm Decays Jonas Rademacker on behalf of CLEO-c

28 May 2009, FCPC Lake Placid

• Decay rates

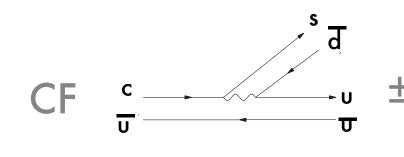
• Dalitz analyses

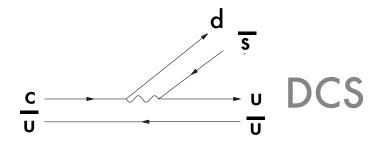
• Charm for Beauty: Quantum correlations at CLEO-c and their impact on measuring γ.

BR of D, D(s) \rightarrow PP liminary, full data set

CLEO-C DIE K_{S}^{0} K benching fractions to the corresponding normalization modes $D^{0} \rightarrow K^{-}\pi^{+}$, $D^{+} \rightarrow K^{-}\pi^{+}\pi^{+}$, and $D_{s}^{+} \rightarrow K_{S}^{0}K$, branching fractions results from this analysis, and charge asymmetries \mathcal{A}_{CP} . Uncertainties are statistical error systematic error, and the error from the input branching fractions of normalization modes.

	Mode	$\mathcal{B}_{\mathrm{mode}}/\mathcal{B}_{\mathrm{Normalization}}$ (%)	This result \mathcal{B} (%)	\mathcal{A}_{CP} (%)
	$D^0 \rightarrow K^+ K^-$	$10.4138 \pm 0.1064 \pm 0.1128$	$0.4052 \pm 0.0041 \pm 0.0044 \pm 0.0080$	
	$D^0 o K^0_S K^0_S$	$0.4095 \pm 0.0432 \pm 0.0214$	$0.0159 \pm 0.0017 \pm 0.0008 \pm 0.0003$	
	$D^0 \to \pi^+ \pi^-$	$3.7023 \pm 0.0561 \pm 0.0893$	$0.1441 \pm 0.0022 \pm 0.0035 \pm 0.0029$	
	$D^0 o \pi^0 \pi^0$	$2.1491 \pm 0.0740 \pm 0.0758$	$0.0836 \pm 0.0029 \pm 0.0030 \pm 0.0017$	
(3770)	$D^0 \to K^- \pi^+$	100	3.8910 external input [2]	$0.5 \pm 0.4 \pm 0.9$
	$D^0 \to K^0_S \pi^0$	$31.0495 \pm 0.2964 \pm 0.7467$	$1.2081 \pm 0.0115 \pm 0.0291 \pm 0.0239$	
	$D^0 \to K_S^{0} \eta$	$12.2575 \pm 0.2872 \pm 0.6677$	$0.4769 \pm 0.0112 \pm 0.0260 \pm 0.0094$	
	$D^0 \rightarrow \pi^0 \eta$	$1.7714 \pm 0.1481 \pm 0.1047$	$0.0689 \pm 0.0058 \pm 0.0041 \pm 0.0014$	
	$D^0 \to K_S^0 \eta'$	$24.7307 \pm 0.8154 \pm 1.1433$	$0.9623 \pm 0.0317 \pm 0.0445 \pm 0.0190$	
	$D^0 ightarrow \pi^0 \eta'$	$2.4084 \pm 0.2874 \pm 0.1519$	$0.0937 \pm 0.0112 \pm 0.0059 \pm 0.0019$	
	$D^0 \rightarrow \eta \eta$	$4.2495 \pm 0.2838 \pm 0.3522$	$0.1653 \pm 0.0110 \pm 0.0137 \pm 0.0033$	
	$D^0 \to \eta \eta'$	$2.7318 \pm 0.6235 \pm 0.2500$	$0.1063 \pm 0.0243 \pm 0.0097 \pm 0.0021$	
	$D^+ \to K^- \pi^+ \pi^+$	100	9.1400 external input [2]	$-0.1 \pm 0.4 \pm 0.9$
	$D^+ \to K^0_S K^+$	$3.3502 \pm 0.0573 \pm 0.0720$	$0.3062 \pm 0.0052 \pm 0.0066 \pm 0.0066$	$-0.2 \pm 1.5 \pm 0.9$
	$D^+ \to \pi^+ \pi^0$	$1.3208 \pm 0.0382 \pm 0.0443$	$0.1207 \pm 0.0035 \pm 0.0041 \pm 0.0026$	$2.9 \pm 2.9 \pm 0.3$
	$D^+ \to K^0_S \pi^+$	$16.8160 \pm 0.1239 \pm 0.3679$	$1.5370 \pm 0.0113 \pm 0.0336 \pm 0.0331$	$-1.3 \pm 0.7 \pm 0.3$
	$D^+ \to K^+ \pi^0$	$0.1923 \pm 0.0206 \pm 0.0063$	$0.0176 \pm 0.0019 \pm 0.0006 \pm 0.0004$	$-3.5 \pm 10.7 \pm 0.9$
	$D^+ \to K^+ \eta$	< 0.1442 (90% C.L.)	< 0.0132 (90% C.L.)	
	$D^+ \to \pi^+ \eta$	$3.8538 \pm 0.0895 \pm 0.1916$	$0.3522 \pm 0.0082 \pm 0.0175 \pm 0.0076$	$-2.0 \pm 2.3 \pm 0.3$
	$D^+ \to K^+ \eta'$	< 0.2032 (90% C.L.)	< 0.0187 (90% C.L.)	
	$D^+ \to \pi^+ \eta'$	$5.2061 \pm 0.1762 \pm 0.2565$	$0.4758 \pm 0.0161 \pm 0.0234 \pm 0.0103$	$-4.0 \pm 3.4 \pm 0.6$
	$D_s^+ \to K_S^0 K^+$	100	1.4900 external input [3]	$4.7 \pm 1.8 \pm 0.9$
(170)	$D_s^+ \to \pi^+ \pi^0$	< 2.3492 (90% C.L.)	< 0.0376 (90% C.L.)	
141/01	$D_s^+ \to K_S^0 \pi^+$	$8.4766 \pm 0.7147 \pm 0.1778$	$0.1263 \pm 0.0106 \pm 0.0026 \pm 0.0073$	$16.3 \pm 7.3 \pm 0.3$
(4170)	$D_s^+ \to K^+ \pi^0$	$4.2383 \pm 1.4756 \pm 0.2304$	$0.0632 \pm 0.0220 \pm 0.0034 \pm 0.0036$	$-26.6 \pm 23.8 \pm 0.9$
	$D_s^+ \to K^+ \eta$	$11.7933 \pm 2.1753 \pm 0.5888$	$0.1757 \pm 0.0324 \pm 0.0088 \pm 0.0101$	$9.3 \pm 15.2 \pm 0.9$
	$D_s^+ \to \pi^+ \eta$	$123.1123 \pm 4.2907 \pm 6.2133$	$1.8344 \pm 0.0639 \pm 0.0926 \pm 0.1059$	$-4.6 \pm 2.9 \pm 0.3$
	$D_s^+ \to K^+ \eta'$	$11.9866 \pm 3.6840 \pm 0.6158$	$0.1786 \pm 0.0549 \pm 0.0092 \pm 0.0103$	$6.0 \pm 18.9 \pm 0.9$
-	$D_s^+ \to \pi^+ \eta'$	$269.8080 \pm 8.9375 \pm 14.0957$	$4.0201 \pm 0.1332 \pm 0.2100 \pm 0.2320$	$-6.1 \pm 3.0 \pm 0.6$


818/pb at ψ(3770 3 · 10⁶ D°D° 2.4 · 10⁶ D⁺D⁻


586/pb at ψ(4170) 5.4 · 10⁵ Ds⁺ Ds⁻

U-spin and $D^{\circ} \rightarrow K_{S,L}\pi^{\circ}$

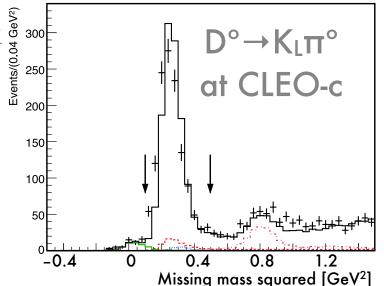
 $\Gamma(D^{\circ} \rightarrow K_{S}\pi^{\circ}) \neq \Gamma(D^{\circ} \rightarrow K_{L}\pi^{\circ})$

• $A(D^{\circ} \rightarrow K_{S,L}\pi^{\circ}) = A(D \rightarrow K^{\circ}\pi^{\circ}) \pm A(D \rightarrow K^{\circ}\pi^{\circ})$

U-spin* prediction

*U-spin: swap d \leftrightarrow s quarks, important e.g. for extracting γ from B_S \rightarrow KK, B_d \rightarrow m π

$$\frac{\Gamma\left(\mathsf{D}^{\mathsf{0}}\to\mathsf{K}_{\mathsf{S}}\pi^{\mathsf{0}}\right)-\Gamma\left(\mathsf{D}^{\mathsf{0}}\to\mathsf{K}_{\mathsf{L}}\pi^{\mathsf{0}}\right)}{\Gamma\left(\mathsf{D}^{\mathsf{0}}\to\mathsf{K}_{\mathsf{S}}\pi^{\mathsf{0}}\right)+\Gamma\left(\mathsf{D}^{\mathsf{0}}\to\mathsf{K}_{\mathsf{L}}\pi^{\mathsf{0}}\right)} = -2\frac{A_{DCS}}{A_{CF}} = 2\tan^{2}\theta_{C} = 0.109$$


• Challenging in practice - K_L invisible. Can be done at CLEO-c from beam constraints.

Jonas Rademacker for CLEO-c

Hadronic Charm

$D^{\circ} \rightarrow K_{L,S} \pi^{0}$, at CLEO-c

- Clean missing mass-squared peak $m^{2}_{K^{0}} = 0.28 GeV^{2}$
- Lines: MC simulation. Crosses: Data.
- Result

4110907-00

$$\frac{\Gamma\left(\mathsf{D}^{\mathsf{0}}\to\mathsf{K}_{\mathsf{S}}\pi^{\mathsf{0}}\right)-\Gamma\left(\mathsf{D}^{\mathsf{0}}\to\mathsf{K}_{\mathsf{L}}\pi^{\mathsf{0}}\right)}{\Gamma\left(\mathsf{D}^{\mathsf{0}}\to\mathsf{K}_{\mathsf{S}}\pi^{\mathsf{0}}\right)+\Gamma\left(\mathsf{D}^{\mathsf{0}}\to\mathsf{K}_{\mathsf{L}}\pi^{\mathsf{0}}\right)}=0.108\pm0.025\pm0.024$$

• In good agreement with U-spin prediction of $2\tan^2\theta = 0.109$

281/pb at CLEO: PRL **100,** 091801 (2008)

Jonas Rademacker for CLEO-c

Hadronic Charm

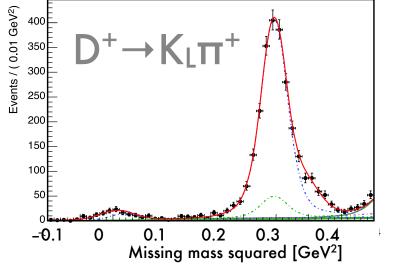
$D^+ \rightarrow K_{L,S} \pi^+$ at CLEO-c

- Similar logic as for D°, but no Uspin symmetry.
- Still, possible to estimate effect, expect

$$\frac{\Gamma\left(\mathsf{D}^{+}\to\mathsf{K}_{\mathsf{S}}\pi^{+}\right)-\Gamma\left(\mathsf{D}^{+}\to\mathsf{K}_{\mathsf{L}}\pi^{+}\right)}{\Gamma\left(\mathsf{D}^{+}\to\mathsf{K}_{\mathsf{S}}\pi^{+}\right)+\Gamma\left(\mathsf{D}^{+}\to\mathsf{K}_{\mathsf{L}}\pi^{+}\right)}\approx0.04$$

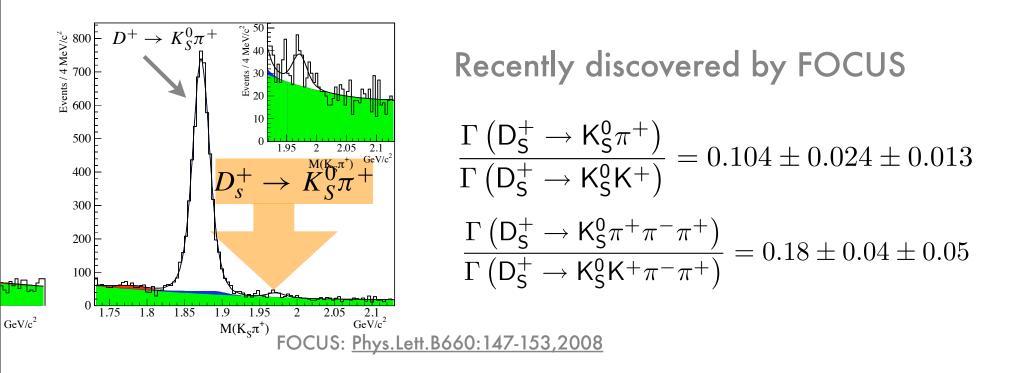
D.-N. Gao, Phys. Lett. B 645, 59 (2007)

• Result:


$$\frac{\Gamma \left(\mathsf{D}^{+} \to \mathsf{K}_{\mathsf{S}} \pi^{+}\right) - \Gamma \left(\mathsf{D}^{+} \to \mathsf{K}_{\mathsf{L}} \pi^{+}\right)}{\Gamma \left(\mathsf{D}^{+} \to \mathsf{K}_{\mathsf{S}} \pi^{+}\right) + \Gamma \left(\mathsf{D}^{+} \to \mathsf{K}_{\mathsf{L}} \pi^{+}\right)} = 0.022 \pm 0.016 \pm 0.018$$

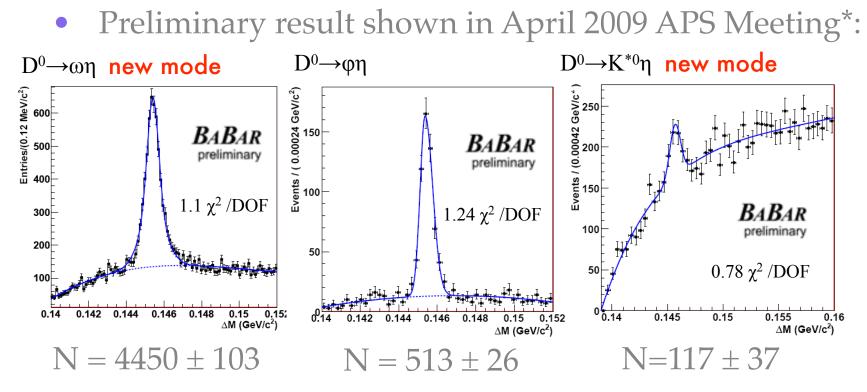
281/pb at CLEO: PRL **100,** 091801 (2008)

Jonas Rademacker for CLEO-c


Hadronic Charm

31 May 2009, FPCP 2009 6

4110907-002

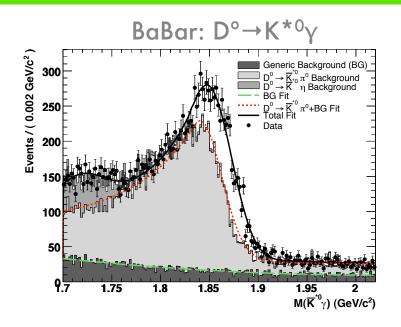

$D_S^+ \rightarrow K_S \pi^+ (\pi^- \pi^+)$

 $D_{S}^{+} \rightarrow K_{S}\pi^{+}$ now confirmed by CLEO: ^{CLEO-c} preliminary, full data set $\Gamma(D_{S}^{+} \rightarrow K_{S}^{0}\pi^{+}) = (0.1263 \pm 0.0106 \pm 0.0026 \pm 0.0073)\%$

- BaBar analysed 467 fb⁻¹ data (on and off resonance)
- About 1 billion D mesons in sample

*) Caitlin Malone on behalf of the BaBar Collaboration at APS April Meeting 2009 Jonas Rademacker for CLEO-c Hadronic Charm 31 May 2009, FPCP 2009 8

Mode	Theory B.F. /10 ⁻³ B. Bhattacharya, J. L. Rosner, arXiv: 0812.3167v1 [hep-ph] (2008)		Experiment previously ^[1]	BaBar Results (pre April 08 ^{[2}	5
	Sol A	Sol B		BF	yield
D°→φη	0.93 ± 0.09	1.4 ± 0.1	0.14 ± 0.04	$0.21 \pm 0.01 \pm 0.02$	513 ± 26
D°→ωη	1.4 ± 0.09	1.27 ± 0.09		$2.21 \pm 0.08 \pm 0.22$	4450 ± 103
D°→K*° η	0.038 ± 0.004	0.037 ± 0.004		$0.048 \pm 0.010 \pm 0.004$	117 ± 37

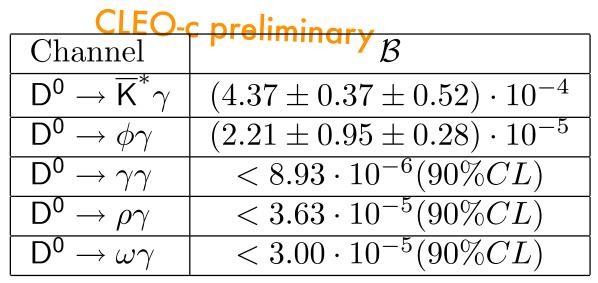

[1] BELLE: Phys.Rev.Lett.92:101803,2004

[2] Caitlin Malone on behalf of the BaBar Collaboration at APS April Meeting 2009

Jonas Rademacker for CLEO-c

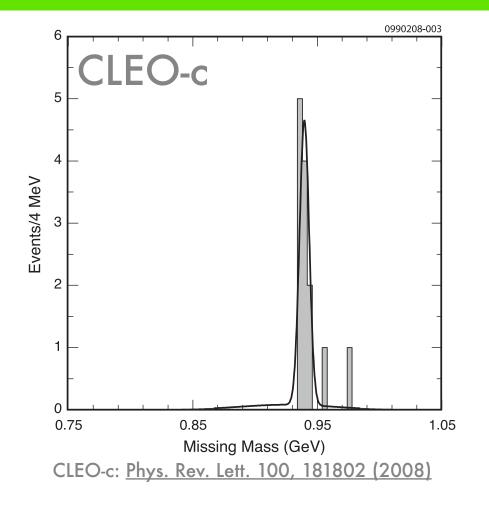
Hadronic Charm

$D^{\circ} \rightarrow K^{*}^{\circ}\gamma \text{ and } D^{\circ} \rightarrow \varphi\gamma$


• New CLEO-c study confirms BaBar result. BaBar:

 $\mathcal{B}(D^0 \to \bar{K}^{*0}\gamma) = (3.22 \pm 0.20 \pm 0.27) \times 10^{-4}$

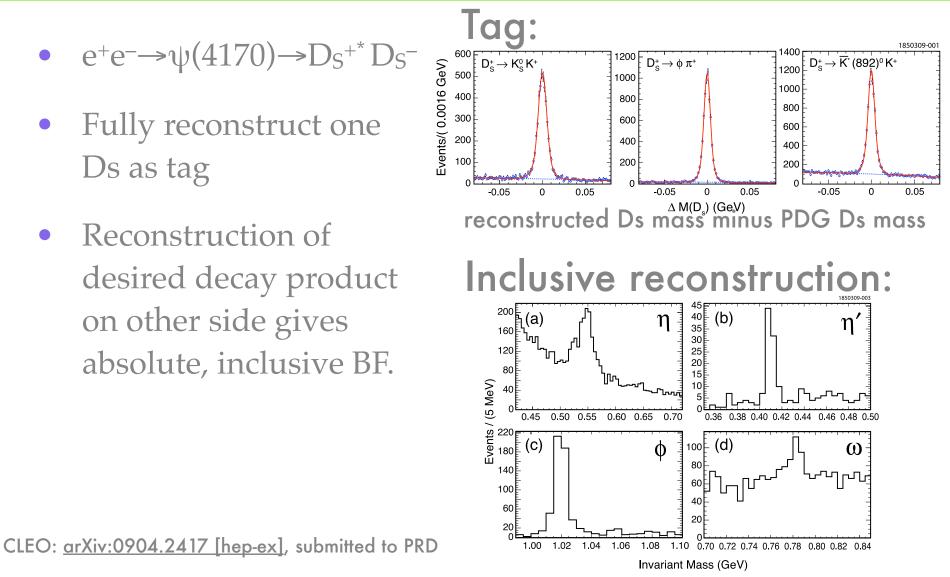
 $\mathcal{B}(D^0 \to \phi \gamma) = (2.73 \pm 0.30 \pm 0.26) \times 10^{-5}$


First Observation of $D^{\circ} \rightarrow K^{*} \gamma$

BaBar, Phys. Rev. D 78, 071101 (2008)

Hadronic Charm

First Observation of D_s⁺→pn


- Only baryonic state kinematically accessible to D° D⁺ D_s⁺
- Virtually backgroundfree reconstruction at CLEO-c
- First observation of meson → 2 baryons plus nothing else.

$\mathcal{B}(D_s^+ \to p\bar{n}) = (1.30 \pm 0.36^{+0.12}_{-0.16}) \times 10^{-3}$

Hadronic Charm

Inclusive D_S BF

- $e^+e^- \rightarrow \psi(4170) \rightarrow D_S^{+*} D_S^-$
- Fully reconstruct one Ds as tag
- Reconstruction of desired decay product on other side gives absolute, inclusive BF.

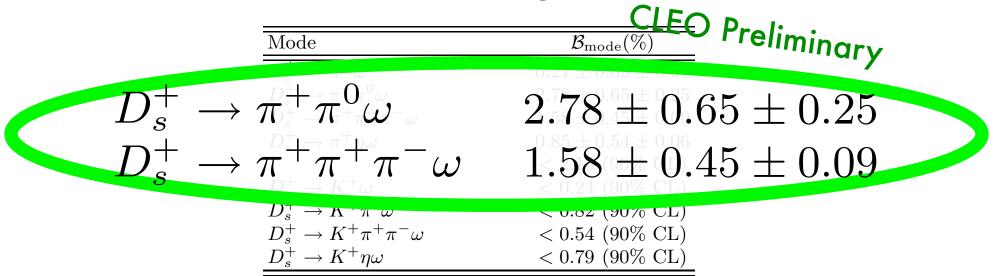
Jonas Rademacker for CLEO-c

Hadronic Charm

Inclusive D_S BF Results

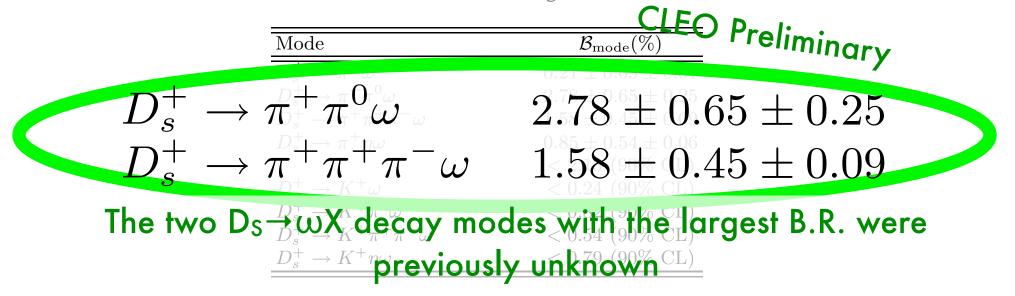
Mode	Yield(%)	K_L^0 Mode	$\operatorname{Yield}(\%)$	$\mathcal{B}(PDG)(\%)$
$D_s^+ \to \pi^+ X$	$119.3 \pm 1.2 \pm 0.7$			
$D_s^+ \to \pi^- X$	$43.2 \pm 0.9 \pm 0.3$			
$D_s^+ \to \pi^0 X$	$123.4 \pm 3.8 \pm 5.3$			
$D_s^+ \to K^+ X$	$28.9\pm0.6\pm0.3$			$20 \ ^+_{-} \ ^{18}_{14}$
$D_s^+ \to K^- X$	$18.7 \pm 0.5 \pm 0.2$			$13 \ ^+_{-} \ ^{14}_{12}$
$D_s^+ \to \eta X$	$29.9\pm2.2\pm1.7$			
$D_s^+ \to \eta' X$	$11.7 \pm 1.7 \pm 0.7$			
$D_s^+ \to \phi X$	$15.7 \pm 0.8 \pm 0.6$			
$D_s^+ \to \omega X$	$6.1 \pm 1.4 \pm 0.3$			
$D_s^+ \to f_0(980)X, f_0(980) \to \pi^+\pi^-$	1 < 1.3% (90% CL)			
$D_s^+ \to K_S^0 X$	$19.0 \pm 1.0 \pm 0.4$	$D_s^+ \to K_L^0 X$	15.6 ± 2.0	20 ± 14
$D_s^+ \to K_S^0 K_S^0 X$	$1.7 \pm 0.3 \pm 0.1$	$D_s^+ \to K_L^0 K_S^0 X$	5.0 ± 1.0	
$D_s^+ \to K_S^0 K^+ X$	$5.8 \pm 0.5 \pm 0.1$	$D_s^+ \to K_L^0 K^+ X$	5.2 ± 0.7	
$D_s^+ \to K_S^0 K^- X$	$1.9 \pm 0.4 \pm 0.1$	$D_s^+ \to K_L^0 K^- X$	1.9 ± 0.3	
$D_s^+ \to K^+ K^- X$	$15.8\pm0.6\pm0.3$			
$D_s^+ \to K^+ K^+ X$	< 0.26% (90% CL)			
$D_s^+ \to K^- K^- X$	< 0.06% (90% CL)			

CLEO result: arXiv:0904.2417 [hep-ex], submitted to PRD


Jonas Rademacker for CLEO-c Hadronic Charm 31 May 2009, FPCP 2009 13

- Most incl. rates^[1] accounted for by known excl. ones^[2], except, at first: $\Sigma_i \Gamma_{excl} (D_S \rightarrow \omega X_i) \sim 0.13 \times \Gamma_{incl} (D_S \rightarrow \omega X)$
- A closer look at exclusive $D_S \rightarrow \omega X BR$:

Mode	$\frac{CLEO}{\mathcal{B}_{mode}(\%)}$ Preliminary
$D_s^+ \to \pi^+ \omega$	$0.21 \pm 0.09 \pm 0.01$
$D_s^+ o \pi^+ \pi^0 \omega$	$2.78 \pm 0.65 \pm 0.25$
$D_s^+ \to \pi^+ \pi^+ \pi^- \omega$	$1.58 \pm 0.45 \pm 0.09$
$D_s^+ \to \pi^+ \eta \omega$	$0.85 \pm 0.54 \pm 0.06$
	< 2.13 (90% CL)
$D_s^+ \to K^+ \omega$	< 0.24 (90% CL)
$D_s^+ \to K^+ \pi^0 \omega$	< 0.82 (90% CL)
$D_s^+ \to K^+ \pi^+ \pi^- \omega$	$< 0.54 \ (90\% \ { m CL})$
$D_s^+ \to K^+ \eta \omega$	< 0.79 (90% CL)


CLEO result: <u>arXiv:0904.2417 [hep-ex]</u>, submitted to PRD
 Gronau, Rosner , arXiv:0903.2287, Mar 2009, Submitted to Phys.Rev.D

- Most incl. rates^[1] accounted for by known excl. ones^[2], except, at first: $\Sigma_i \Gamma_{excl} (D_S \rightarrow \omega X_i) \sim 0.13 \times \Gamma_{incl} (D_S \rightarrow \omega X)$
- A closer look at exclusive $D_S \rightarrow \omega X BR$:

CLEO result: <u>arXiv:0904.2417 [hep-ex]</u>, submitted to PRD
 Gronau, Rosner, arXiv:0903.2287, Mar 2009, Submitted to Phys.Rev.D

- Most incl. rates^[1] accounted for by known excl. ones^[2], except, at first: $\Sigma_i \Gamma_{excl} (D_S \rightarrow \omega X_i) \sim 0.13 \times \Gamma_{incl} (D_S \rightarrow \omega X)$
- A closer look at exclusive $D_S \rightarrow \omega X BR$:

CLEO result: <u>arXiv:0904.2417 [hep-ex]</u>, submitted to PRD
 Gronau, Rosner, arXiv:0903.2287, Mar 2009, Submitted to Phys.Rev.D

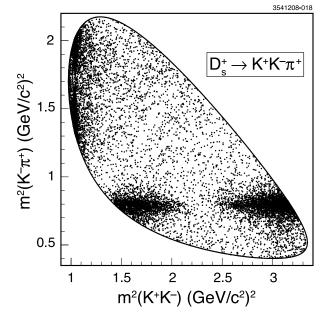
- Most incl. rates^[1] accounted for by known excl. ones^[2], except, at first: $\Sigma_i \Gamma_{excl} (D_S \rightarrow \omega X_i) \sim 0.13 \times \Gamma_{incl} (D_S \rightarrow \omega X)$
- A closer look at exclusive $D_S \rightarrow \omega X BR$:

CLEO result: <u>arXiv:0904.2417 [hep-ex]</u>, submitted to PRD
 Gronau, Rosner, arXiv:0903.2287, Mar 2009, Submitted to Phys.Rev.D

Jonas Rademacker for CLEO-c Hadronic Charm

Dalitz Analyses

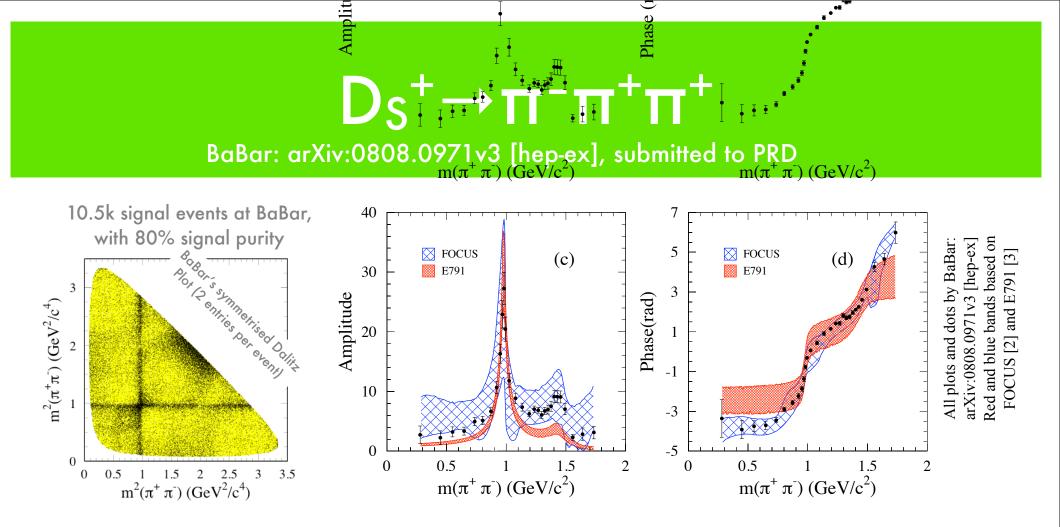
Kinematics of 3-body decay
 D→A,B,C fully described by


 $m^2{}_{AB} \equiv (p_A + p_B)^2$

 $m^2_{BC} \equiv (p_B + p_C)^2.$

- Phase-space is flat in m²_{AB},m²_{BC}
- Decay rates: $\frac{\mathrm{d}^{2}\Gamma}{\mathrm{d}\mathrm{m}_{\mathrm{ab}}^{2}\,\mathrm{d}\mathrm{m}_{\mathrm{bc}}^{2}} = \left|a_{1}\mathrm{e}^{\mathrm{i}\delta_{1}} + a_{2}\mathrm{e}^{\mathrm{i}\delta_{2}} + a_{3}\mathrm{e}^{\mathrm{i}\delta_{3}} + \dots\right|^{2} \frac{\mathrm{d}^{2}\Phi}{\mathrm{d}\mathrm{m}_{\mathrm{ab}}^{2}\,\mathrm{d}\mathrm{m}_{\mathrm{bc}}^{2}}$
- Strength: Access to magnitudes AND phases of amplitudes.

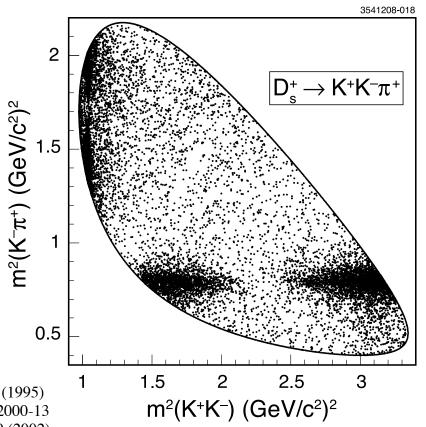
Jonas Rademacker for CLEO-c


Hadronic Charm

 $D^+ \rightarrow K^+ K^- \pi^+$

"Isobar" Model

- Each resonance = Breit Wigner lineshape (or similar) times factors accounting for spin.
- Popular amongst experimentalists, less so amongst theorists: violates unitarity. OK as long as resonances are reasonably narrow, don't overlap too much.
- Alternatives exist, e.g. K-matrix formalism, which respects unitarity.
- General consensus: Isobar OK for P, D wave, but problematic for (usually very broad) S-wave.

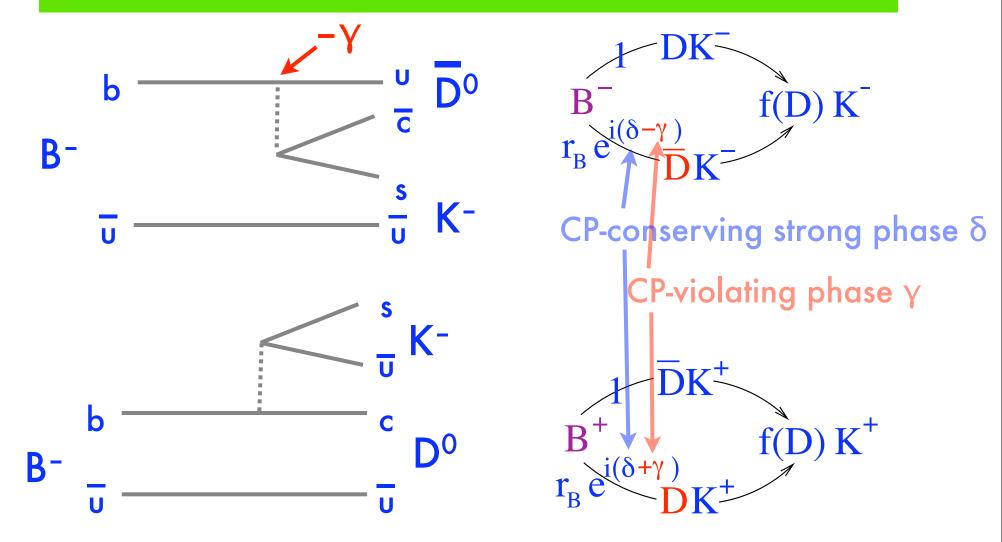

- Dominated by S-wave (fit fraction 83%).
- BaBar: model-independent analysis^[1] of S-wave component. Result compatible with FOCUS (K-matrix)^[2] and E791 (isobar)^[3] analyses.

•	Many more results in paper.		[1] Method pione[2] E791: Phys.[3] FOCUS: Phy	Rev. Le	ett. 86, 765	(2001)	32004 (2	2006).
	Jonas Rademacker for CLEO-c	Hadronic			ay 2009,	· /	17	

$D_S^+ \rightarrow K^- K^+ \pi^+$

- Isobar fit. Good agreement with previous E687 (701 event) fit^[1].
- Get much-improved fit to CLEO-c data with additional KK S-wave contribution.
- Best results by adding an $f_0(1370)$ resonance.

12k $D_S^+ \rightarrow K^- K^+ \pi^+$ events at CLEO-c CLEO: PRD 79, 072008 (2009), arXiv:0903.1301



[1] E687: P.L. Frabetti et al. (E687 Collaboration), Phys. Lett., B351, 591 (1995) see also unpublished FOCUS result: A.M. Rahimi, FERMILAB-THESIS-2000-13 and S. Malvezzi, AIP Conf. Proc. 549, 569 (2002)

Jonas Rademacker for CLEO-c

Hadronic Charm

Charm for Bottom: $B^{\pm} \rightarrow DK^{\pm}$

Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLW) Atwood, Dunietz and Soni Phys.Rev.Lett. 78 (1997) 3257-3260 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D70 (2004) 072003

Hadronic Charm

BaBar fit to $D^{\circ} \rightarrow K_{S}\pi\pi$

- Fit to 0.5M $D^{\circ} \rightarrow K_{S}\pi\pi$ events
- K-matrix for ππ S-wave contribution, LASS for Kπ S-wave.

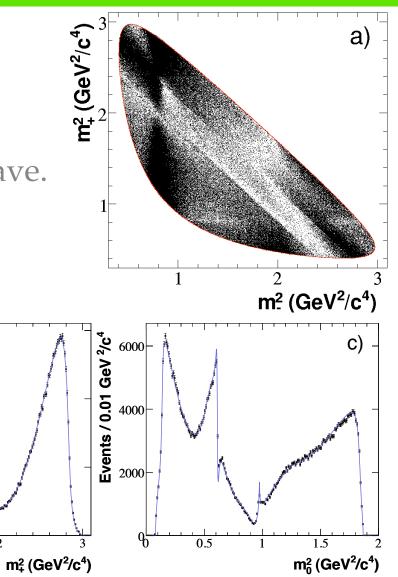
a)

 m_{1}^{2} (GeV²/c⁴)

6000

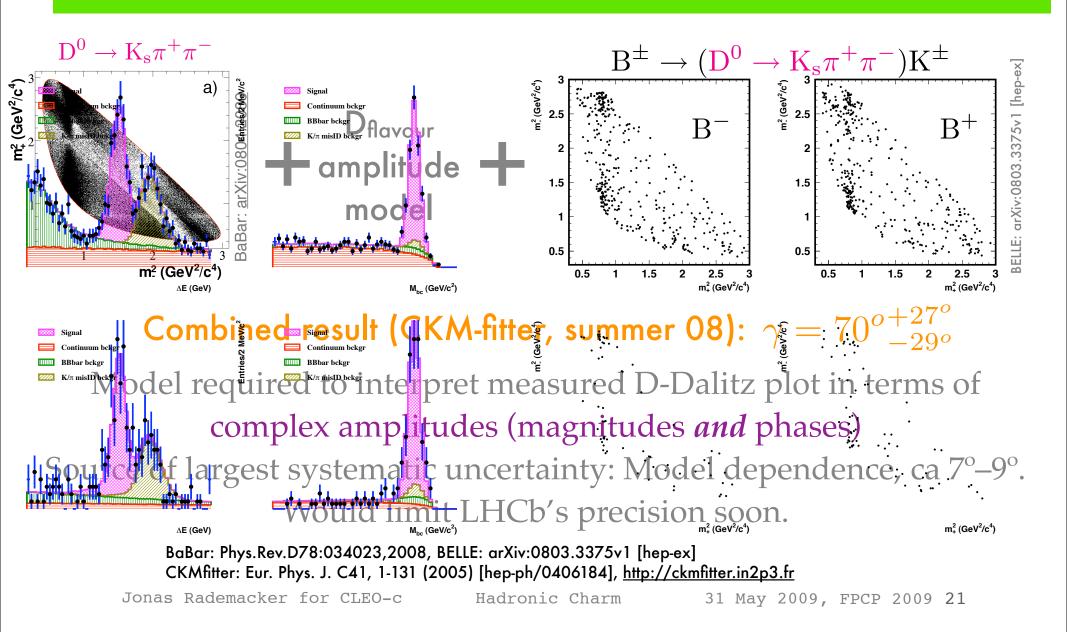
4000

2000


b)

Hadronic Charm

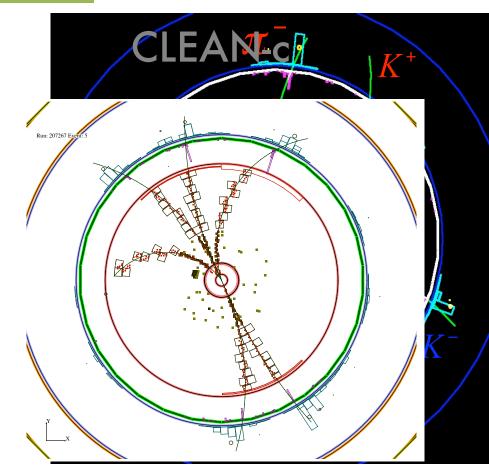
Events / 0.014 GeV ²/c⁴

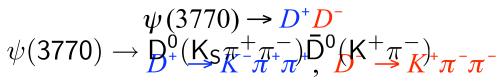

Events / 0.014 GeV ²/C⁴

31 May 2009, FPCP 2009 20

Jonas Rademacker for CLEO-c

Dalitz Plots for y at Belle&BaBar

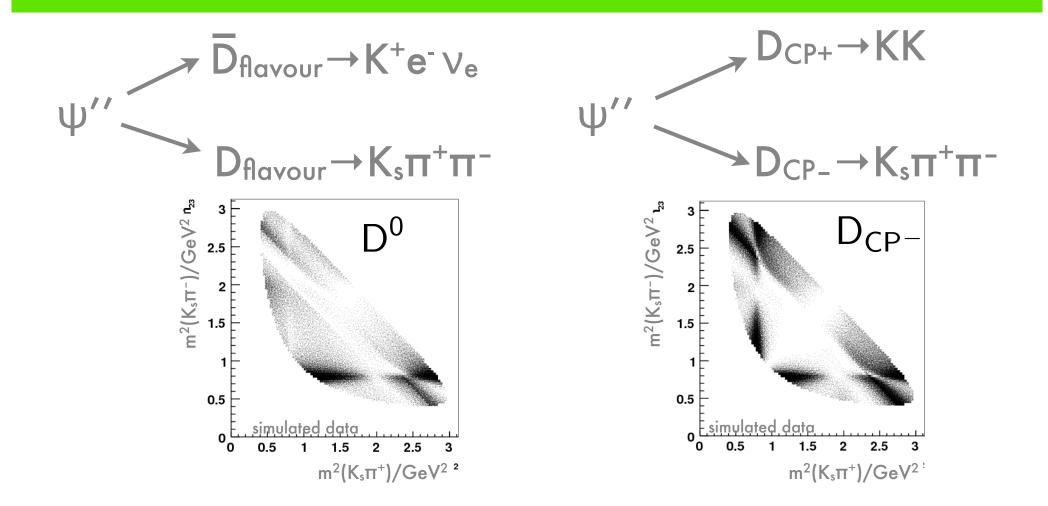


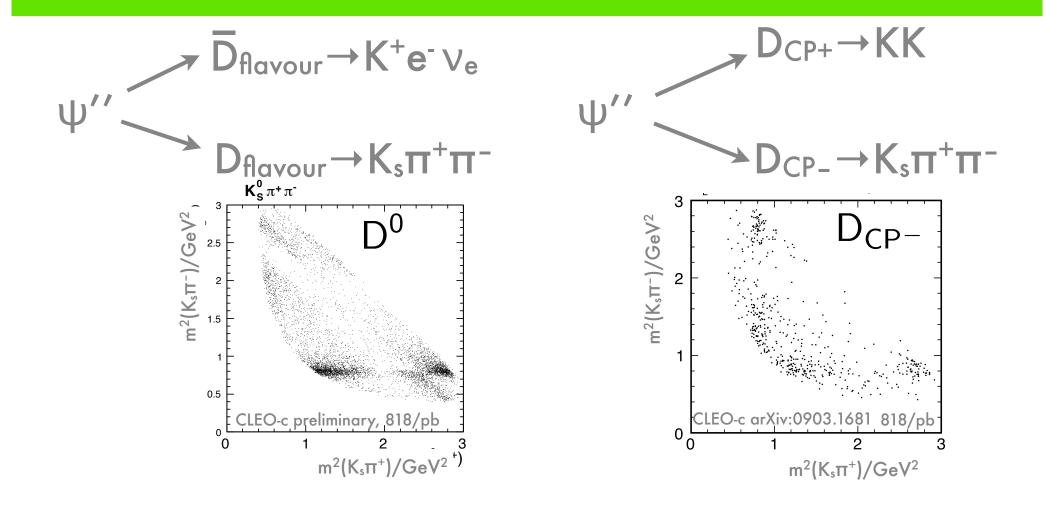

owards Precision Measurements $e^+e^- \rightarrow \psi(3770) \rightarrow D\overline{D}$

- Threshold production of correlated DD. D tag
- Final state must be CP-odd,
- ...and flavour-neutral.

Dsig

• That gives us access to both amplitude and phase across the Dalitz plot.




Jonas Rademacker for CLEO-c

Hadronic Charm

CP and flavour tagged D°

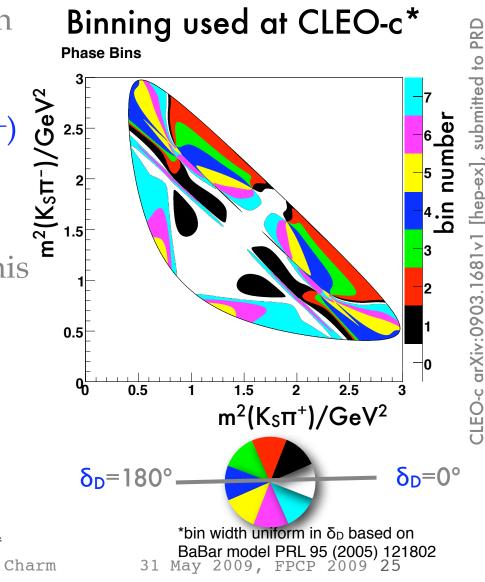
CP and flavour tagged D° at CLEO

CLEO-c's input to y

• CLEO-c's input is concerned with δ_D , the phase difference between $A(D^\circ \rightarrow K_S \pi^+ \pi^-)$ and $A(\overline{D}^\circ \rightarrow K_S \pi^+ \pi^-)$

at a point on the Dalitz plot.

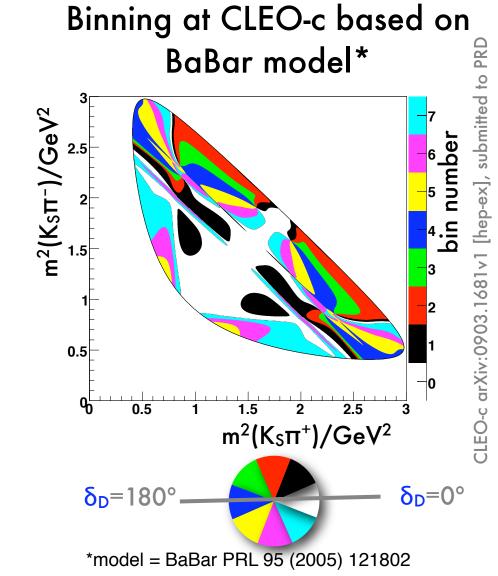
• Measure the cosine and sine of this phase, averaged over bins:


 $c_i = \langle \cos(\delta_D) \rangle_{i \text{, } S_i} = \langle \sin(\delta_D) \rangle_i$

 This input allows modelindependent γ measurement.

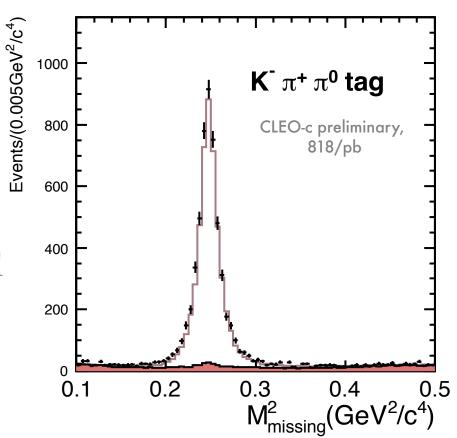
Giri, Grossmann, Soffer, Zupan, Phys Rev D 68, 054018 (2003).

Jonas Rademacker for CLEO-c


Hadronic Charm

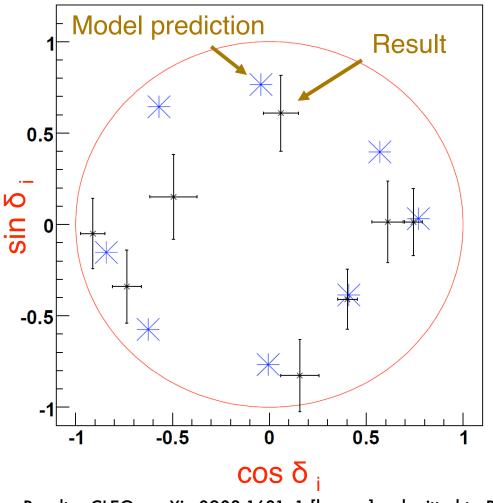
Optimal binning

- Best γ sensitivity if phase difference δ_D is as constant as possible over each bin^[1].
- Plot shows CLEO-c's 8 bins, uniform in δ_D , (based on BaBar isobar model*).
- Choice of model will not bias result. (At worst a bad model would reduce the statistical precision of the result.)


[1] Bondar, Poluektov hep-ph/0703267v1 (2007) Jonas Rademacker for CLEO-c Hadronic Charm

CP-even $K_L \pi \pi \approx$ CP-odd $K_S \pi \pi$

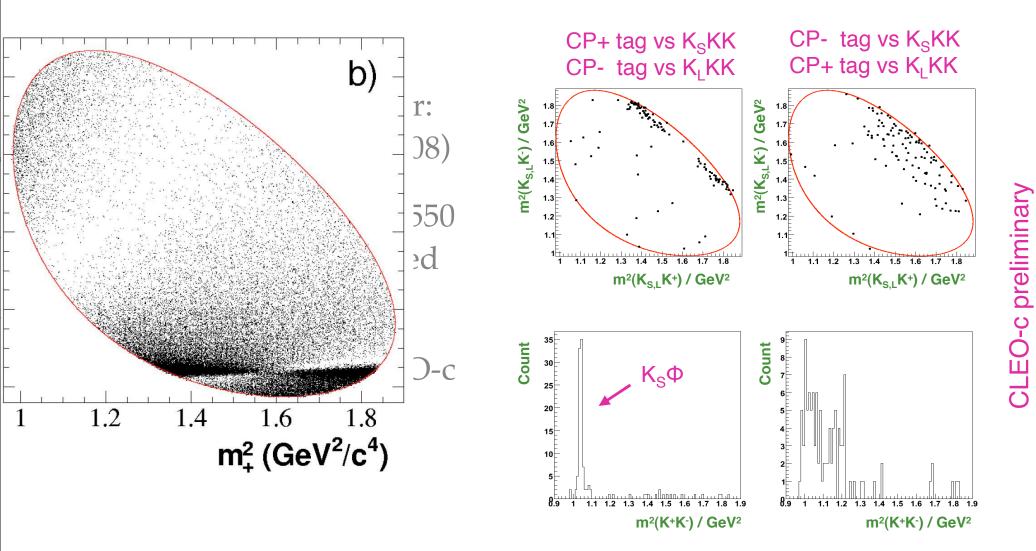
- CLEO-c's clean environment allows the reconstruction of K_L from kinematic constraints.
- Significantly increases statistics.
- There is price to pay: A
 O(tan²θ_C) model-dependent
 correction. Carefully evaluated
 (small) systematic uncertainty.


Overlaying Data (black) and MC (red) for missing M² in K_L reconstruction in K_Lπ⁺π⁻ vs K⁻π⁺π⁰

CLEO-c arXiv:0903.1681v1 [hep-ex], submitted to PRD Jonas Rademacker for CLEO-c Hadronic Charm

CLEO-c results

- 818/fb at CLEO-c
- 20k flavour tagged events (for magnitude of $A(D^{\circ} \rightarrow K_{S}\pi^{+}\pi^{-}))$
- 1.6 k CP-tagged events (for c_i extraction)
- 1.3k K_{L,S}ππ vs K_Sππ
 (for c_i and s_i extraction)
- S/B between 10 and 100, depending on tag mode.


Result = CLEO-c arXiv:0903.1681v1 [hep-ex], submitted to PRD model = BaBar PRL 95 (2005) 121802

y γ ∫ t

Replace 7'=...25 J) 22.5 20 20 20 17.5 15 12.5 12.5 Amplitude fit, model error 7° systematic on γ from Binned fit, CLEO-c error 2° $B^{\pm} \rightarrow D(K_{S}\pi\pi)K^{\pm}$ with σ_{CLEO-input} 12.5 10 7.5 5 Sign 2.5 0 BaBa 2 10 Error af the end of baseline LHCb (10 fb⁻¹) for γ from $B^{\pm} \rightarrow D(K_{S}\pi\pi)K^{\pm}$: syste Error at end of baseline LHCb (10 to (an \$51 (anglitude negdel); 6.0 (unbir Espe 6°(binned, with CLEO-c input) for f (numbers for $r_B=0.1$) expe

- be sy
 - Jona

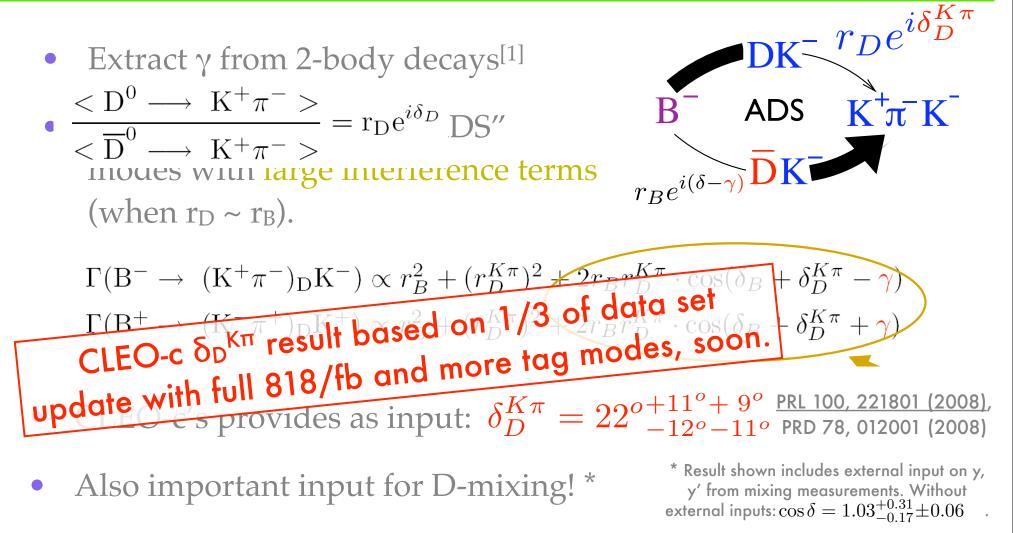
Extend to $B^+ \rightarrow (D^\circ \rightarrow K_S K K) K^+$

Jonas Rademacker for CLEO-c

Hadronic Charm

y from 2-body decays, ADS

• Extract
$$\gamma$$
 from 2-body decays^[1]
• $\frac{\langle D^0 \longrightarrow K^+ \pi^- \rangle}{\langle \overline{D}^0 \longrightarrow K^+ \pi^- \rangle} = r_D e^{i\delta_D} DS''$
modes with large interference terms
(when $r_D \sim r_B$).
 $\Gamma(B^- \rightarrow (K^+ \pi^-)_D K^-) \propto r_B^2 + (r_D^{K\pi})^2 + 2r_B r_D^{K\pi} \cdot \cos(\delta_B + \delta_D^{K\pi} - \gamma)$
 $\Gamma(B^+ \rightarrow (K^- \pi^+)_D K^+) \propto r_B^2 + (r_D^{K\pi})^2 + 2r_B r_D^{K\pi} \cdot \cos(\delta_B + \delta_D^{K\pi} + \gamma)$


- CLEO-c's provides as input: $\delta_D^{K\pi} = 22^{o+11^o} + 9^o \frac{\text{PRL 100, 221801 (2008)}}{-12^o 11^o}$ PRD 78, 012001 (2008)
- Also important input for D-mixing! *

* Result shown includes external input on y, y' from mixing measurements. Without external inputs: $\cos \delta = 1.03^{+0.31}_{-0.17} \pm 0.06$.

 $\delta K\pi$

Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLW) Atwood, Dunietz and Soni Phys.Rev.Lett. 78 (1997) 3257-3260 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D70 (2004) 072003

y from 2-body decays, ADS

Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLW) Atwood, Dunietz and Soni Phys.Rev.Lett. 78 (1997) 3257-3260 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D70 (2004) 072003

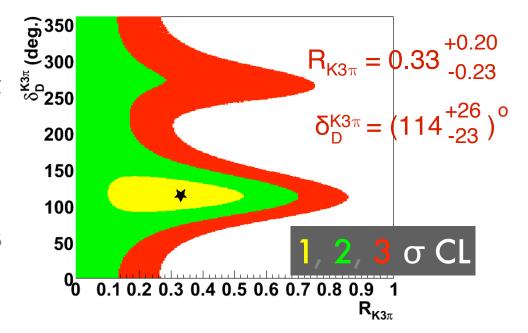
VSIS OT Atwood, Soni: Phys.Rev. D6 X 3.033003

Coherence

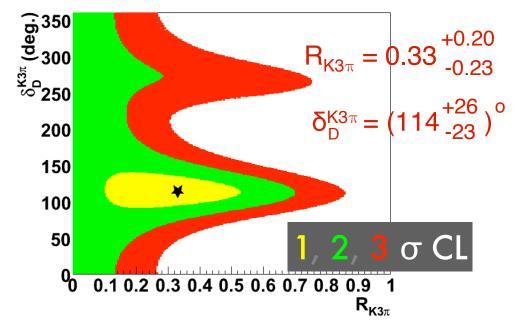
An

- Treat K3π list two-body for K with single effective strong phase $(\delta^{+\gamma})$
- New parameter: Concernce factor $\mathbf{R} < 1$.

$$\Gamma \left(\mathsf{B}^{-} \to \left(\mathsf{K}^{+} 3\pi \right)_{\mathsf{D}} \mathsf{K}^{-} \right) \propto r_{B}^{2} + \left(r_{D}^{K3\pi} \right)^{2} + 2R_{K3\pi} r_{B} r_{D}^{K3\pi} \cdot \cos \left(\delta_{B} + \delta_{D}^{K3\pi} - \gamma \right)$$

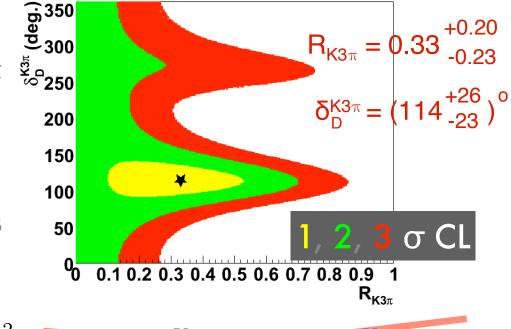

CLEO-c's coherent $\psi(3770) \rightarrow DD$ events allow measurement of R, δ_D - important input for LHCb

Double Tag Rate	Sensitive To
$K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$ vs. $K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$	$(R_{K3\pi})^2$
$K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$ vs. CP	$R_{K3\pi}cos(\delta^{K3\pi})$
$K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$ vs. $K^{\pm}\pi^{\mp}$	$R_{K3\pi}\cos(\delta^{K\pi}-\delta^{K3\pi})$

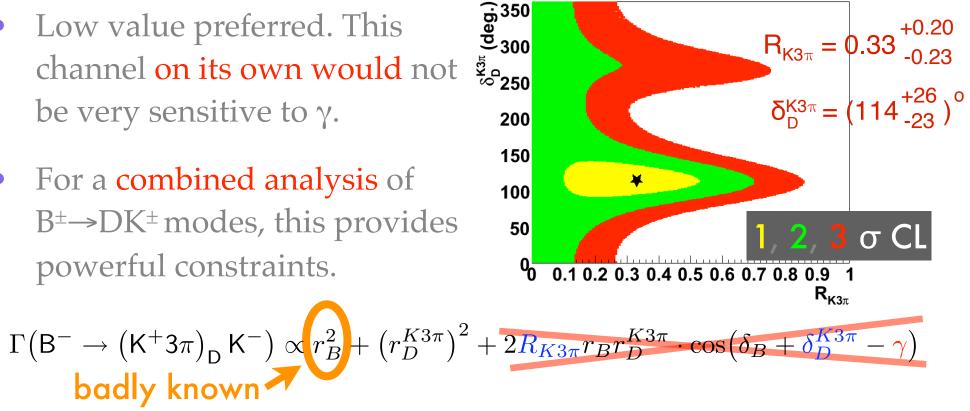

 $(K^{+}\pi^{-}\pi^{+}\pi^{-})_{D}\mathbf{R}$

 $r_{\rm B} e^{i(\delta - \gamma)} \overline{D} K^{-1}$

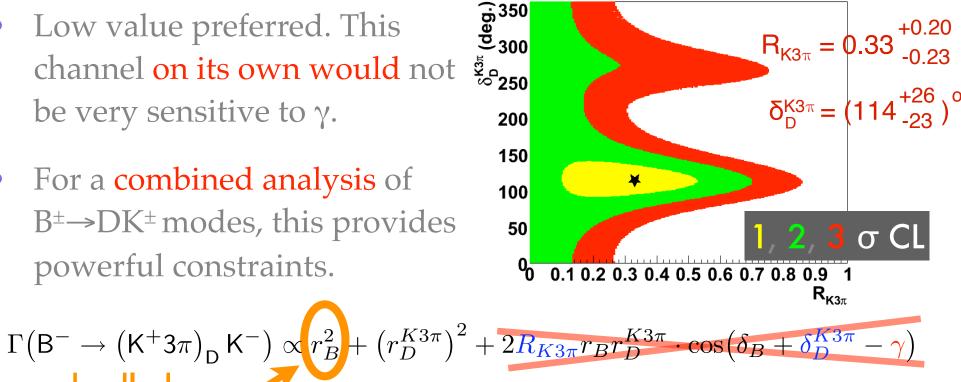
- Low value preferred. This channel on its own would not be very sensitive to γ.
- For a combined analysis of B[±]→DK[±] modes, this provides powerful constraints.


- Low value preferred. This channel on its own would not be very sensitive to γ.
- For a combined analysis of B[±]→DK[±] modes, this provides powerful constraints.

 $\Gamma \left(\mathsf{B}^{-} \to \left(\mathsf{K}^{+} 3\pi \right)_{\mathsf{D}} \mathsf{K}^{-} \right) \propto r_{B}^{2} + \left(r_{D}^{K3\pi} \right)^{2} + 2R_{K3\pi} r_{B} r_{D}^{K3\pi} \cdot \cos \left(\delta_{B} + \delta_{D}^{K3\pi} - \gamma \right)$

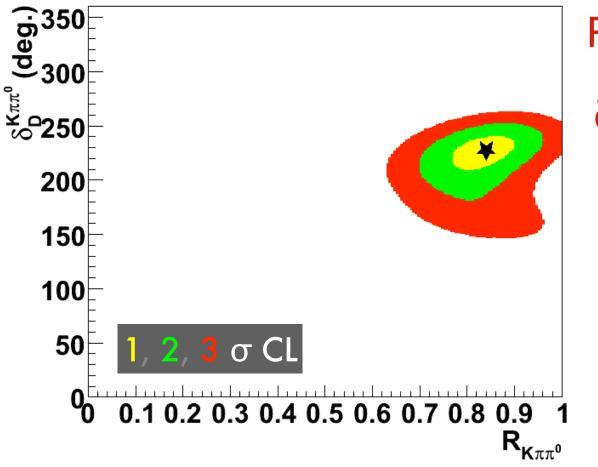

Jonas Rademacker for CLEO-c Hadronic Charm 31 May 2009, FPCP 2009 33

- Low value preferred. This channel on its own would not be very sensitive to γ.
- For a combined analysis of B[±]→DK[±] modes, this provides powerful constraints.

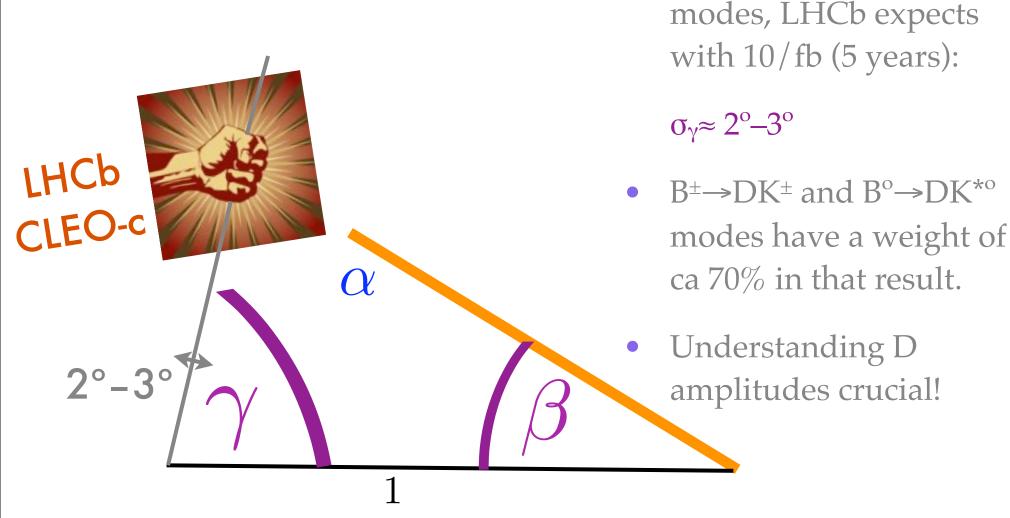

$$\Gamma \left(\mathsf{B}^{-} \to \left(\mathsf{K}^{+} 3\pi \right)_{\mathsf{D}} \mathsf{K}^{-} \right) \propto r_{B}^{2} + \left(r_{D}^{K3\pi} \right)^{2} + 2R_{K3\pi} r_{B} r_{D}^{K3\pi} \cdot \cos \left(\delta_{B} + \delta_{D}^{K3\pi} - \gamma \right)$$

- Low value preferred. This channel on its own would not be very sensitive to γ .
- For a combined analysis of $B^{\pm} \rightarrow DK^{\pm}$ modes, this provides powerful constraints.

- Low value preferred. This channel on its own would not be very sensitive to γ .
- For a combined analysis of $B^{\pm} \rightarrow DK^{\pm}$ modes, this provides powerful constraints.


badly known

• At LHCb, using $B^{\pm} \rightarrow D(hh)K^{\pm}$, $B^{\pm} \rightarrow D(K\pi\pi\pi)K^{\pm}$, for 2/fb (average year): This input improves $\sigma(\gamma)$ from 9.5° to 7.9°.


(typical values used - exact size of improvement depends on input parameters and can be larger). Jonas Rademacker for CLEO-c Hadronic Charm 31 May 2009, FPCP 2009 33

Kππ° Coherence Factor

 $R_{K\pi\pi^{0}} = 0.84 \pm 0.07$ $\delta^{K\pi\pi^{0}} = (227^{+14}_{-17})^{0}$ $Very \ coherent!$ Expect significant further improvement (not evaluated at LHCb, yet)

CLEO-c & y

Combining tree-level γ

CLEO-c & y

See also Sean Brisbane's excellent poster

 Combining tree-level γ modes, LHCb expects with 10/fb (5 years):

 $\sigma_{\gamma} \approx 2^{\circ} - 3^{\circ}$

- B[±]→DK[±] and B^o→DK^{*o}
 modes have a weight of
 ca 70% in that result.
- Understanding D amplitudes crucial!

Jonas Rademacker for CLEO-c

2°-3°

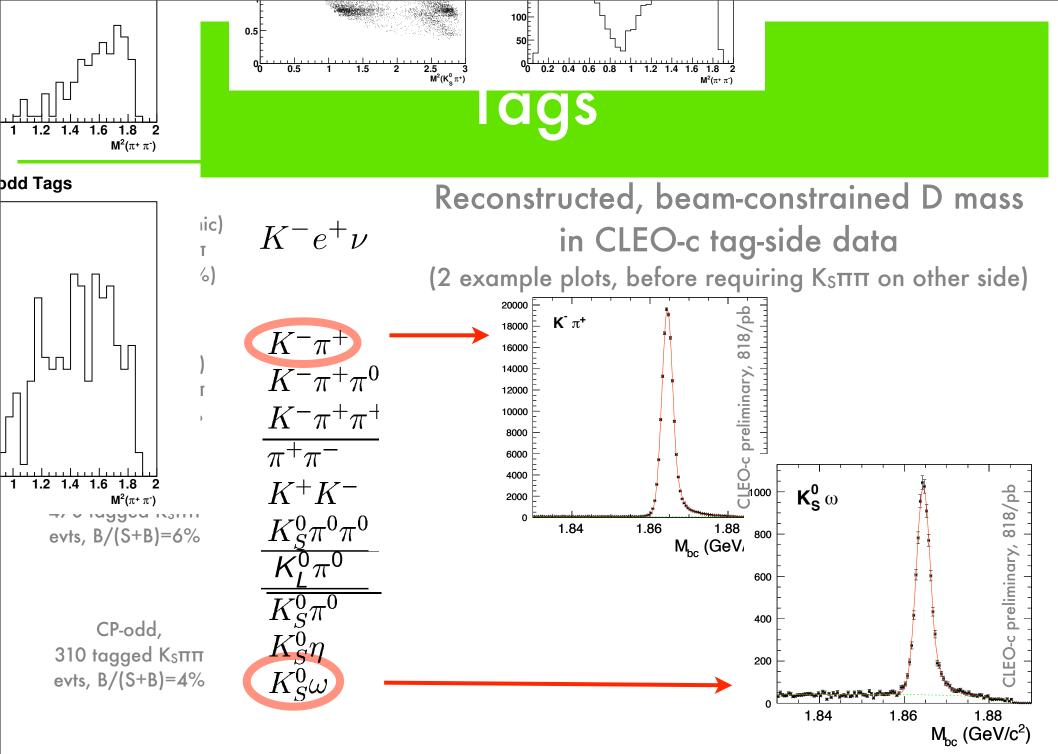
Hadronic Charm

Summary & Outlook

- Huge statistics, very clean data samples and renewed interest in charm ⇒ lots of new, important results, only a few shown here.
- Comprehensive set of charm BF's, several new modes First Meson→2baryon decay ● U-spin test in D°→K°π°. ● A lot of new D_S results ● Dalitz analyses to study light resonances: nature and composition of S-wave remains intriguing.
- Quantum-correlated charm provides crucial input to γ from
 B[±]→DK[±] and B^o→DK^{*o} Dalitz analyses essential Other
 powerful techniques benefit from quantum-correlated input, too
- Updates with more data and additional channels from CLEO-c, soon BESIII will be able to extend these measurements with significantly increased statistics, once starting to run at $\psi(3770)$.

Jonas Rademacker for CLEO-c Hadronic Charm 31 May 2009, FPCP 2009 37

CLEO-c D°→K_Sππ

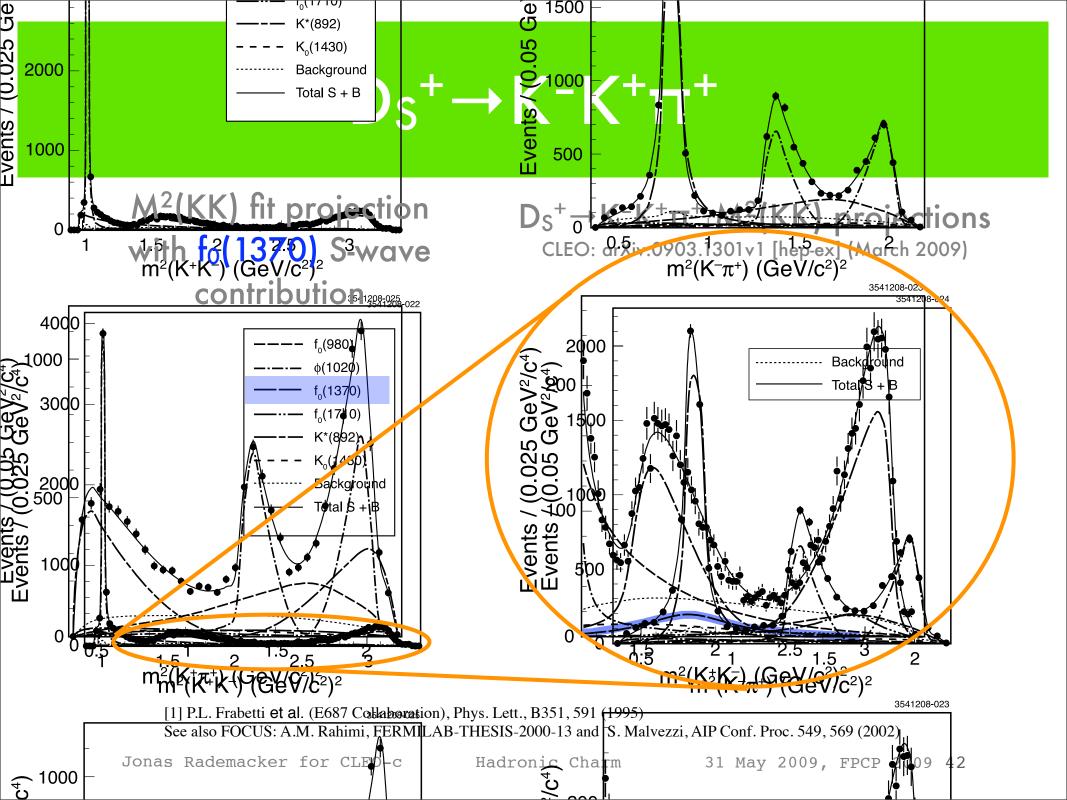

Format: result $\pm \sigma(stat) \pm \sigma(sys) \pm \sigma(K_S \leftrightarrow K_L residual model dependence)$

bin		
i	c_i	s_i
0	$0.743 \pm 0.037 \pm 0.022 \pm 0.013$	$0.014 \pm 0.160 \pm 0.077 \pm 0.045$
1	$0.611 \pm 0.071 \pm 0.037 \pm 0.009$	$0.014 \pm 0.215 \pm 0.055 \pm 0.017$
2	$0.059 \pm 0.063 \pm 0.031 \pm 0.057$	$0.609 \pm 0.190 \pm 0.076 \pm 0.037$
3 -	$-0.495 \pm 0.101 \pm 0.052 \pm 0.045$	$0.151 \pm 0.217 \pm 0.069 \pm 0.048$
4 -	$-0.911 \pm 0.049 \pm 0.032 \pm 0.021$	$-0.050 \pm 0.183 \pm 0.045 \pm 0.036$
5 -	$-0.736 \pm 0.066 \pm 0.030 \pm 0.018$	$-0.340 \pm 0.187 \pm 0.052 \pm 0.047$
6	$0.157 \pm 0.074 \pm 0.042 \pm 0.051$	$-0.827 \pm 0.185 \pm 0.060 \pm 0.036$
7	$0.403 \pm 0.046 \pm 0.021 \pm 0.002$	$-0.409 \pm 0.158 \pm 0.050 \pm 0.002$

Dalitz Plot

R.H. Dalitz, Philos. Mag. 44, 1068 (1953)

Jonas Rademacker for CLEO-c Hadronic Charm



Jonas Rademacker for CLEO-c

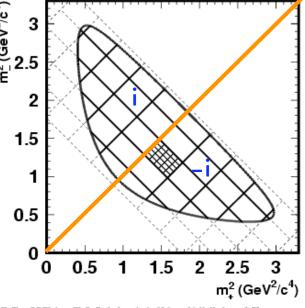
Hadronic Charm

$D_S^+ \rightarrow K^- K^+ \pi^+$

Parameter	E687 Model	$f_2(1270)$	$a_2(1320)$	$f_0(1370)$	$f_0(1500)$	$f_2(1525)$	$a_0(1450)$	$\phi(1680)$
$m_{K^*(892)}$	$895.8 {\pm} 0.5$	-0.4	-0.1	-0.9	-0.5	0.0	-0.8	0.1
$\Gamma_{K^{*}(892)}$	44.2 ± 1.0	2.3	2.4	1.5	0.6	0.6	1.0	1.2
$a_{K_0^*(1430)}$ (a.u.)	$1.76 {\pm} 0.12$	0.11	0.08	-0.25	-0.03	-0.16	-0.22	-0.18
$\phi_{K_0^*(1430)}$ (°)	145 ± 8	-32	-28	1.0	-15	1.7	-15	18
$a_{f_0(980)}$ (a.u.)	$3.67{\pm}0.13$	0.29	0.26	1.05	0.52	0.03	1.09	0.20
$\phi_{f_0(980)}$ (°)	156 ± 3	-2	-1.6	1.3	2.3	0.22	3.8	10.5
$a_{\phi(1020)}$ (a.u.)	$1.15 {\pm} 0.02$	-0.03	-0.04	-0.02	-0.003	-0.02	-0.007	-0.012
$\phi_{\phi(1020)}$ (°)	-15 ± 4	-7	-6.3	7.2	-0.6	1.5	4.3	13.2
$a_{f_0(1710)}$ (a.u.)	$1.27{\pm}0.07$	0.08	0.07	-0.16	0.17	-0.04	0.03	-0.018
$\phi_{f_0(1710)}$ (°)	102 ± 4	7	4.7	-13	-4.1	-3.8	-17	5.3
$a_{\rm add}$ (a.u.)		$0.64{\pm}0.09$	$0.45 {\pm} 0.06$	$1.15 {\pm} 0.09$	$0.50{\pm}0.05$	$0.50{\pm}0.07$	$1.32{\pm}0.10$	1.04 ± 0.17
$\phi_{ m add}$ (°)		17 ± 9	40 ± 8	53 ± 5	132 ± 7	173 ± 10	103 ± 5	$-4{\pm}11$
χ^2/ u	278/119	237/117	237/117	178/117	229/117	249/117	192/117	256/117

Model independent y fit

Giri, Grossmann, Soffer, Zupan, Phys Rev D 68, 054018 (2003).


• Binned decay rate:

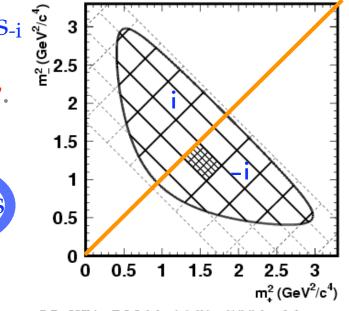
$$\Gamma \left(B^{\pm} \rightarrow D(K_{s}\pi^{+}\pi^{-})K^{\pm}\right)_{i} = \begin{array}{c} \mathcal{T}_{i} \text{ known from flavour-specifc D decays (e.g. D^{*})} \\ \delta_{D} = \text{phase of} \\ \mathcal{T}_{i} + r_{B}^{2}\mathcal{T}_{-i} + 2r_{B}\sqrt{\mathcal{T}_{i}\mathcal{T}_{-i}} \left\{c_{i}\cos\left(\delta \pm \gamma\right) + s_{i}\sin\left(\delta \pm \gamma\right)\right\} \\ \mathsf{A}(D \rightarrow \mathsf{K}_{s}\pi\pi) \\ (\text{weighted}) \text{ average of } \cos(\delta_{D}(s_{12},s_{23}) - \delta_{D}(s_{23},s_{12})) \text{ and } \sin(\delta_{D}(s_{12},s_{23}) - \delta_{D}(s_{23},s_{12})) \text{ over bin i} \end{array}$$

- Binning such that such that $c_i = c_{-i}$, $s_i = -s_{-i}$
- Distribution sensitive to c_i , s_i , r_B , δ and γ .
- To extract γ from realistic numbers of B events need external input from CLEO's quantum-correlated DDbar pairs.

Jonas Rademacker for CLEO-c

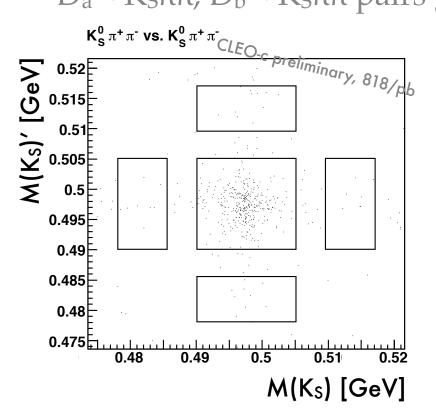
Hadronic Charm

Model independent y fit


Giri, Grossmann, Soffer, Zupan, Phys Rev D 68, 054018 (2003).

• Binned decay rate:

$$\Gamma \left(B^{\pm} \to D(K_{s}\pi^{+}\pi^{-})K^{\pm}\right)_{i} = \begin{array}{l} \mathcal{T}_{i} \text{ known from flavour-specifc D decays (e.g. D^{*})} \\ \delta_{D} = \text{phase of} \\ \mathcal{T}_{i} + r_{B}^{2}\mathcal{T}_{-i} + 2r_{B}\sqrt{\mathcal{T}_{i}\mathcal{T}_{-i}} \left\{c_{i}\cos\left(\delta \pm \gamma\right) + s_{i}\sin\left(\delta \pm \gamma\right)\right\} \\ \mathsf{A}(D \to \mathsf{K}_{s}\pi\pi) \\ \text{(weighted) average of } \cos(\delta_{D}(s_{12},s_{23}) - \delta_{D}(s_{23},s_{12})) \text{ and } \sin(\delta_{D}(s_{12},s_{23}) - \delta_{D}(s_{23},s_{12})) \text{ over bin i} \end{array}$$


Hadronic Charm

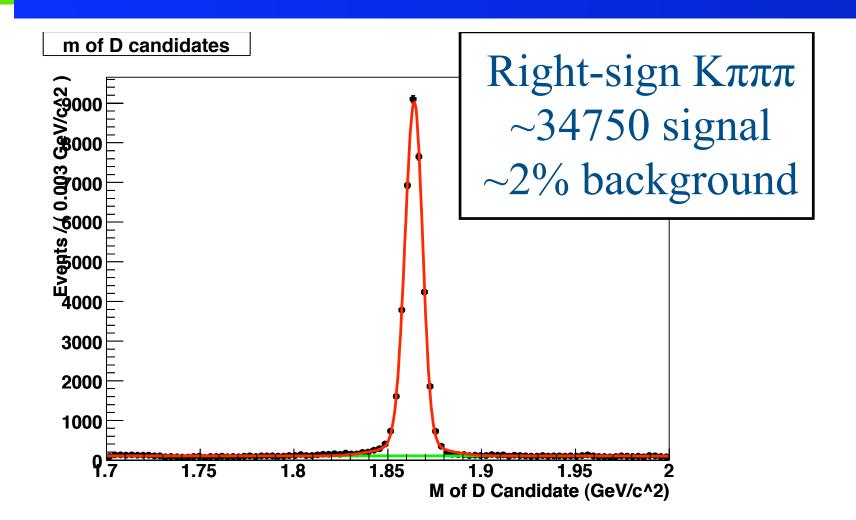
- Binning such that such that $c_i = c_{-i}$, $s_i = -s_{-i}$
- Distribution sensitive to c_i , s_i , r_B , δ and γ .
- To extract γ from realistic numbers of B events need external input from CLEO's quantum-correlated DDbar pairs.

si, ci from Ksππ vs Ksππ

- CP-tagged binned Dalitz Plots sensitive to **c**_i only.
- Simultaneous, binned analysis of quantum-correlated $D_a \rightarrow K_S \pi \pi$, $D_b \rightarrow K_S \pi \pi$ pairs gives access to both c_i and s_i :

- 420 fully reconstructed events, S/(B+S) =90%
- 50 partially reconstructed events (ignore one π in reconstruction),
 S/(B+S)=85%

CP-even $K_L \pi \pi \approx CP-odd K_S \pi \pi$ unfortunately only " \approx ", not quite "="


 $K_S^0 = (K^0 + \bar{K}^0) / \sqrt{2}$ $K_L^0 = (K^0 - \bar{K}^0) / \sqrt{2}.$

 $\begin{array}{c} -\mathsf{A}\left(\mathsf{D}^{0}\to\mathsf{K}^{0}_{\mathsf{L}}\pi^{+}\pi^{-}\right)=\mathsf{A}\left(\mathsf{D}^{0}\to\mathsf{K}^{0}_{\mathsf{S}}\pi^{+}\pi^{-}\right)-\sqrt{2}\mathsf{A}\left(\mathsf{D}^{0}\to\mathsf{K}^{0}_{\mathsf{flavour}}\pi^{+}\pi^{-}\right) \\ & \mathsf{CF+DCS} & \mathsf{DCS} \end{array}$

- Using $K_L \pi \pi$ significantly enhances statistics.
- However, need a correction of O(tan²θ_C). Residual model dependence enters as an uncertainty on a small correction. Detailed systematics study shows effect is small.
- Notation: c_i , s_i from $K_S\pi\pi$. c_i' , s_i' from $K_L\pi\pi$.

 $\Delta C_i \equiv C_i - C_i', \Delta S_i \equiv S_i - S_i'$

D→ Khm in all CLEO III

VMD, $D^{\circ} \rightarrow V\gamma$ and $D^{\circ} \rightarrow V\rho^{\circ}$

- Dominated by long-distance effects. Difficult to calculate.
- Vector-Meson-Dominance approach^[1] V (e.g ρ°), EM

• Find
$$\frac{\mathcal{B}(D^0 \to \phi \gamma)}{\mathcal{B}(D^0 \to \bar{K}^{*0} \gamma)} = (6.27 \pm 0.71 \pm 0.79) \times 10^{-2}$$
 BaBar 08
 $\frac{\mathcal{B}(D^0 \to \phi \rho^0)}{\mathcal{B}(D^0 \to \bar{K}^{*0} \rho^0)} = (6.7 \pm 1.6) \times 10^{-2}$ PDG 07

[1] G. Burdman, E. Golowich, J. L. Hewett, and S. Pakvasa, Phys. Rev., 6383 (1995)
 Jonas Rademacker for CLEO-c Hadronic Charm 31 May 2

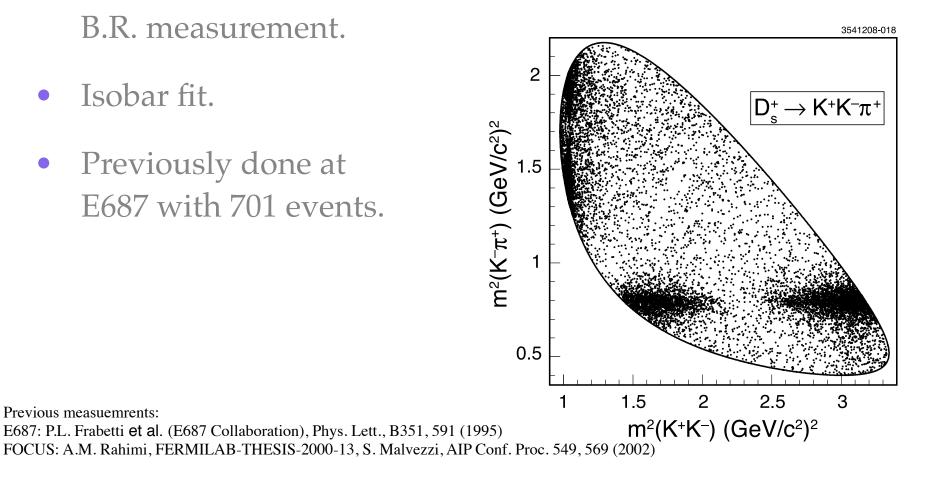
Direct CP Violation

- Main focus there: time-dependent studies
- But direct CPV in time-integrated

$$A_{CP} = \frac{\Gamma(\mathsf{D} \to \mathsf{f}) - \Gamma(\bar{\mathsf{D}} \to \bar{\mathsf{f}})}{\Gamma(\mathsf{D} \to \mathsf{f}) + \Gamma(\bar{\mathsf{D}} \to \bar{\mathsf{f}})}$$

decays also interesting!

$D_S^+ \rightarrow K^- K^+ \pi^+$

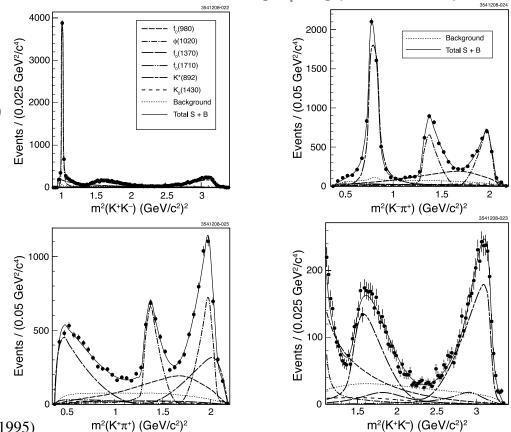

- Follows CLEO-c's $D_{S}^{+} \rightarrow K^{-}K^{+}\pi^{+}$ absolute B.R. measurement.
- Isobar fit.

Previous measuemrents:

Previously done at E687 with 701 events.

12k $D_S^+ \rightarrow K^- K^+ \pi^+$ events at CLEO-c

CLEO: arXiv:0903.1301v1 [hep-ex] (March 2009)



Hadronic Charm

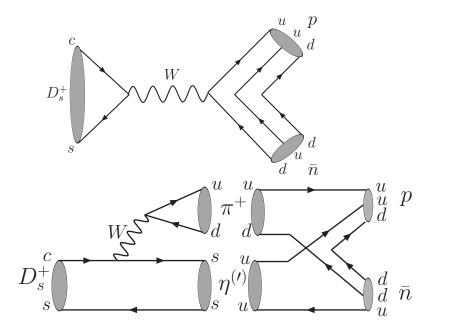
$D_S^+ \rightarrow K^- K^+ \pi^+$

- Find good agreement with E687 model parameters.
- Get much-improved fit to our data with additional KK S-wave contribution.
- Tried many options. Best results with f₀(1370)

12k $D_S^+ \rightarrow K^-K^+\pi^+$ fit projections CLEO: arXiv:0903.1301v1 [hep-ex] (March 2009)

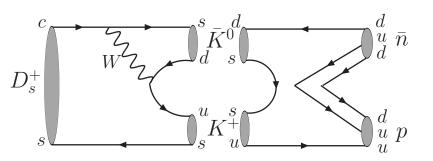
P.L. Frabetti et al. (E687 Collaboration), Phys. Lett., B351, 591 (1995)
 [2] [4]A.M. Rahimi, FERMILAB-THESIS-2000-13
 [3] S. Malvezzi, AIP Conf. Proc. 549, 569 (2002)

Jonas Rademacker for CLEO-c


Hadronic Charm

Binned Dalitz Result

Format: bin, result $\pm \sigma_{stat} \pm \sigma_{sys} \pm \sigma_{(KL\leftrightarrow KS)}$


i	c_i	s_i
0	$0.743 \pm 0.037 \pm 0.022 \pm 0.013$	$0.014 \pm 0.160 \pm 0.077 \pm 0.045$
1	$0.611 \pm 0.071 \pm 0.037 \pm 0.009$	$0.014 \pm 0.215 \pm 0.055 \pm 0.017$
2	$0.059 \pm 0.063 \pm 0.031 \pm 0.057$	$0.609 \pm 0.190 \pm 0.076 \pm 0.037$
3	$-0.495 \pm 0.101 \pm 0.052 \pm 0.045$	$0.151 \pm 0.217 \pm 0.069 \pm 0.048$
4	$-0.911 \pm 0.049 \pm 0.032 \pm 0.021$	$-0.050 \pm 0.183 \pm 0.045 \pm 0.036$
5	$-0.736 \pm 0.066 \pm 0.030 \pm 0.018$	$-0.340 \pm 0.187 \pm 0.052 \pm 0.047$
6	$0.157 \pm 0.074 \pm 0.042 \pm 0.051$	$-0.827 \pm 0.185 \pm 0.060 \pm 0.036$
7	$0.403 \pm 0.046 \pm 0.021 \pm 0.002$	$-0.409 \pm 0.158 \pm 0.050 \pm 0.002$

Theory of $D_s^+ \rightarrow p\bar{n}$

• Short Distance:

 $\mathcal{B}(D_s^+ \to p\bar{n})_{\rm SD} = (0.4^{+1.1}_{-0.3}) \times 10^{-6}$

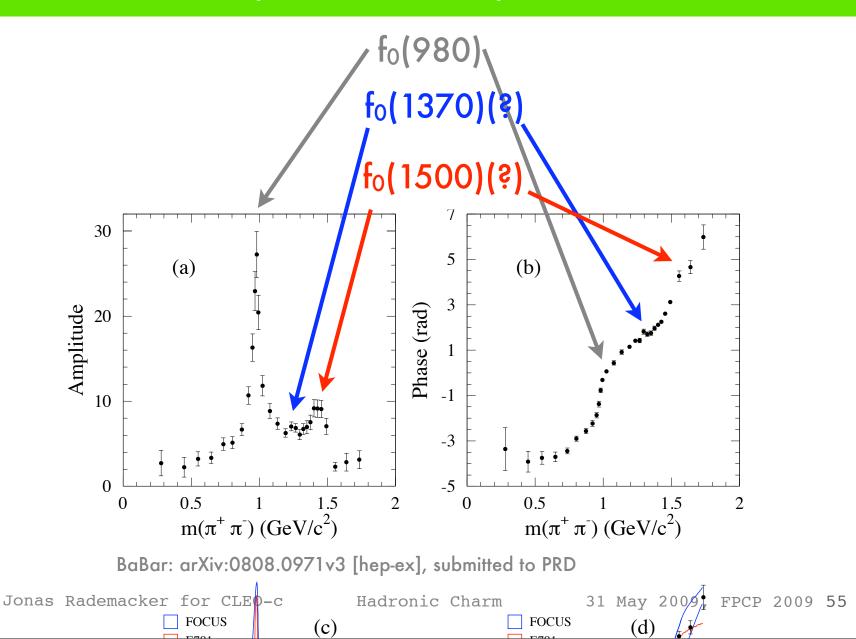
- Long Distance $\mathcal{B}(D_s^+ \to p\bar{n}) \approx \left(0.8^{+2.4}_{-0.6}\right) \times 10^{-3}$
- Measured $\mathcal{B}(D_s^+ \to p\bar{n}) = (1.30 \pm 0.36^{+0.12}_{-0.16}) \times 10^{-3}$

Chen, Cheng, Hsiao: Phys.Lett.B663:326-329,2008

Jonas Rademacker for CLEO-c Had:

Hadronic Charm

Absolute BF


- Important normalising modes: $D^0 \rightarrow K^- \pi^+$
 - $D^+ \rightarrow K^- \pi^+ \pi^+$ $D_{\rm s}^+
 ightarrow K^- K^+ \pi^+$ (historically " $\phi \pi^+$ ")
- Methods need to know there is a D before reconstructing it
 - BaBar: partial reconstruction of $D^* \rightarrow D\pi$, using only the π (and the rest of the event, but not the D)

• BELLE:
$$e^+e^- \rightarrow D_s^{*+}D_{s1}^- (\rightarrow \overline{D}^{*0}K^-)$$

• CLEO-c: $e^+e^- \rightarrow \psi \rightarrow D D$

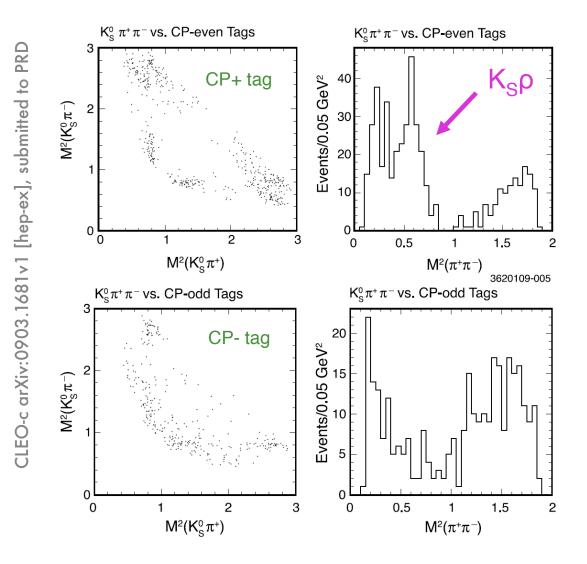
$D_S^+ \rightarrow \pi^- \pi^+ \pi^+$

Model independent S-wave parameterisation

$D_S^+ \rightarrow \pi^- \pi^+ \pi^+$

- $D_{S^+} \rightarrow (\pi^+\pi^-)_{S\text{-wave}} \pi^+$ dominates.
- Model-independent S-wave fit compatible with f₀(980) resonance.
- Also with FOCUS's K-matrix and E791's isobar fit
- Signs of something going on near $f_0(1370)$, $f_0(1500)$.
- Large D-wave component with f₂(1270)

Fit Fractions


Decay Mode	Decay fraction $(\%)$
$f_2(1270)\pi^+$	$10.1 \pm 1.5 \pm 1.1$
$ ho(770)\pi^+$	$1.8 {\pm} 0.5 {\pm} 1.0$
$ \rho(1450)\pi^+ $	$2.3 {\pm} 0.8 {\pm} 1.7$
\mathcal{S} -wave	$83.0 \pm 0.9 \pm 1.9$
Total	$97.2 \pm 3.7 \pm 3.8$
χ^2/NDF	$\frac{437}{422-64} = 1.2$

BaBar: arXiv:0808.0971v3 [hep-ex], submitted to PRD

Jonas Rademacker for CLEO-c


Hadronic Charm

CP+ and CP- $D^{\circ} \rightarrow K_{S}\pi\pi$ at CLEO-c

Exploiting Quantum Correlations at CLEO-c

Hadronic Charm

Jonas Rademacker for CLEO-c

CP-tagged rates

 $\propto (1 \pm 2 r_D^{K\pi} \cos \delta_D^{K\pi} \pm y)$

Combined analysis in many modes sensitive to $\partial D^{K\pi} w / 0$ ambiguiday: (a) (a) 0.04(b) Crucial in ut to charm mixing measurements, as we as helping × measure γ - 0.08 -0.12Result: $\delta_{D}^{K_{\pi}}$ $2Z_{0.5-12^{o}-115^{o}}$ 0.0 0.5 1.0 cosδ Analysis based on 1/3 of data set update with full 818/fb soon.

VMD, $D^{\circ} \rightarrow V\gamma$ and $D^{\circ} \rightarrow V\rho^{\circ}$

- Dominated by long-distance effects.
- Vector meson dominance (VMD): $A(D^{\circ} \rightarrow M\gamma) \approx (e/f_{\rho}) A(D \rightarrow M\rho^{\circ})^{[1]}$

$$\mathcal{B}(D^0 \to \bar{K}^{*0}\gamma) = (0.021 \pm 0.005) \ \mathcal{B}(D^0 \to \bar{K}^{*0}\rho^0)$$
$$\mathcal{B}(D^0 \to \phi\gamma) = (0.020 \pm 0.003) \ \mathcal{B}(D^0 \to \phi\rho^0)$$

Μ

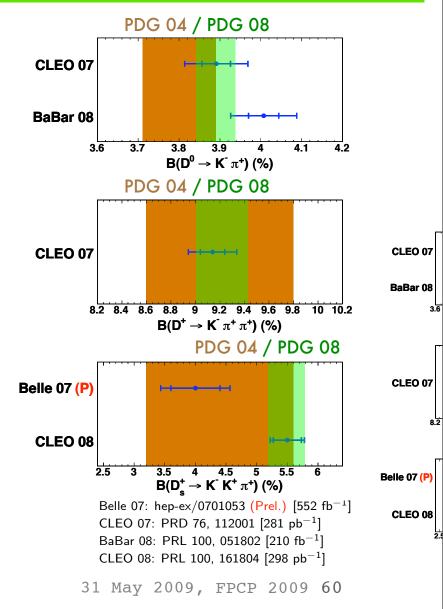
• Using
$$(e/f_{\rho}) = 0.06^{[2]}$$
, expect:

 $\mathcal{B}(\mathsf{D}^{\mathsf{0}} \to \mathsf{V}\gamma) \approx 0.0036 \cdot \mathcal{B}(\mathsf{D}^{\mathsf{0}} \to \mathsf{V}\rho^{\mathsf{0}})$

• While proportionality predicted by VMD is seen, measured proportionality factor is a bit large.

[1] G. Burdman, E. Golowich, J. L. Hewett, and S. Pakvasa, Phys. Rev., 6383 (1995) [2] E. Golowich and S. Pakvasa, Phys. Rev. D 51, 1215 - 1223 (1995) Jonas Rademacker for CLEO-c Hadronic Charm 31 May 2009, FPCP 2009 59

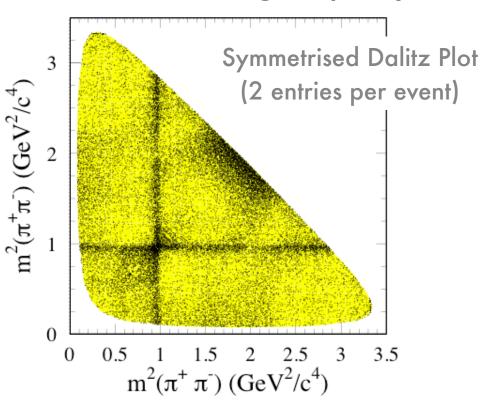
Branching Fractions


- Absolute BF: Progress in key reference modes.
- Comprehensive set of BF:

 $D_{(S)} \rightarrow PP \text{ with } P = K^{\pm}, K_S, K_L, \pi^{\pm}, \pi^0, \eta, \eta'$

D_(S)→Vγ, Vη, Vϱ

D_(S)→baryons


 Recent addition: CLEO-c's new Ds*Ds data sample.

$D_S^+ \rightarrow \pi^- \pi^+ \pi^+$

- Dominated by S-wave (fitfraction 83%).
- BaBar perform modelindependent analysis of Swave component ^[1], method pioneered by E791^[2].

10.5k signal events at BaBar, with 80% signal purity

[1] BaBar: arXiv:0808.0971v3 [hep-ex], submitted to PRD
[2] E791: Phys. Rev. D 73, 032004 (2006).

Jonas Rademacker for CLEO-c

Hadronic Charm

$D_S^+ \rightarrow \pi^- \pi^+ \pi^+$

Model independent S-wave parameterisation

Define 30 points in m($\pi^+\pi^-$).

10

0

0

Jonas Rademacker for CLEO-c

0.5

FOCUS

 $m(\pi^{+}\pi^{-}) (GeV/c^{2})$

2 fit parameters (magnitude & phase) for each point

-1

-3

-5

Hadronic Charm

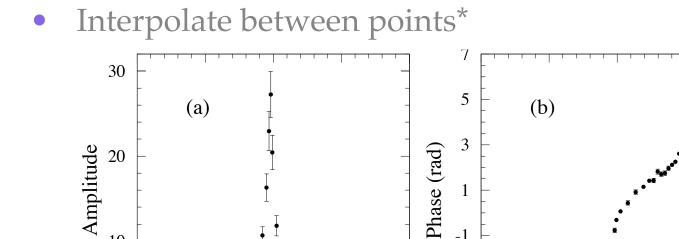
0

2

0.5

FOCUS

 $m(\pi^{+}\pi^{-}) (GeV/c^{2})$


1.5

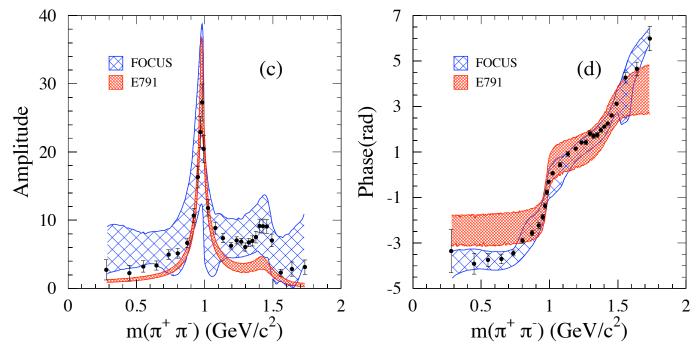
31 May 200/9

(d)

2

FPCP 2009 62

1.5


(c)

BaBar: arXiv:0808.0971v3 [hep-ex], submitted to PRD

*)Relaxed Cubic Spline: K. S. Kölbig and H. Lipps, Cubic Splines and Their Integrals, CERN Program Library, E211.

Amplitude

• Model-independent S-wave compatible with FOCU^{m(π^{\dagger}} π^{\bullet}) (GeV/c²) and E791 (i^{m(π^{\dagger}} π^{\bullet}) (GeV/c²).

BaBar: arXiv:0808.0971v3 [hep-ex], submitted to PRD 585,200 (2004) E791: Phys. Rev. Lett. 86, 765 (2001) FOCUS: Phys. Lett. B Dots and plots by

• Clear f₀(980), signs of f₀(1370), f₀(1500)

• Also: large D-wave contribution f₂(1220) Jonas Rademacker for CLEO-c Hadronic Charm 31 Ma

Direct CPV in D°, D+

- Plenty of results from BaBar, BELLE, CDF, CLEO, E791, FOCUS, averaged by HFAG
- Table shows averages for those results that received updates in 2007 or 2008.
- Plenty more modes
- Reaching per-mil precision.

	Mode	A _{CP} (%) Charm09	A _{CP} (%) Charm07	
D°	K^+K^-	-0.16±0.23	1.36±1.2	
	$\pi^+\pi^-$	0.22 ± 0.37	1.27±1.25	
	$\pi^+\pi^-\pi^0$	-0.23±0.42	1.0±9.0	
	$K^-\pi^+\pi^o$	0.16±0.89	3.1±8.6	
	$K^-K^+\pi^o$	0.16 ± 0.89	-	
D+	$K^-K^+\pi^+$	0.39 ± 0.61	0.7±0.8	
	$K_S \pi^+$	-0.86 ± 0.90	-1.6±1.7	
	$K_S \pi^+ \pi^o$	$0.3\pm0.9\pm0.3$	_	
	$K^-\pi^+\pi^+\pi^o$	$1.0\pm0.9\pm0.9$	_	

Jonas Rademacker for CLEO-c

Hadronic Charm

Direct CPV in Ds

- CLEO-c's Ds data allowed for the first time a precise test of direct CP in the Ds system
- Plenty of modes, all results new since
 Charm 2007
- Many results at the few % level.

Mode	A _{CP} (%)	
$\pi^+\eta$	$-8.2 \pm 5.2 \pm 0.8$	
$\pi^+\eta'$	$-5.5 \pm 3.7 \pm 1.2$	
$K_S \pi^+$	27 ± 11	
$K_S\pi^\circ$	2 ± 29	
K+η	-20 ± 18	
$K^+\eta'$	-17 ± 37	
K+Ks	$+K_{S}$ 4.9 ± 2.1 ± 0.9	
$\pi^+\pi^-\pi^+$	$2.0\pm4.6\pm0.7$	
$K^+\pi^+\pi^-$	$11.2 \pm 7.0 \pm 0.9$	
$K_S K^- \pi^+ \pi^+$	$-0.7 \pm 3.6 \pm 1.1$	
$K^+K^-\pi^+\pi^0$	$-5.9 \pm 4.2 \pm 1.2$	

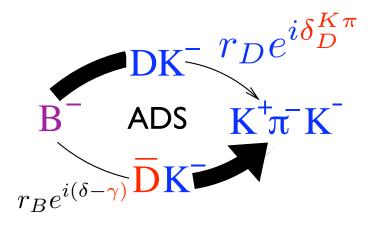
Prospects for direct CPV

- Example: $D^{\circ} \rightarrow K^{+}\overline{K}^{-}$
 - BaBar 2008: $+0.0000 \pm 0.0034 \pm 0.0013$
 - BELLE 2008: -0.0043 ± 0.0030 ± 0.0011
 - World average (HFAG): $+0.0022 \pm 0.0037$
- CDF has obtained its result of $+0.020 \pm 0.012 \pm 0.006$ with only 2% of its current data set. CDF could beat world stat precision now.
- LHCb, due to start this year, expects stat precision of 0.004% in 10/fb (ca 5 years, using charm from B decays, including prompt charm will improve this further).

Jonas Rademacker for CLEO-c Hadronic Charm 31 May 2009, FPCP 2009 66

y from 2-body decays, ADS

• CLEO uses quantum coherence to measures $\delta_D^{K\pi}$ in decays such as $\Gamma(D_{CP+} \to K^+\pi^-) = \frac{1}{2} |A(D \to K^+\pi^-) + A(\overline{D} \to K^+\pi^-)|^2$


 $\propto (1 + 2r_D^{K\pi} \cos \delta_D^{K\pi}) + \text{mixing terms}$

• Result:
$$\delta_D^{K\pi} = 22^{\circ + 11^{\circ} + 9^{\circ}}_{-12^{\circ} - 11^{\circ}}$$

• Also important input for D-mixing! *

PRL 100, 221801 (2008), PRD 78, 012001 (2008)

Analysis based on 1/3 of data set update with full 818/fb and more tag modes, soon.

* Result shown includes external input on y, y' from mixing measurements. Without external inputs: $\cos \delta = 1.03^{+0.31}_{-0.17} \pm 0.06$

Jonas Rademacker for CLEO-c

Hadronic Charm