Radiative and Semileptonic rare B decays

Enrico Lunghi Indiana University

FPCP 2009 - Lake Placid

Outline

- Introduction
- Inclusive: $B \rightarrow X_{d, s} \gamma$ and $B \rightarrow X_{s} \ell^{+} \ell^{-}$
- Exclusive: $B \rightarrow\left(K^{*}, \rho, \omega\right) \gamma$ and $B \rightarrow\left(K, K^{*}\right) \ell^{+} \ell^{-}$
- Outlook

What can we learn?

SM
$\mathrm{V}_{\mathrm{tb}} \mathrm{V}_{\mathrm{ts}}$

MFV
$\mathrm{V}_{\mathrm{tb}} \mathrm{V}_{\mathrm{ts}}$
mass scale

generic $\delta_{b s}$
mass scale

- Complementarity between $b \rightarrow s \gamma$ and $b \rightarrow s \ell^{+} \ell^{-}$:

Effective Lagrangian

$\mathcal{L}_{e f f}=\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t q}^{*}[\sum_{i=1}^{10} C_{i} Q_{i}+\frac{V_{u b} V_{u q}^{*}}{V_{t b} V_{t q}^{*}} \sum_{i=1}^{2} C_{i}\left(Q_{i}-Q_{i}^{u}\right)+\underbrace{\sum_{i=3}^{6} C_{i Q} Q_{i Q}+C_{b} Q_{b}}_{\text {for QED corrections }}]$

$$
\begin{aligned}
Q_{1} & =\left(\bar{q}_{L} \gamma_{\mu} T^{a} c_{L}\right)\left(\bar{c}_{L} \gamma^{\mu} T^{a} b_{L}\right) \\
Q_{2} & =\left(\bar{q}_{L} \gamma_{\mu} c_{L}\right)\left(\bar{c}_{L} \gamma^{\mu} b_{L}\right) \\
Q_{1}^{u} & =\left(\bar{q}_{L} \gamma_{\mu} T^{a} u_{L}\right)\left(\bar{c}_{L} \gamma^{\mu} T^{a} b_{L}\right) \\
Q_{2}^{u} & =\left(\bar{q}_{L} \gamma_{\mu} u_{L}\right)\left(\bar{c}_{L} \gamma^{\mu} b_{L}\right) \\
Q_{7} & =\frac{e}{16 \pi^{2}} m_{b}\left(\bar{q}_{L} \sigma^{\mu \nu} b_{R}\right) F_{\mu \nu} \\
Q_{8} & =\frac{g}{16 \pi^{2}} m_{b}\left(\bar{q}_{L} \sigma^{\mu \nu} T^{a} b_{R}\right) G_{\mu \nu}^{a}
\end{aligned}
$$

$$
\begin{aligned}
Q_{3} & =\left(\bar{q}_{L} \gamma_{\mu} b_{L}\right) \sum\left(\bar{q} \gamma^{\mu} q\right) \\
Q_{4} & =\left(\bar{q}_{L} \gamma_{\mu} T^{a} b_{L}\right) \sum\left(\bar{q} \gamma^{\mu} T^{a} q\right) \\
Q_{5} & =\left(\bar{q}_{L} \gamma_{\mu_{1}} \gamma_{\mu_{2}} \gamma_{\mu_{3}} b_{L}\right) \sum\left(\bar{q} \gamma^{\mu_{1}} \gamma^{\mu_{2}} \gamma^{\mu_{3}} q\right) \\
Q_{6} & =\left(\bar{q}_{L} \gamma_{\mu_{1}} \gamma_{\mu_{2}} \gamma_{\mu_{3}} T^{a} b_{L}\right) \sum\left(\bar{q} \gamma^{\mu_{1}} \gamma^{\mu_{2}} \gamma^{\mu_{3}} T^{a} q\right) \\
Q_{9} & =\left(\bar{q}_{L} \gamma_{\mu} b_{L}\right) \sum\left(\bar{\ell} \gamma^{\mu} \ell\right) \\
Q_{10} & =\left(\bar{q}_{L} \gamma_{\mu} b_{L}\right) \sum\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right)
\end{aligned}
$$

Inclusive channels

General considerations

$$
\begin{aligned}
\Gamma\left[\bar{B} \rightarrow X_{s}\left(\gamma, \ell^{+} \ell^{-}\right)\right]= & \Gamma\left[\bar{b} \rightarrow X_{s}\left(\gamma, \ell^{+} \ell^{-}\right)\right]+O\left(\frac{\Lambda_{Q C D}^{2}}{m_{b}^{2}}, \frac{\Lambda_{Q C D}^{2}}{m_{c}^{2}}, \ldots\right) \\
& \begin{array}{c}
\text { local OPE, optical theorem } \\
\\
\text { quark-hadron duality }
\end{array}
\end{aligned}
$$

Phase space cuts introduce sensitivity to new scales, the rate becomes less inclusive and new non-perturbative effects appear
(I) $E_{\gamma}>E_{0}=[1.7,2.0] \mathrm{GeV}$ to suppress backgrounds: simple OPE, SCET, DGE
(II) $q^{2}=\left(p_{\ell^{+}}+p_{\ell^{-}}\right)^{2}$ cuts to remove $c \bar{c}$ resonances. OPE breaks down at $q^{2} \sim m_{b}^{2}$. In the high q^{2} region expansion parameter is $\Lambda_{Q C D} /\left(m_{b}-\sqrt{q^{2}}\right)$
(III) $M_{X_{s}}<[1.8,2] \mathrm{GeV}$ to remove $b \rightarrow c \ell^{-} \bar{\nu} \rightarrow s \ell^{-} \ell^{+} \bar{\nu} \nu$ background:

Fermi motion, SCET

Status of $B \rightarrow X_{s} \gamma$

- Present status:

$$
\begin{gathered}
1+\mathcal{O}\left(\alpha_{s}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right)+\mathcal{O}\left(\alpha_{e}\right)+\mathcal{O}\left(\frac{\Lambda^{2}}{m_{b}^{2}}\right)+\mathcal{O}\left(\frac{\Lambda^{2}}{m_{c}^{2}}\right)+\mathcal{O}\left(\alpha_{s} \frac{\Lambda}{m_{b}}\right) \\
30 \% \quad 10 \%
\end{gathered} 5 \% \quad 1 \% \quad 3 \% \quad 0(5 \%)
$$

- For $E_{\gamma}>E_{0}=1 \mathrm{GeV}$ the OPE is trusted
- $T=\frac{\Gamma\left(E_{\gamma}>1.6 \mathrm{GeV}\right)}{\Gamma\left(E_{\gamma}>1 \mathrm{GeV}\right)}=\left\{\begin{array}{l}0.96 \pm 0.01 \\ 0.93_{-0.05}^{+0.03} \pm 0.02 \pm 0.02 \\ 0.0984 \pm 0.003\end{array}\right.$

OPE
SCET
DGE
[Misiak et al.]
[Becher, Neubert] [Andersen, Gardi]

$B \rightarrow X_{d, s} \gamma:$ SM predictions

- $b \rightarrow s$

$$
\begin{aligned}
& \operatorname{BR}\left(B \rightarrow X_{s} \gamma\right)_{\mathrm{SM}}^{E_{\gamma}>1.6 \mathrm{GeV}}=\left\{\begin{array}{l}
(3.15 \pm 0.23) \times 10^{-4} \\
(2.98 \pm 0.26) \times 10^{-4}
\end{array}\right. \\
& \operatorname{BR}\left(B \rightarrow X_{s} \gamma\right)_{\mathrm{exp}}^{E_{\gamma}>1.6 \mathrm{GeV}}=(3.52 \pm 0.25) \times 10^{-4}
\end{aligned} \begin{aligned}
& A_{\mathrm{CP}}\left(B \rightarrow X_{s} \gamma\right)_{\mathrm{SM}}=(0.4 \pm 0.2) \% \\
& A_{\mathrm{CP}}\left(B \rightarrow X_{s} \gamma\right)_{\exp }=(12 \pm 30 \pm 18) \%
\end{aligned}
$$

[Misiak et al.] [Becher, Neubert]
[CLEO, BaBar, Belle]
[Hurth,EL,Porod]
[BaBar]
[Hurth,EL,Porod]
[BaBar]
[Hurth,EL,Porod]

- $b \rightarrow d / s$ (untagged)

$$
A_{\mathrm{CP}}\left(B \rightarrow X_{d, s} \gamma\right)_{\mathrm{SM}}=\frac{A_{C P}^{b \rightarrow s \gamma}+\frac{\Gamma_{d}}{\Gamma_{s}} A_{C P}^{b \rightarrow d \gamma}}{1+\Gamma_{d} / \Gamma_{s}} \sim 0
$$

$B \rightarrow X_{s} \gamma$: impact on NP

- Two Higgs Doublet Model

[Haisch]
- $\mathrm{MH}_{+}>300 \mathrm{GeV}$
- largely independent of $\tan (\beta)$
- positive interference between SM and $\mathrm{H}^{ \pm}$contributions

$B \rightarrow X_{s} \gamma$: impact on NP

- Two Universal Extra Dimension

- BR is always suppressed with respect to the SM
- Bound on compactification scale: $\mathrm{R}^{-1}>650 \mathrm{GeV}$
- Dark matter constrain favors $\mathrm{R}^{-1}<600 \mathrm{GeV}$

$B \rightarrow X_{s} \gamma$: impact on NP

- Flavor blind MSSM

[Straub; Olive, Velasco-Sevilla]

[Ellis et al.]
- Relative sign of $\chi^{ \pm}$and $H^{ \pm}$contributions is $-\operatorname{sign}(\mu)$
- Strength of constrain varies over the parameter space

$B \rightarrow X_{s} \gamma$: impact on NP

- Most general MSSM
- Parametrize non-minimal sources of flavor violation in terms of mass insertions in the squark mass matrices

$$
\left(\delta_{23}^{u, d}\right)_{A B}=\frac{\left(m_{23}^{u, d}\right)_{A B}^{2}}{M_{\text {sq }}^{2}}
$$

- Constraints on LR insertions at the 10^{-3} level because of chiral
enhancement ($m_{\tilde{g}, \chi^{ \pm}} / m_{b}$)

[Silvestrini]

$B \rightarrow X_{s} \gamma$: impact on NP

- Untagged CP asymmetry

[EL, Hurth, Porod]
MFV

[EL, Hurth, Porod]
Model Independent Analysis
- Very clean test for new CP violating phases
- Experimental sensitivity at super-B factoriescan reach the 0.3% level

Status of $B \rightarrow X_{s} \ell^{+} \ell^{-}$

- NNLO QCD and NLO EW corrections are known
- Issue with QED collinear logs: theory prediction depends on experimental treatment of energetic collinear photons
- q^{2} cut

Three regions:
$0.04 \mathrm{GeV}^{2}<\mathrm{q}^{2}<1 \mathrm{GeV}^{2}$ $1 \mathrm{GeV}^{2}<\mathrm{q}^{2}<6 \mathrm{GeV}^{2}$ $q^{2}>14.4 \mathrm{GeV}^{2}$

- Mx cut

Calculated using Fermi motion or SCET. Non-perturbative effects strongly reduced in:

$$
\Gamma^{\mathrm{cut}}\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right) / \Gamma^{\mathrm{cut}}\left(B \rightarrow X_{u} \ell \bar{\nu}\right)
$$

$B \rightarrow X_{s} \ell^{+} \ell^{-}:$SM predictions

- Branching ratio

$$
\begin{aligned}
& \operatorname{BR}\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)_{\text {low }-q^{2}}^{\mathrm{SM}}=(1.59 \pm 0.11) \times 10^{-6} \\
& \operatorname{BR}\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)_{\text {low }-q^{2}}^{\exp }=(1.60 \pm 0.51) \times 10^{-6}
\end{aligned}
$$

[Huber, EL, Misik, Wyler]
[BaBar, Belle]

$$
\begin{array}{ll}
\operatorname{BR}\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)_{\mathrm{high}-q^{2}}^{\mathrm{SM}}=\left(2.40_{-0.62}^{+0.69}\right) \times 10^{-7} \leftarrow & \text { largest source of } \\
\operatorname{BR}\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)_{\mathrm{high}-q^{2}}^{\exp }=(4.4 \pm 1.2) \times 10^{-7} & \text { uncertainty are } m_{b}^{-3} \\
\text { power corrections }
\end{array} \quad \text { [Huber, Hurth, EL] }
$$

- Forward-backward asymmetry

[Huber, Hurth, EL]
- location of the zero:

$$
q_{0}^{2}=(3.50 \pm 0.12) \mathrm{GeV}^{2}
$$

- Integrated observables:

$$
\begin{aligned}
& \left(\overline{\mathcal{A}}_{\ell \ell}\right)_{\text {low }}=[1.5 \pm 0.9] \% \\
& \left(\overline{\mathcal{A}}_{\ell \ell}\right)_{\text {bin1 }}=[-9.1 \pm 0.9] \% \\
& \left(\overline{\mathcal{A}}_{\ell \ell}\right)_{\text {bin2 }}=[7.8 \pm 0.8] \%
\end{aligned}
$$

$B \rightarrow X_{s} \ell^{+} \ell^{-}:$new observables

$$
\begin{aligned}
& \frac{d^{2} \Gamma}{d q^{2} d z}=\frac{3}{8}\left[\left(1+z^{2}\right) H_{T}\left(q^{2}\right)+2 z H_{A}\left(q^{2}\right)+2\left(1-z^{2}\right) H_{L}\left(q^{2}\right)\right] \\
& \frac{d \Gamma}{d q^{2}}=H_{T}\left(q^{2}\right)+H_{L}\left(q^{2}\right) \quad \frac{d \mathcal{A}_{F B}}{d q^{2}}=\frac{3}{4} H_{A}\left(q^{2}\right) \quad z=\cos \theta_{\ell}
\end{aligned}
$$

- Wilson coefficient determination is improved by (a) splitting the FB asymmetry in two bins and (b) extracting separately H_{T} and H_{L} :
[Lee, Ligeti, Stewart, Tackmann]

(b)

$B \rightarrow X_{s} \ell^{+} \ell^{-}$: reducing the errors

- Sensitivity to OPE breakdown in the high- ${ }^{2}$ region can be attenuated by considering:

$$
\mathcal{R}\left(q_{0}^{2}\right)=\frac{\int_{\hat{q}_{\hat{2}}^{1}}^{1} \mathrm{~d} \hat{q}^{2} \frac{\mathrm{~d} \Gamma\left(\bar{B} \rightarrow X_{s} \varepsilon^{+} \ell^{-}\right)}{\mathrm{d} \hat{q}^{2}}}{\int_{\hat{q}^{2}}^{1} \mathrm{~d} \hat{q}^{2}} \frac{\mathrm{~d} \Gamma\left(\bar{B}^{0} \rightarrow X_{u} \ell \nu\right)}{\mathrm{d} \hat{q}^{2}}
$$

- Size of power corrections strongly reduced
- In the SM we find: $\mathcal{R}\left(14.4 \mathrm{GeV}^{2}\right)=(2.29 \pm 0.30) \times 10^{-3}$
- Error is reduced from $\sim 30 \%$ to $\sim 13 \%$
- Largest source of uncertainty is V_{ub}
- Procedure already possible using present experimental data
- Separation of neutral and charged semileptonic $b \rightarrow u$ decays important to control WA contributions.

$B \rightarrow X_{s} \ell^{+} \ell^{-}$: impact on NP

- Scenarios with $C_{7} \sim-C_{7}^{S M}$ are disfavored at the 2.7o level:

$$
\begin{aligned}
\left.\operatorname{BR}\left(\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right)\right)_{\text {low }-q^{2}}^{\mathrm{NP}} & =(3.11 \pm 0.22) \times 10^{-6} \\
\operatorname{BR}\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)_{\text {low }-q^{2}}^{\exp } & =(1.60 \pm 0.51) \times 10^{-6}
\end{aligned}
$$

[Gambino, Haisch, Misiak]
[Huber, Hurth, EL]

- In presence of non-MFV new physics (e.g. most general MSSM) they become viable:

[EL]
[EL]

Exclusive channels

Theory

$$
\begin{aligned}
\mathcal{A}\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right) & =C_{i}\left\langle K^{*} \ell^{+} \ell^{-}\right| O_{i}|B\rangle \\
& =C_{i} \bar{\ell} \Gamma_{1}^{i} \ell \underbrace{\left\langle K^{*}\left(p_{K^{*}}, \epsilon_{K^{*}}\right)\right| \bar{s} \Gamma_{2}^{i} b\left|B\left(p_{B}\right)\right\rangle}_{\text {form factors }}+\cdots \underbrace{\cdots}_{\begin{array}{c}
\text { hard spectator } \\
\text { interactions }
\end{array}}
\end{aligned}
$$

- Lorentz decomposition of form factors in terms of $\mathrm{PK} *, \mathrm{~PB}$ and ε_{K}.
- Form factors are functions of $q^{2}=\left(p_{B}-p_{K^{*}}\right)^{2}$
- Several approaches to the calculation of the form factors:
- QCD-factorization [Ali, Parkhomenko; Bosch, Buchalla; Beneke, Feldmann, Seidel]
- QCD-factorization + resummation (SCET) $\begin{aligned} & \text { [Chay, Kim; Grinstein, Grossman, Ligeti; } \\ & \text { Becher, Hill, Neubert] }\end{aligned}$
- Light-cone QCD sum rules [Ball, Jones, Zwicky]
- pQCD [Keum, Matsumori, Sanda, Yang]
- We will focus on QCDF/SCET approaches:
- only work if q^{2} is small (for radiative decays $q^{2}=0$)

- for large q^{2} the final state meson is soft and no expansion is possible

QCD factorization

$$
\left\langle K_{a}^{*} \ell^{+} \ell^{-}\right| H_{e f f}|B\rangle=T_{a}^{I}\left(q^{2}\right) \zeta_{a}\left(q^{2}\right)+\sum_{ \pm} \int_{0}^{\infty} \frac{d \omega}{\omega} \phi_{ \pm}^{B}(\omega) \int_{0}^{1} d u \phi_{K^{*}}^{a}(u) T_{a, \pm}^{I I}\left(\omega, u, q^{2}\right)
$$

- Includes effects of all operators (not only $\mathrm{O}_{7}, \mathrm{O}_{9}, \mathrm{O}_{10}$)
- Systematic expansion in α_{s}
- Expansion in $N / \mathrm{m}_{\mathrm{b}} \sim 10 \%$
- The 10 FFs in full QCD are reduced to 3 in QCDF at leading power
- Two options:
I. Use lattice/LCSR calculations to extract the soft form factors

2. Use lattice/LCSR results directly (to automatically include some sets of power corrections)

Annihilation

- Appear at the subleading power
- Relevant for $\mathrm{B} \rightarrow \rho$: proportional to $V_{u b} V_{u d}^{*} /\left(V_{c b} V_{c d}^{*}\right) \sim O(1)$
- Also impact CP and Isospin asymmetries in $\mathrm{B} \rightarrow \mathrm{K}^{*}$
- Some annihilation diagrams are factorizable (e.g. $O_{I, 2}$):

All divergences can be absorbed in the LCDA
Convolutions are convergent
[Ali, Parkhomenko, Pecjak]

- Other are not $\left(\mathrm{O}_{8}\right)$:

Some convolutions are divergent and imply a breakdown of factorization:

- cut-off?
- zero-bin subtraction?
[Ligeti, Manohar]
- subleading form factors?

$B \rightarrow K^{*} \gamma:$ SM predictions

- Branching ratio
[Ali, Parkhomenko, Pecjak]

$$
\begin{aligned}
& \operatorname{BR}\left(B \rightarrow K^{*} \gamma\right)_{\mathrm{SM}}=\left(4.6 \pm 1.2_{\xi_{K^{*}}} \pm 0.4_{m_{c}} \pm 0.2_{\lambda_{B}} \pm 0.1_{\mu}\right) \times 10^{-5} \\
& \operatorname{BR}\left(B \rightarrow K^{*} \gamma\right)_{\exp }=(4.18 \pm 0.17) \times 10^{-5}
\end{aligned}
$$

- vertex and hard-spectator corrections involving $\mathrm{O}_{7,8}$ are known at NNLO
- vertex corrections involving $\mathrm{O}_{\mathrm{I}, 2}$ are known at NNLO in the BLM limit
- hard-spectator corrections involving $\mathrm{O}_{\mathrm{I}, 2}$ are known at NLO
- Isospin asymmetry

$$
\begin{aligned}
& \mathcal{A}_{I}\left(B \rightarrow K^{*} \gamma\right)_{\mathrm{SM}}=(5.4 \pm 1.4) \% \\
& \mathcal{A}_{I}\left(B \rightarrow K^{*} \gamma\right)_{\exp }=(3 \pm 4) \%
\end{aligned}
$$

[Ball, Jones, Zwicky]
[BaBar, Belle]

- Sensitive to NP contributions to O_{6}
- Requires understanding of annihilation topologies

$B \rightarrow K^{*} \gamma$: SM predictions

- Time dependent CPA: $S_{K^{*} \gamma}=-\frac{2|r|}{1+|r|^{2}} \sin \left(2 \beta-\arg \left(C_{7}^{(0)} C_{7}^{\prime}\right)\right.$

$$
r=C_{7}^{\prime} / C_{7}^{(0)}
$$

- Predictions: $S_{K^{*} \gamma}^{\mathrm{SM}}=\left(-2.8_{-0.5}^{+0.4}\right) \%$

$$
S_{K^{*} \gamma}^{\exp }=(-3 \pm 29) \%
$$

- Sensitive to opposite chirality operator O_{7} :

$\mathcal{A}_{I}\left(B \rightarrow K^{*} \gamma\right)$: impact on NP

- The $B \rightarrow K^{*} \gamma$ isospin asymmetry provides stronger constraints than the $B \rightarrow X_{s} \gamma$ BR ones in some parts of the MSSM parameter space:

$B \rightarrow(\rho, \omega) \gamma$: impact on UT fits

- In QCDF one finds:

$$
\frac{\operatorname{BR}(B \rightarrow \rho \gamma)}{\operatorname{BR}\left(B \rightarrow K^{*} \gamma\right)} \propto\left|\frac{V_{t d}}{V_{t s}}\right|^{2} \frac{1}{\xi_{\rho}^{2}}[1+\Delta R]
$$

- $\Delta R \sim 0.1$ is calculated
- Utilizing form factor ratio from LCSR [Ball Jones Zwicky]:

$$
\left|\frac{V_{t d}}{V_{t s}}\right|=0.192 \pm 0.016_{\exp } \pm 0.014_{\mathrm{th}}
$$

- Impact on unitarity triangle fit [UTfit]:

Isospin asymmetry in $B \rightarrow \rho \gamma$

$$
\mathcal{A}_{I}(B \rightarrow \rho \gamma)=\frac{\Gamma\left(B^{ \pm} \rightarrow \rho^{ \pm} \gamma\right)}{2 \Gamma\left(B^{0} \rightarrow \rho^{0} \gamma\right)}-1
$$

- Impact on various MSSM models:

$B \rightarrow K^{*} \ell^{+} \ell^{-}:$SM predictions

$\operatorname{BR}\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right)_{\mathrm{SM}}^{\text {low }}=3.01_{-0.28}^{+0.36} \times 10^{-7} \times\left(\frac{A_{0}\left(4 \mathrm{GeV}^{2}\right)}{0.66}\right)^{2}$
$\operatorname{BR}\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right)_{\exp }^{\text {low }}=\left(1.49_{-0.40}^{+0.45} \pm 0.12\right) \times 10^{-7} \quad$ [Belle]
$\mathrm{BR}\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right)_{\mathrm{SM}}^{[0.1,7.02]}=4.69_{-0.53}^{+0.71} \times 10^{-7} \times\left(\frac{A_{0}\left(4 \mathrm{GeV}^{2}\right)}{0.66}\right)^{2}$
$\operatorname{BR}\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right)_{\exp }^{[0.1,7.02]}=\left(4.3_{-1.0}^{+1.1} \pm 0.3\right) \times 10^{-7} \quad[\mathrm{BaBar}]$
$\left(q_{0}^{2}\right)_{\mathrm{SM}}= \begin{cases}4.36_{-0.31}^{+0.33} \mathrm{GeV}^{2} & \text { neutral } \\ 4.15 \pm 0.27 \mathrm{GeV}^{2} & \text { charged }\end{cases}$
As for inclusive modes, it is important to split the integrated FB asymmetry in 2 bins

$$
\begin{aligned}
\left(\mathcal{A}_{I}\right)_{\text {SM }}^{\text {low }} & =(0.7 \pm 0.3) \% \\
\left(\mathcal{A}_{I}\right)_{\text {exp }}^{\text {low }} & =\left(0.33_{-0.43}^{+0.37} \pm 0.05\right) \% \\
\left(\mathcal{A}_{I}\right)_{\exp }^{\text {low }} & =\left(-0.25_{-0.18}^{+0.20} \pm 0.03\right) \%
\end{aligned}
$$

[Belle]

$B \rightarrow K^{*} \ell^{+} \ell^{-}$: angular analysis

$$
\begin{aligned}
& \frac{d^{4} \Gamma}{d q^{2} d \cos \theta_{l} d \cos \theta_{K^{*}} d \phi} \propto \\
& I_{1}^{s} \sin ^{2} \theta_{K^{*}}+I_{1}^{c} \cos ^{2} \theta_{K^{*}}+\left(I_{2}^{s} \sin ^{2} \theta_{K^{*}}+I_{2}^{c} \cos ^{2} \theta_{K^{*}}\right) \cos 2 \theta_{\ell} \\
& +I_{3} \sin ^{2} \theta_{K^{*}} \sin ^{2} \theta_{\ell} \cos 2 \phi+I_{4} \sin 2 \theta_{K^{*}} \sin 2 \theta_{\ell} \cos \phi \\
& +I_{5} \sin 2 \theta_{K^{*}} \sin \theta_{\ell} \cos \phi \\
& +\left(I_{6}^{s} \sin ^{2} \theta_{K^{*}}+I_{6}^{c} \cos ^{2} \theta_{K^{*}}\right) \cos \theta_{\ell}+I_{7} \sin 2 \theta_{K^{*}} \sin \theta_{\ell} \sin \phi \\
& +I_{8} \sin 2 \theta_{K^{*}} \sin 2 \theta_{\ell} \sin \phi+I_{9} \sin ^{2} \theta_{K^{*}} \sin ^{2} \theta_{\ell} \sin 2 \phi
\end{aligned}
$$

- Differential width is summed over spins of final state particles
- In absence of scalar operators I_{6}^{c} vanishes
- Only 9 of the remaining I_{i}^{a} are independent and are a function of 6 complex amplitudes: $A_{\perp L / R}, A_{\| L / R}, A_{0 L / R}$
- There are three symmetries that act on these amplitudes: not everything you can build out of the A_{i} is observable
- Define 12 symmetries and 12 asymmetries (bar = CP conjugation):

$$
S_{i}^{(a)}=\frac{I_{i}^{(a)}+\bar{I}_{i}^{(a)}}{\frac{d(\Gamma+\bar{\Gamma})}{d q^{2}}} \quad A_{i}^{(a)}=\frac{I_{i}^{(a)}-\bar{I}_{i}^{(a)}}{\frac{d(\Gamma+\bar{\Gamma})}{d q^{2}}}
$$

$B \rightarrow K^{*} \ell^{+} \ell^{-}$: impact on NP

- Most interesting observables:
[Kruger, Matias; EL, Matias; Egede, Hurth, Matias, Ramon, Reece]

$A_{T}^{(3)}=\frac{\left|A_{0 L} A_{\| L}^{*}+A_{0 R} A_{\| R}^{*}\right|}{\left|A_{0}\right|\left|A_{\perp}\right|}$
$A_{T}^{(4)}=\frac{\left|A_{0 L} A_{\perp L}^{*}-A_{0 R} A_{\perp R}^{*}\right|}{\left|A_{0 L} A_{\| L}^{*}+A_{0 R} A_{\| R}^{*}\right|}$

[Egede, Hurth, Matias, Ramon, Reece]
- Scenarios a-d corresponds to MSSM scenarios with $\left(\delta_{L R}^{d}\right)_{32} \neq 0$

$B \rightarrow K^{*} \ell^{+} \ell^{-}$: impact on NP

- The $A_{T}^{(i)}$ can be expressed in terms of the S_{i}^{a}
- Additional interesting effects on $A_{7,8}$
[Altmannshofer, Ball, Bharucha, Buras, Straub, Wick]

- Flavor Blind MSSM scenarios:
[Bartl, Gajdosik, EL, Masiero, Porod, Stremintzer,Vives]

Scenario	$\tan \beta$	m_{A}	$m_{\tilde{g}}$	$m_{\tilde{Q}}$	$m_{\tilde{U}}$	$A_{\tilde{t}}$	μ	$\operatorname{Arg}\left(\mu A_{\tilde{t}}\right)$
FBMSSM $_{\mathrm{I}}$	40	400	700	380	700	900	150	-45°
FBMSSM $_{\mathrm{II}}$	40	400	700	380	700	900	150	50°

$B \rightarrow K \ell^{+} \ell^{-}$: impact on NP

$$
\frac{1}{\Gamma(B \rightarrow K \ell \ell)} \frac{d \Gamma(B \rightarrow K \ell \ell)}{d \cos \theta}=\frac{3}{4}\left(1-F_{H}^{\ell}\right)\left(1-\cos ^{2} \theta\right)+\frac{1}{2} F_{H}^{\ell}+\mathcal{A}_{\mathrm{FB}}^{\ell} \cos \theta
$$

$$
R_{K}=\frac{\Gamma(B \rightarrow K \mu \mu)}{\Gamma(B \rightarrow K e e)}
$$

- In the SM: $F_{H}^{\ell} \simeq \mathcal{A}_{\mathrm{FB}}^{\ell} \simeq R_{K}-1 \simeq O\left(m_{\ell} / m_{b}\right)$
- In presence of NP in scalar/pseudoscalar (Scenarios I-3) and in tensor operators (Scenario 4) deviations are possible:

Observable	Sc I	Sc II	Sc III	Sc IV
F_{H}^{e}	<0.39	-	<0.56	<0.13
F_{H}^{μ}	$[0.013,0.035]$	$[0.018,0.032]$	$[0.013,0.56]$	$[0.014,0.18]$
R_{K}	$[0.61,1.01]$	$[0.996,1.01]$	$[0.44,2.21]$	$[0.93,1.10]$
$\mathcal{B}_{e}\left[10^{-7}\right]$	$[1.91,3.14]$	-	$[1.91,4.36]$	$[1.91,2.00]$
$\mathcal{B}_{\mu}\left[10^{-7}\right]$	$[1.90,1.94]$	$[1.90,1.93]$	$[1.90,4.26]$	$[1.87,2.10]$
$A_{\mathrm{FB}}^{e}[\%]$	$[-0.02,0.02]$	-	$[-0.02,0.02]$	$[-0.02,0.02]$
$A_{\mathrm{FB}}^{\mu}[\%]$	$[-0.6,0.6]$	$[-0.5,0.3]$	$[-4.46,4.46]$	$[-3.1,3.1]$

[Bobeth, Hiller, Piranishvili]

- The strongest constrain on the WCs comes from $B_{s} \rightarrow \mu \mu$

Outlook

- Inclusive modes:
- $B \rightarrow X_{s} \gamma$ spectrum needs better understanding for both the SM prediction and for the extraction of m_{b}
- Experimental treatment of collinear QED logs is still not completely implemented in theory predictions
- Separate $b \rightarrow s$ Il low- q^{2} observables in two bins (I-3.5 and 3.5-6 GeV²)
- Exclusive modes:
- Theory is sound in the low- q^{2} region
- Isospin asymmetry in $B \rightarrow K^{*} \gamma$ has a very strong sensitivity to NP
- Plethora of $C P$ and angular distributions in $B \rightarrow K^{*} \|$ and $B \rightarrow K I I$ offer sensitivity to MFV and non-MFV extensions of the SM

