Radiative and Semileptonic rare B decays

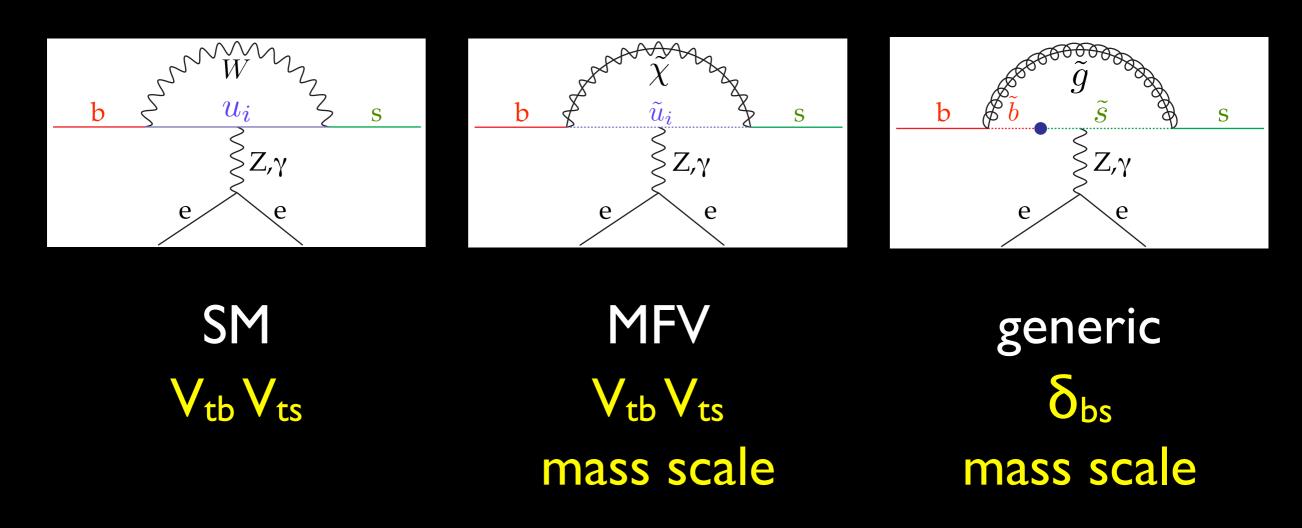
Enrico Lunghi Indiana University

FPCP 2009 - Lake Placid

Outline

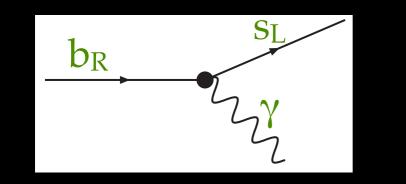
- Introduction
- Inclusive: $B \to X_{d,s}\gamma$ and $B \to X_s\ell^+\ell^-$
- Exclusive: $B \to (K^*, \rho, \omega)\gamma$ and $B \to (K, K^*)\ell^+\ell^-$
- Outlook

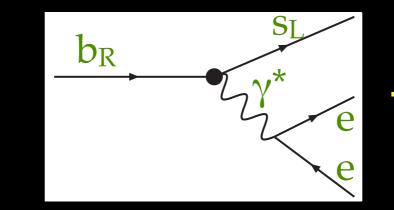
What can we learn?

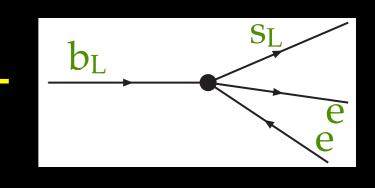


• Complementarity between $b \to s\gamma$ and $b \to s\ell^+\ell^-$:

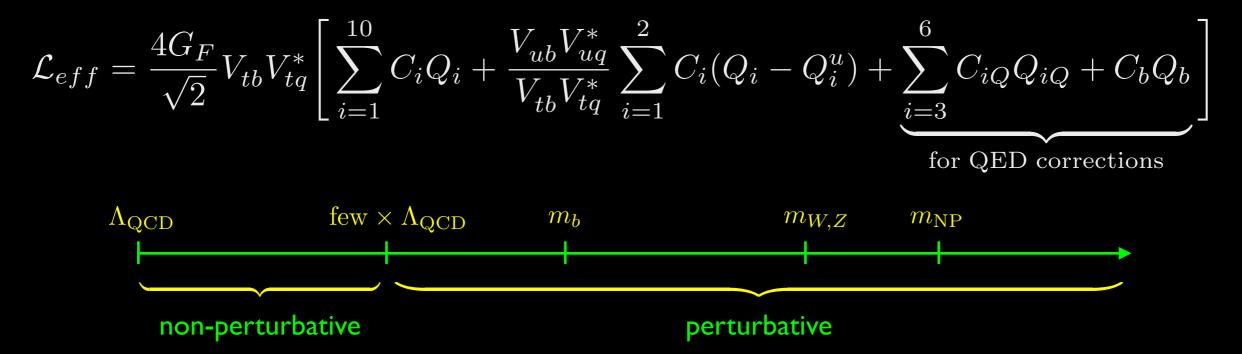
VS







Effective Lagrangian



$$Q_1 = (\bar{q}_L \gamma_\mu T^a c_L) (\bar{c}_L \gamma^\mu T^a b_L)$$
$$Q_2 = (\bar{q}_L \gamma_\mu c_L) (\bar{c}_L \gamma^\mu b_L)$$

$$Q_1^u = (\bar{q}_L \gamma_\mu T^a u_L) (\bar{c}_L \gamma^\mu T^a b_L)$$
$$Q_2^u = (\bar{q}_L \gamma_\mu u_L) (\bar{c}_L \gamma^\mu b_L)$$

$$Q_7 = \frac{e}{16\pi^2} m_b (\bar{q}_L \sigma^{\mu\nu} b_R) F_{\mu\nu}$$
$$Q_8 = \frac{g}{16\pi^2} m_b (\bar{q}_L \sigma^{\mu\nu} T^a b_R) G^a_{\mu\nu}$$

$$Q_{3} = (\bar{q}_{L}\gamma_{\mu}b_{L})\sum(\bar{q}\gamma^{\mu}q)$$

$$Q_{4} = (\bar{q}_{L}\gamma_{\mu}T^{a}b_{L})\sum(\bar{q}\gamma^{\mu}T^{a}q)$$

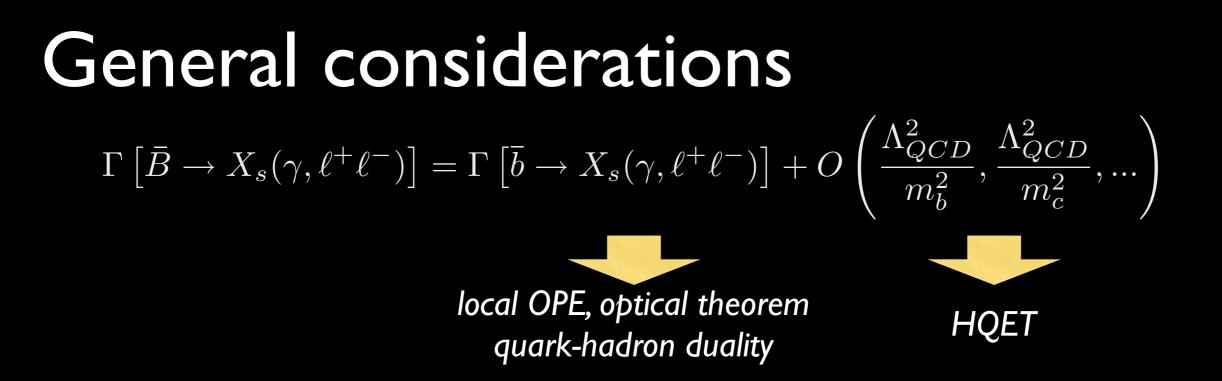
$$Q_{5} = (\bar{q}_{L}\gamma_{\mu_{1}}\gamma_{\mu_{2}}\gamma_{\mu_{3}}b_{L})\sum(\bar{q}\gamma^{\mu_{1}}\gamma^{\mu_{2}}\gamma^{\mu_{3}}q)$$

$$Q_{6} = (\bar{q}_{L}\gamma_{\mu_{1}}\gamma_{\mu_{2}}\gamma_{\mu_{3}}T^{a}b_{L})\sum(\bar{q}\gamma^{\mu_{1}}\gamma^{\mu_{2}}\gamma^{\mu_{3}}T^{a}q)$$

$$Q_{9} = (\bar{q}_{L}\gamma_{\mu}b_{L})\sum(\bar{\ell}\gamma^{\mu}\ell)$$

$$Q_{10} = (\bar{q}_{L}\gamma_{\mu}b_{L})\sum(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)$$

Inclusive channels



Phase space cuts introduce sensitivity to new scales, the rate becomes less inclusive and new non-perturbative effects appear

(I) $E_{\gamma} > E_0 = [1.7, 2.0] \text{GeV}$ to suppress backgrounds: simple OPE, SCET, DGE

(II) $q^2 = (p_{\ell^+} + p_{\ell^-})^2$ cuts to remove $c\bar{c}$ resonances. OPE breaks down at $q^2 \sim m_b^2$. In the high q^2 region expansion parameter is $\Lambda_{QCD}/(m_b - \sqrt{q^2})$

(III) $M_{X_s} < [1.8, 2]$ GeV to remove $b \to c\ell^- \bar{\nu} \to s\ell^- \ell^+ \bar{\nu}\nu$ background: Fermi motion, SCET

Status of $B \to X_s \gamma$

• Present status:

 $1 + \mathcal{O}(\alpha_s) +$

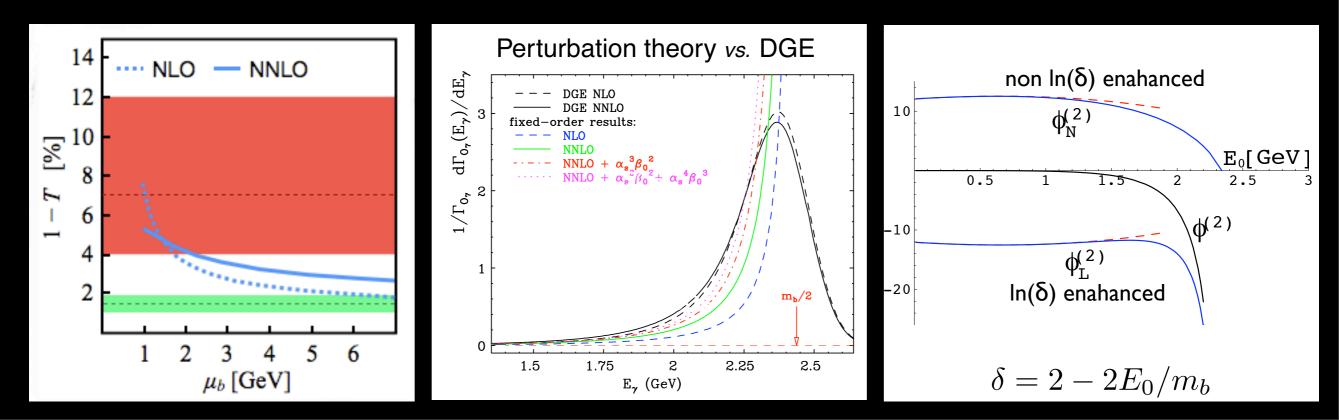
30%

$$-\mathcal{O}(\alpha_s^2) + \mathcal{O}(\alpha_e) + \mathcal{O}\left(\frac{\Lambda^2}{m_b^2}\right) + \mathcal{O}\left(\frac{\Lambda^2}{m_c^2}\right) + \mathcal{O}\left(\alpha_s \frac{\Lambda}{m_b}\right)$$

$$-10\% \quad 5\% \quad 1\% \quad 3\% \quad O(5\%)$$

• For $E_{\gamma} > E_0 = 1 {
m GeV}$ the OPE is trusted

• $T = \frac{\Gamma(E_{\gamma} > 1.6 \text{ GeV})}{\Gamma(E_{\gamma} > 1 \text{ GeV})} = \langle$	0.96 ± 0.01	OPE	[Misiak et al.]
	$0.93^{+0.03}_{-0.05} \pm 0.02 \pm 0.02$	SCET	[Becher, Neubert]
	0.0984 ± 0.003	DGE	[Andersen, Gardi]



$B \rightarrow X_{d,s} \gamma$: SM predictions

- $b \rightarrow s$ $BR(B \rightarrow X_s \gamma)_{SM}^{E_{\gamma} > 1.6 \text{ GeV}} = \begin{cases} (3.15 \pm 0.23) \times 10^{-4} & \text{[Misiak et al.]}\\ (2.98 \pm 0.26) \times 10^{-4} & \text{[Becher, Neubert]} \end{cases}$ $BR(B \rightarrow X_s \gamma)_{exp}^{E_{\gamma} > 1.6 \text{ GeV}} = (3.52 \pm 0.25) \times 10^{-4} & \text{[CLEO, BaBar, Belle]} \end{cases}$ $A_{CP}(B \rightarrow X_s \gamma)_{SM} = (0.4 \pm 0.2) \%$ [Hurth,EL,Porod]
 - $A_{\rm CP}(B \to X_s \gamma)_{\rm exp} = (12 \pm 30 \pm 18) \%$
- *b*→*d*

 $\begin{aligned} & \text{BR}(B \to X_d \gamma)_{\text{SM}}^{E_{\gamma} > 1.6 \text{ GeV}} = (1.36 \pm 0.25) \times 10^{-6} & [\text{Hurth,EL,Porod}] \\ & \text{BR}(B \to X_d \gamma)_{\text{exp}}^{E_{\gamma} > 1.6 \text{ GeV}} = (0.033 \pm 0.016) \times \text{BR}(B \to X_s \gamma) & [\text{BaBar}] \\ & = (11.6 \pm 5.7) \times 10^{-6} \end{aligned}$

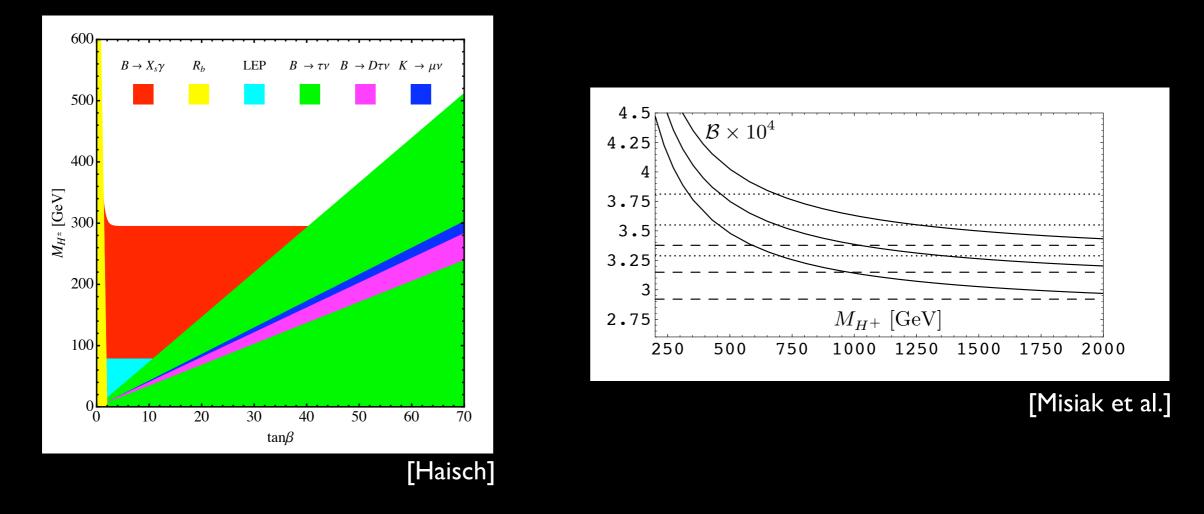
 $A_{\rm CP}(B \to X_d \gamma)_{\rm SM} = -(10.2 \pm 4.6) \%$

[Hurth,EL,Porod]

[BaBar]

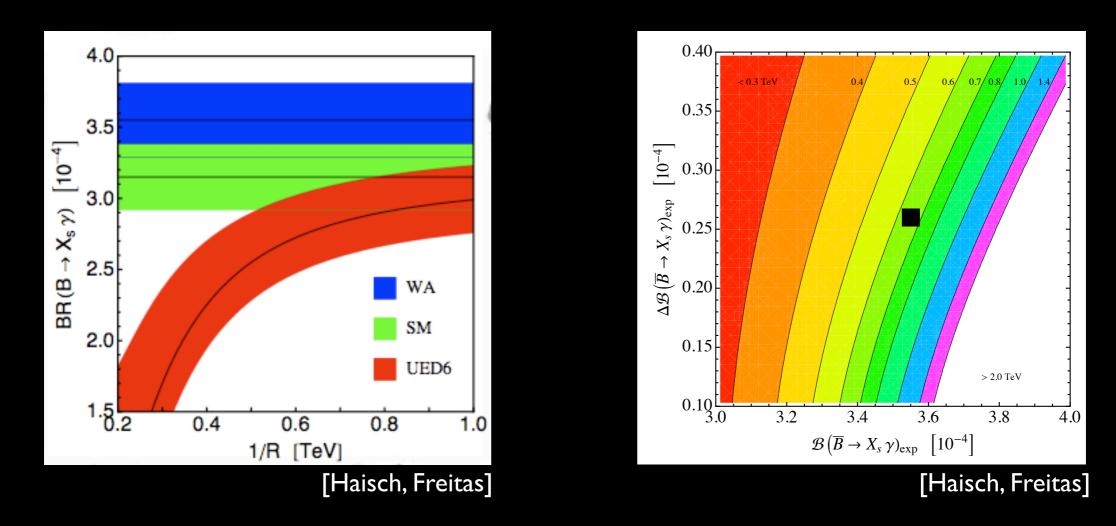
• $b \rightarrow d/s$ (untagged) $A_{CP}(B \rightarrow X_{d,s}\gamma)_{SM} = \frac{A_{CP}^{b \rightarrow s\gamma} + \frac{\Gamma_d}{\Gamma_s} A_{CP}^{b \rightarrow d\gamma}}{1 + \Gamma_d/\Gamma_s} \sim 0$

Two Higgs Doublet Model



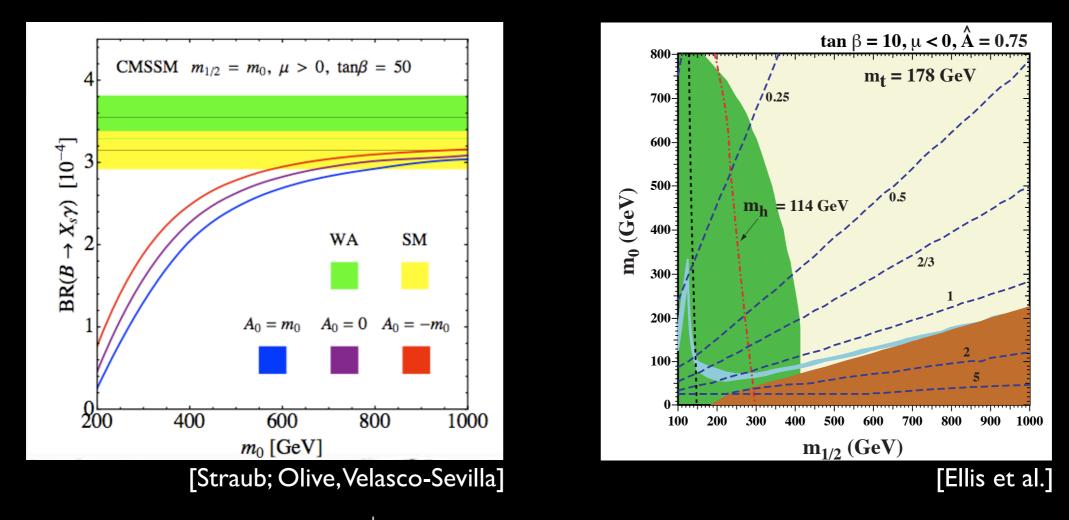
- $M_{H^+} > 300 \text{ GeV}$
- largely independent of $tan(\beta)$
- positive interference between SM and H[±] contributions

Two Universal Extra Dimension



- BR is always suppressed with respect to the SM
- Bound on compactification scale: R⁻¹ > 650 GeV
- Dark matter constrain favors $R^{-1} < 600 \text{ GeV}$

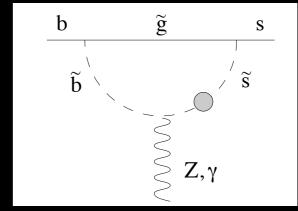
Flavor blind MSSM



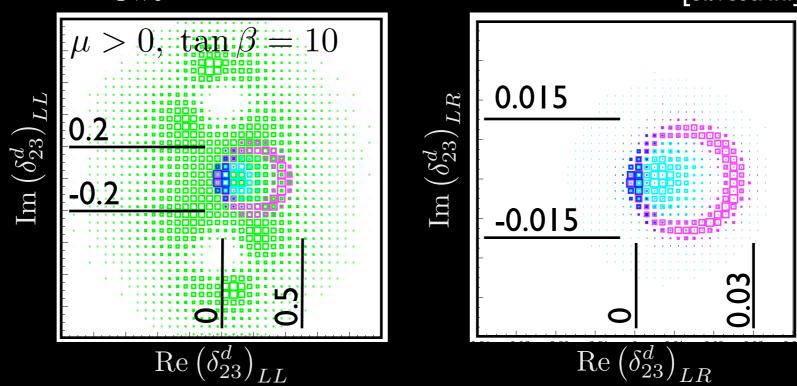
- Relative sign of χ^{\pm} and H^{\pm} contributions is $-\mathrm{sign}(\mu)$
- Strength of constrain varies over the parameter space

- Most general MSSM
- Parametrize non-minimal sources of flavor violation in terms of mass insertions in the squark mass matrices

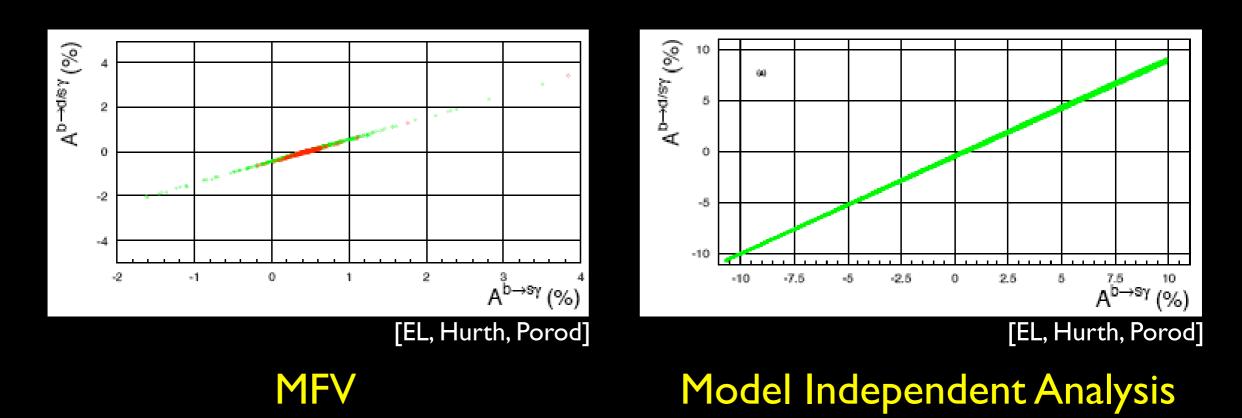
$$\left(\delta_{23}^{u,d} \right)_{AB} = \frac{ \left(m_{23}^{u,d} \right)_{AB}^2}{M_{\mathrm{sq}}^2} \qquad \begin{array}{c} \tilde{\mathfrak{t}} \\ \tilde{\mathfrak{t}} \\ \tilde{\mathfrak{t}} \\ \chi_i \\ \chi_i \\ \chi_j \\ \tilde{\mathfrak{t}} \\ \chi_i \\ \tilde{\mathfrak{t}} \\ \tilde{t$$



• Constraints on LR insertions at the 10⁻³ level because of chiral enhancement ($m_{\tilde{g},\chi^{\pm}}/m_b$) [Silvestrini]



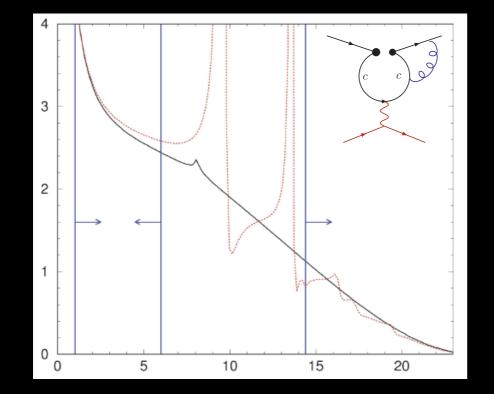
Untagged CP asymmetry



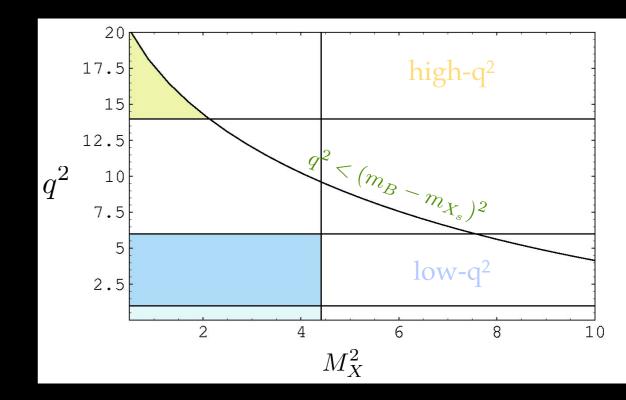
- Very clean test for new CP violating phases
- Experimental sensitivity at super-B factoriescan reach the 0.3% level

Status of $B \to X_s \ell^+ \ell^-$

- NNLO QCD and NLO EW corrections are known
- Issue with QED collinear logs: theory prediction depends on experimental treatment of energetic collinear photons
- q² cut



Three regions: $0.04 \text{ GeV}^2 < q^2 < 1 \text{ GeV}^2$ $1 \text{ GeV}^2 < q^2 < 6 \text{ GeV}^2$ $q^2 > 14.4 \text{ GeV}^2$ • M_X cut



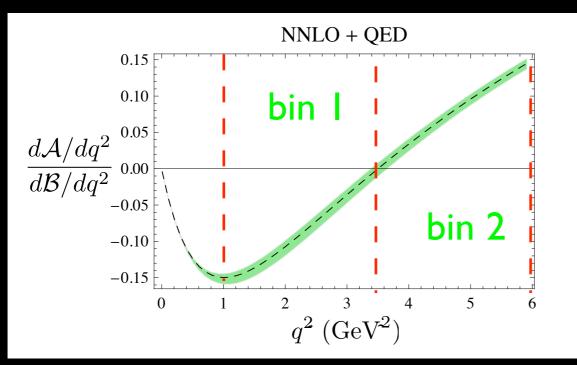
Calculated using Fermi motion or SCET. Non-perturbative effects strongly reduced in: $\Gamma^{\rm cut}(B \to X_s \ell^+ \ell^-) / \Gamma^{\rm cut}(B \to X_u \ell \bar{\nu})$

$B \to X_s \ell^+ \ell^-$: SM predictions

• Branching ratio

$$\begin{split} & \text{BR}(B \to X_{s}\ell^{+}\ell^{-})_{\text{low}-q^{2}}^{\text{SM}} = (1.59 \pm 0.11) \times 10^{-6} & \text{[Huber, EL, Misik, Wyler]} \\ & \text{BR}(B \to X_{s}\ell^{+}\ell^{-})_{\text{low}-q^{2}}^{\exp} = (1.60 \pm 0.51) \times 10^{-6} & \text{[BaBar, Belle]} \\ & \text{BR}(B \to X_{s}\ell^{+}\ell^{-})_{\text{high}-q^{2}}^{\text{SM}} = (2.40^{+0.69}_{-0.62}) \times 10^{-7} \longleftarrow \text{largest source of} & \text{[Huber, Hurth, EL]} \\ & \text{BR}(B \to X_{s}\ell^{+}\ell^{-})_{\text{high}-q^{2}}^{\exp} = (4.4 \pm 1.2) \times 10^{-7} & \text{power corrections} & \text{[BaBar, Belle]} \end{split}$$

Forward-backward asymmetry



[Huber, Hurth, EL]

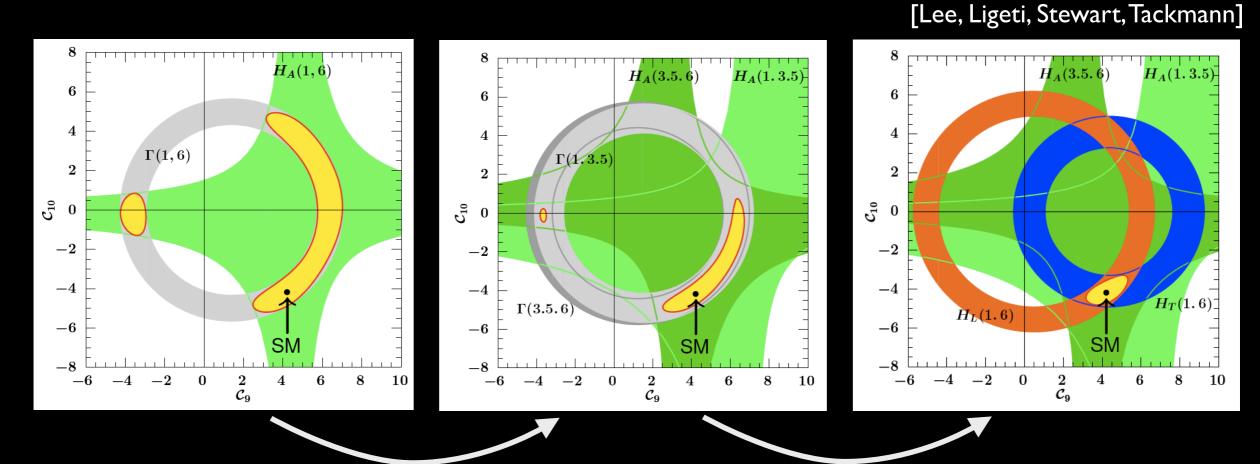
- location of the zero: $q_0^2 = (3.50 \pm 0.12) \text{ GeV}^2$
- Integrated observables: $(\bar{\mathcal{A}}_{\ell\ell})_{low} = [1.5 \pm 0.9]\%$

$$\left(\bar{\mathcal{A}}_{\ell\ell}\right)_{\mathrm{bin1}} = \left[-9.1 \pm 0.9\right]\%$$

$$\left(\bar{\mathcal{A}}_{\ell\ell}\right)_{\rm bin2} = [7.8 \pm 0.8]\%$$

$B \longrightarrow X_{s}\ell^{+}\ell^{-}:\text{new observables}$ $\frac{d^{2}\Gamma}{dq^{2}dz} = \frac{3}{8}\left[(1+z^{2})H_{T}(q^{2})+2zH_{A}(q^{2})+2(1-z^{2})H_{L}(q^{2})\right]$ $\frac{d\Gamma}{dq^{2}} = H_{T}(q^{2})+H_{L}(q^{2}) \qquad \frac{d\mathcal{A}_{FB}}{dq^{2}} = \frac{3}{4}H_{A}(q^{2}) \qquad z = \cos\theta_{\ell}$

• Wilson coefficient determination is improved by (a) splitting the FB asymmetry in two bins and (b) extracting separately H_T and H_L :



b

a

$B \rightarrow X_s \ell^+ \ell^-$: reducing the errors

 Sensitivity to OPE breakdown in the high-q² region can be attenuated by considering:

$$\mathcal{R}(q_0^2) = \frac{\int_{\hat{q}_0^2}^1 \mathrm{d}\hat{q}^2 \frac{\mathrm{d}\Gamma(\bar{B} \to X_s \ell^+ \ell^-)}{\mathrm{d}\hat{q}^2}}{\int_{\hat{q}^2}^1 \mathrm{d}\hat{q}^2 \frac{\mathrm{d}\Gamma(\bar{B}^0 \to X_u \ell\nu)}{\mathrm{d}\hat{q}^2}}$$
[Ligeti, Tac

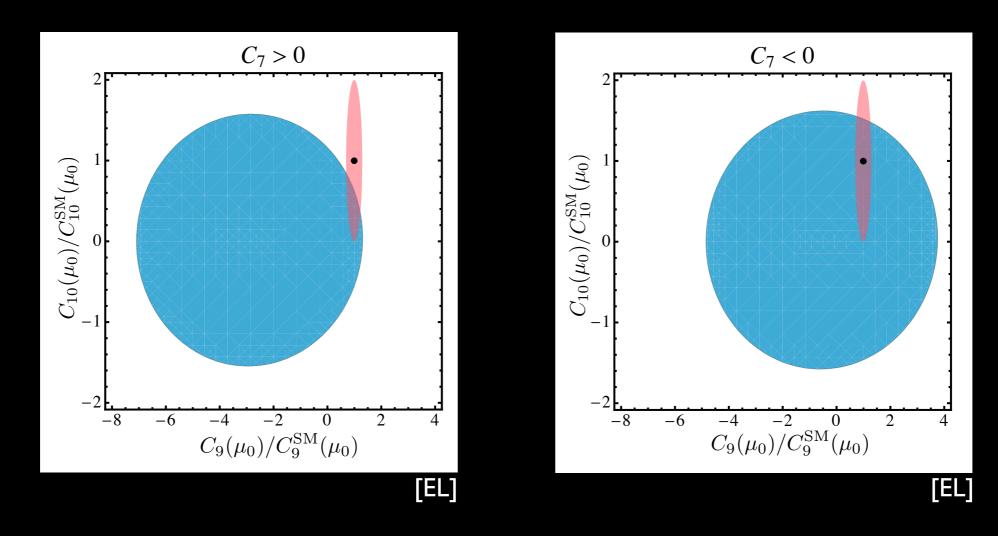
- Size of power corrections strongly reduced
- In the SM we find: $\mathcal{R}(14.4 \text{ GeV}^2) = (2.29 \pm 0.30) \times 10^{-3}$
- Error is reduced from ~30% to ~13%
- Largest source of uncertainty is V_{ub}
- Procedure already possible using present experimental data
- Separation of neutral and charged semileptonic b→u decays important to control WA contributions.

[Huber, Hurth, EL]

kmann

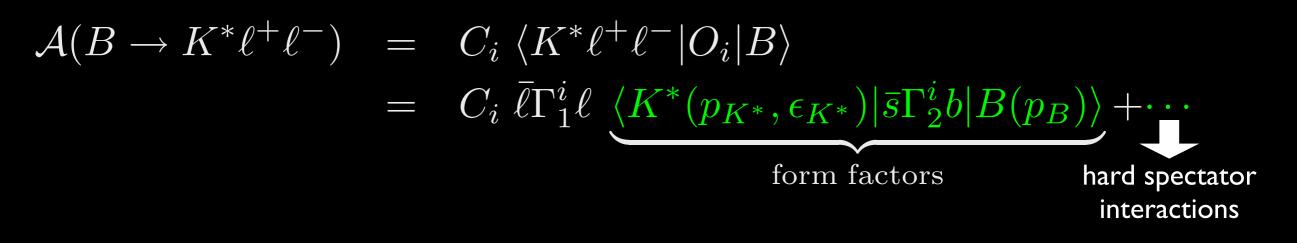
$B \to X_s \ell^+ \ell^-$: impact on NP

- Scenarios with $C_7 \sim -C_7^{\text{SM}}$ are disfavored at the 2.7 σ level: $\text{BR}(\bar{B} \rightarrow X_s \ell^+ \ell^-)^{\text{NP}}_{\text{low}-q^2} = (3.11 \pm 0.22) \times 10^{-6}$ [Gambino, Haisch, Misiak] $\text{BR}(B \rightarrow X_s \ell^+ \ell^-)^{\text{exp}}_{\text{low}-q^2} = (1.60 \pm 0.51) \times 10^{-6}$
- In presence of non-MFV new physics (e.g. most general MSSM) they become viable:



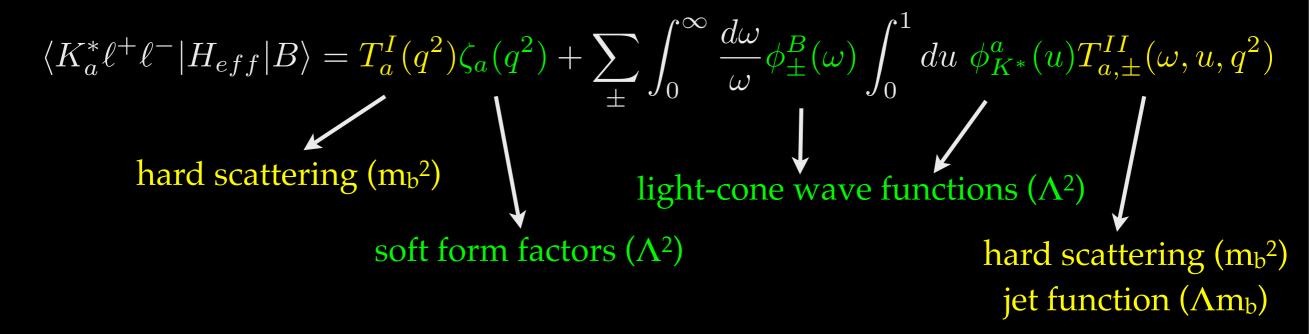
Exclusive channels

Theory



- Lorentz decomposition of form factors in terms of p_{K^*}, p_B and ϵ_{K^*}
- Form factors are functions of $q^2 = (p_B p_{K^*})^2$
- Several approaches to the calculation of the form factors:
 - QCD-factorization [Ali, Parkhomenko; Bosch, Buchalla; Beneke, Feldmann, Seidel]
 - QCD-factorization + resummation (SCET) [Chay, Kim; Grinstein, Grossman, Ligeti; Becher Hill Neubert]
 - Light-cone QCD sum rules [Ball, Jones, Zwicky]
 - pQCD [Keum, Matsumori, Sanda, Yang]
- We will focus on QCDF/SCET approaches:
 - only work if q^2 is small (for radiative decays $q^2=0$)
 - for large q^2 the final state meson is soft and no expansion is possible

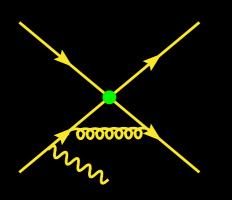
QCD factorization



- Includes effects of all operators (not only O₇, O₉, O₁₀)
- Systematic expansion in α_s
- Expansion in $\Lambda/m_b \sim 10\%$
- The 10 FFs in full QCD are reduced to 3 in QCDF at leading power
- Two options:
 - I. Use lattice/LCSR calculations to extract the soft form factors
 - 2. Use lattice/LCSR results directly (to automatically include some sets of power corrections)

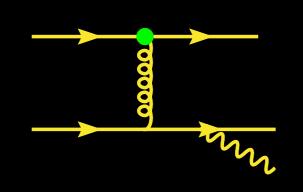
Annihilation

- Appear at the subleading power
- Relevant for $B \rightarrow \rho$: proportional to $V_{ub}V_{ud}^*/(V_{cb}V_{cd}^*) \sim O(1)$
- Also impact CP and Isospin asymmetries in $B \rightarrow K^*$
- Some annihilation diagrams are factorizable (e.g. $O_{1,2}$):



All divergences can be absorbed in the LCDA Convolutions are convergent [Ali, Parkhomenko, Pecjak]

• Other are not (O₈):



Some convolutions are divergent and imply a breakdown of factorization:

- cut-off?
- zero-bin subtraction?
- subleading form factors?

[Kagan, Neubert] [Ligeti, Manohar]

$B \to K^* \gamma$: SM predictions

• Branching ratio

[Ali, Parkhomenko, Pecjak]

 $BR(B \to K^* \gamma)_{SM} = (4.6 \pm 1.2_{\xi_{K^*}} \pm 0.4_{m_c} \pm 0.2_{\lambda_B} \pm 0.1_{\mu}) \times 10^{-5}$

 $BR(B \to K^* \gamma)_{exp} = (4.18 \pm 0.17) \times 10^{-5}$ [BaBar, Belle]

- vertex and hard-spectator corrections involving O7,8 are known at NNLO
- vertex corrections involving O_{1,2} are known at NNLO in the BLM limit
- hard-spectator corrections involving O_{1,2} are known at NLO
- Isospin asymmetry

 $\mathcal{A}_I(B \to K^* \gamma)_{\rm SM} = (5.4 \pm 1.4) \%$ $\mathcal{A}_I(B \to K^* \gamma)_{\rm exp} = (3 \pm 4) \%$

[Ball, Jones, Zwicky] [BaBar, Belle]

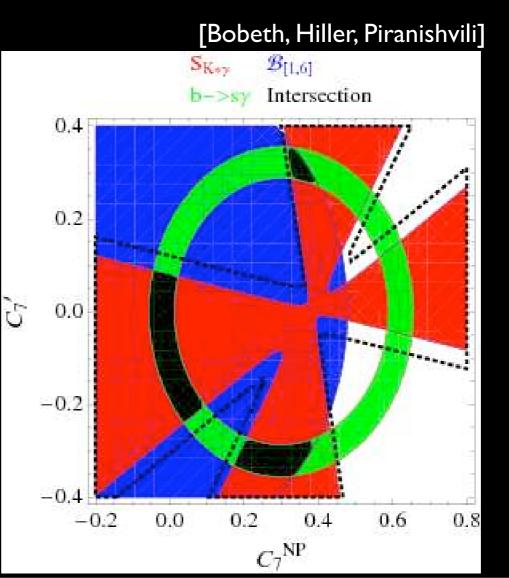
- Sensitive to NP contributions to O₆
- Requires understanding of annihilation topologies

$B \rightarrow K^* \gamma$: SM predictions

- Time dependent CPA: $S_{K^*\gamma} = -\frac{2|r|}{1+|r|^2} \sin\left(2\beta \arg(C_7^{(0)}C_7')\right)$ $r = C_7'/C_7^{(0)}$
- Predictions: $S_{K^*\gamma}^{SM} = (-2.8^{+0.4}_{-0.5}) \%$

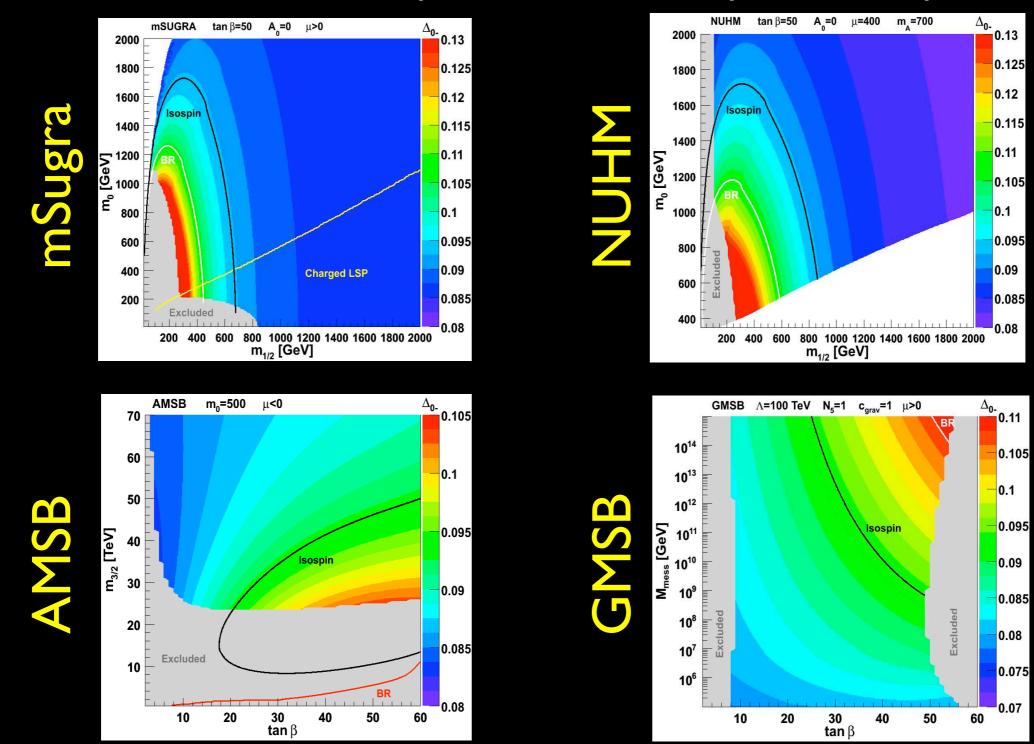
 $S_{K^*\gamma}^{\exp} = (-3 \pm 29) \%$

 Sensitive to opposite chirality operator O₇':



$\mathcal{A}_I(B \to K^*\gamma)$: impact on NP

• The $B \rightarrow K^* \gamma$ isospin asymmetry provides stronger constraints than the $B \rightarrow X_s \gamma$ BR ones in some parts of the MSSM parameter space: [Mahmoudi]



$B \rightarrow (\rho, \omega) \gamma$: impact on UT fits

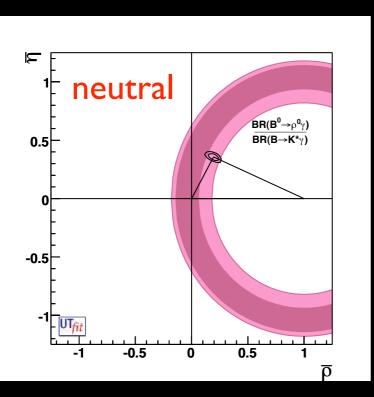
• In QCDF one finds:

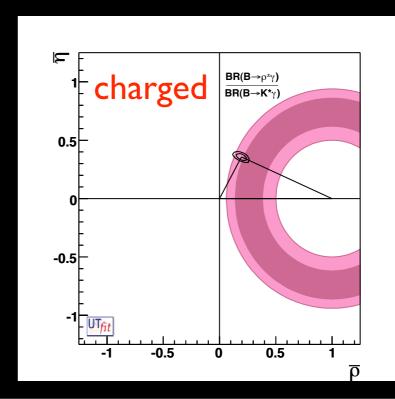
$$\frac{\mathrm{BR}(B \to \rho \gamma)}{\mathrm{BR}(B \to K^* \gamma)} \propto \left| \frac{V_{td}}{V_{ts}} \right|^2 \frac{1}{\xi_{\rho}^2} \left[1 + \Delta R \right]$$

- $\Delta R \sim 0.1$ is calculated
- Utilizing form factor ratio from LCSR [Ball Jones Zwicky]:

 $\left|\frac{V_{td}}{V_{ts}}\right| = 0.192 \pm 0.016_{\text{exp}} \pm 0.014_{\text{th}}$

Impact on unitarity triangle fit [UTfit]:

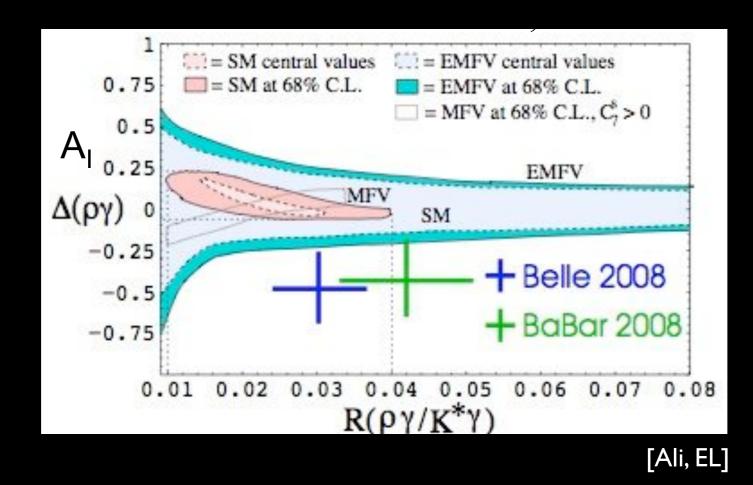




Isospin asymmetry in $B \to \rho \gamma$

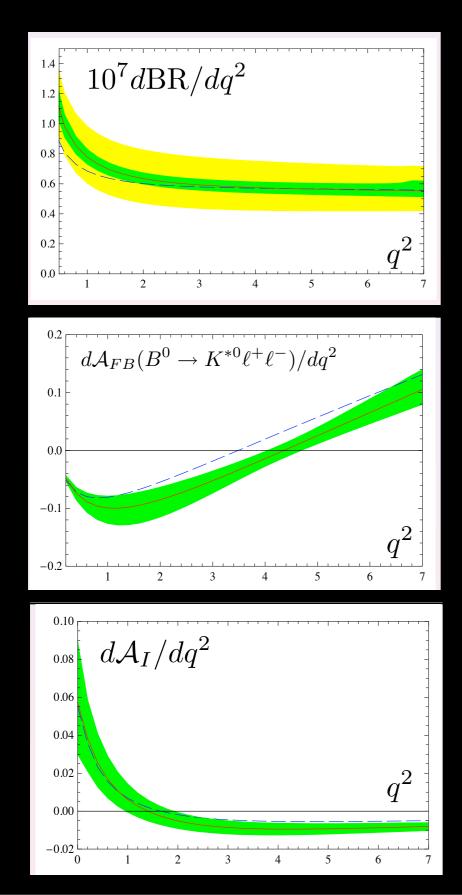
$$\mathcal{A}_I(B \to \rho \gamma) = \frac{\Gamma(B^{\pm} \to \rho^{\pm} \gamma)}{2 \ \Gamma(B^0 \to \rho^0 \gamma)} - 1$$

Impact on various MSSM models:



[Feldmann]

$B \rightarrow K^* \ell^+ \ell^-$: SM predictions



$$BR(B \to K^* \ell^+ \ell^-)_{SM}^{low} = 3.01^{+0.36}_{-0.28} \times 10^{-7} \times \left(\frac{A_0 (4 \text{ GeV}^2)}{0.66}\right)^2$$
$$BR(B \to K^* \ell^+ \ell^-)_{exp}^{low} = (1.49^{+0.45}_{-0.40} \pm 0.12) \times 10^{-7}$$
[Belle]

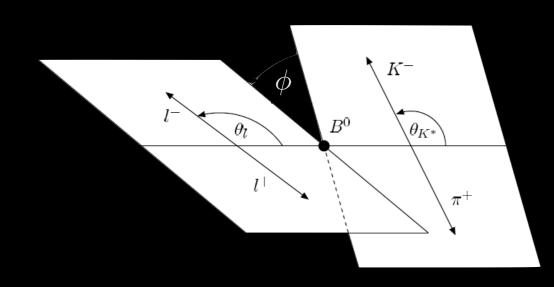
 $BR(B \to K^* \ell^+ \ell^-)_{SM}^{[0.1,7.02]} = 4.69^{+0.71}_{-0.53} \times 10^{-7} \times \left(\frac{A_0 (4 \text{ GeV}^2)}{0.66}\right)^2$ $BR(B \to K^* \ell^+ \ell^-)_{exp}^{[0.1,7.02]} = (4.3^{+1.1}_{-1.0} \pm 0.3) \times 10^{-7} \qquad \text{[BaBar]}$

 $(q_0^2)_{\rm SM} = \begin{cases} 4.36^{+0.33}_{-0.31} \,\,{\rm GeV}^2 & \text{neutral} \\ 4.15 \pm 0.27 \,\,{\rm GeV}^2 & \text{charged} \end{cases}$

As for inclusive modes, it is important to split the integrated FB asymmetry in 2 bins

$$\begin{aligned} (\mathcal{A}_I)_{\rm SM}^{\rm low} &= (0.7 \pm 0.3) \% \\ (\mathcal{A}_I)_{\rm exp}^{\rm low} &= (0.33^{+0.37}_{-0.43} \pm 0.05) \% \\ (\mathcal{A}_I)_{\rm exp}^{\rm low} &= (-0.25^{+0.20}_{-0.18} \pm 0.03) \% \end{aligned}$$
[Belle]
(BaBar]

$B \rightarrow K^* \ell^+ \ell^-$: angular analysis

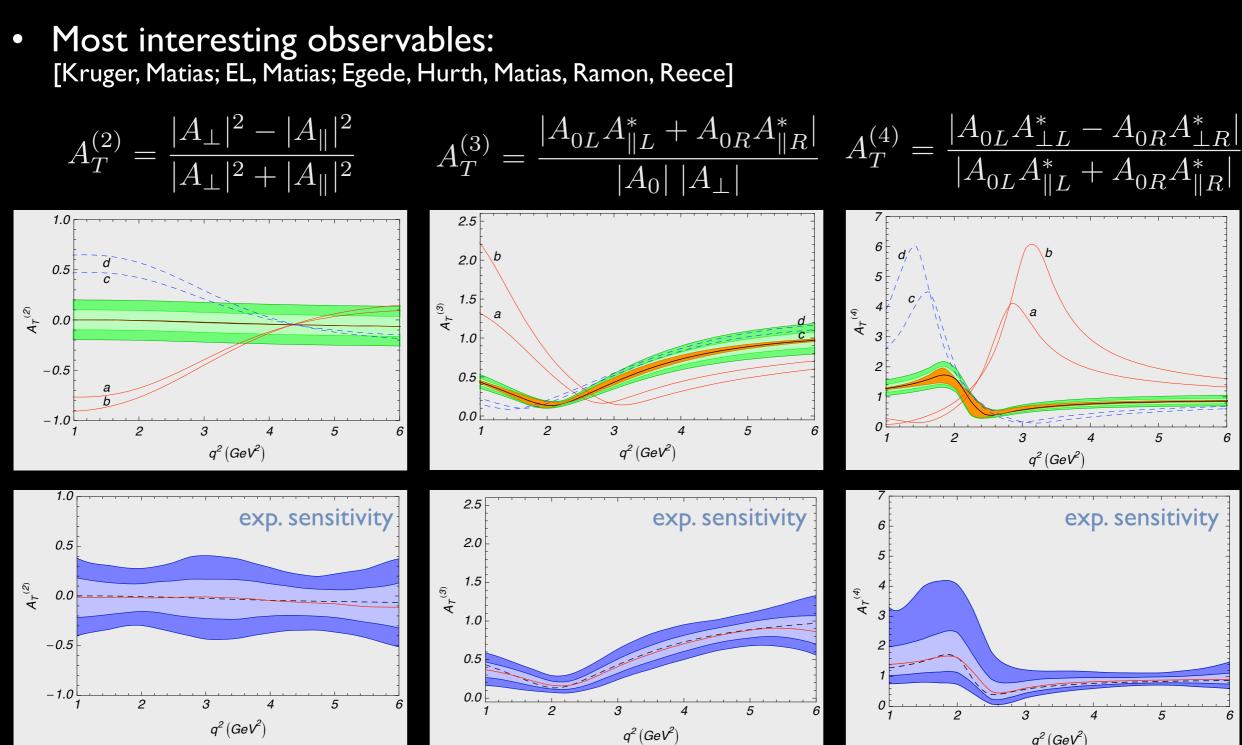


 $\frac{d^{4}\Gamma}{dq^{2} d\cos\theta_{l} d\cos\theta_{K^{*}} d\phi} \propto$ $I_{1}^{s} \sin^{2}\theta_{K^{*}} + I_{1}^{c} \cos^{2}\theta_{K^{*}} + (I_{2}^{s} \sin^{2}\theta_{K^{*}} + I_{2}^{c} \cos^{2}\theta_{K^{*}}) \cos 2\theta_{\ell}$ $+I_{3} \sin^{2}\theta_{K^{*}} \sin^{2}\theta_{\ell} \cos 2\phi + I_{4} \sin 2\theta_{K^{*}} \sin 2\theta_{\ell} \cos \phi$ $+I_{5} \sin 2\theta_{K^{*}} \sin\theta_{\ell} \cos\phi$ $+(I_{6}^{s} \sin^{2}\theta_{K^{*}} + I_{6}^{c} \cos^{2}\theta_{K^{*}}) \cos\theta_{\ell} + I_{7} \sin 2\theta_{K^{*}} \sin\theta_{\ell} \sin\phi$ $+I_{8} \sin 2\theta_{K^{*}} \sin 2\theta_{\ell} \sin\phi + I_{9} \sin^{2}\theta_{K^{*}} \sin^{2}\theta_{\ell} \sin 2\phi$

- Differential width is summed over spins of final state particles
- In absence of scalar operators I_6^c vanishes
- Only 9 of the remaining I_i^a are independent and are a function of 6 complex amplitudes: $A_{\perp L/R}$, $A_{\parallel L/R}$, $A_{0L/R}$
- There are three symmetries that act on these amplitudes: not everything you can build out of the A_i is observable
- Define I2 symmetries and I2 asymmetries (bar = CP conjugation):

$$S_{i}^{(a)} = \frac{I_{i}^{(a)} + \bar{I}_{i}^{(a)}}{\frac{d(\Gamma + \bar{\Gamma})}{dq^{2}}} \qquad A_{i}^{(a)} = \frac{I_{i}^{(a)} - \bar{I}_{i}^{(a)}}{\frac{d(\Gamma + \bar{\Gamma})}{dq^{2}}}$$

$B \to K^* \ell^+ \ell^-$: impact on NP



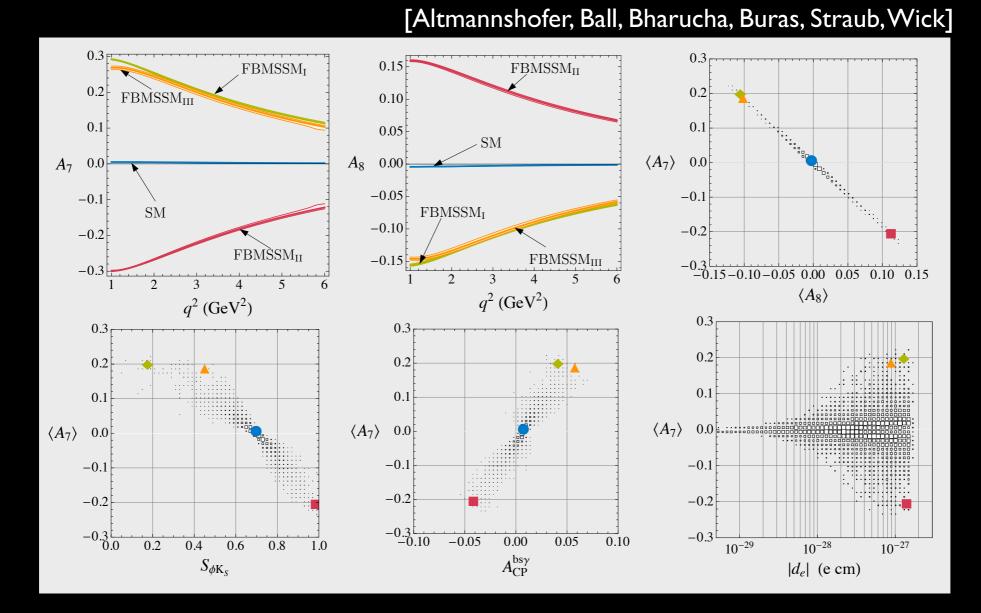
[Egede, Hurth, Matias, Ramon, Reece]

6

Scenarios a-d corresponds to MSSM scenarios with $(\delta_{LR}^d)_{32} \neq 0$

$B \to K^* \ell^+ \ell^-$: impact on NP

- The $A_T^{(i)}$ can be expressed in terms of the $\overline{S_i^a}$
- Additional interesting effects on $A_{7,8}$



 Flavor Blind MSSM scenarios: [Bartl, Gajdosik, EL, Masiero, Porod, Stremintzer, Vives]

Scenario	aneta	m_A	$m_{ ilde{g}}$	$m_{ ilde{Q}}$	$m_{ ilde{U}}$	$A_{\tilde{t}}$	μ	$\operatorname{Arg}(\mu A_{\tilde{t}})$	
FBMSSM _I	40	400	700	380	700	900	150	-45°	$\mathrm{Im}C_7$ <
$\mathrm{FBMSSM}_{\mathrm{II}}$	40	400	700	380	700	900	150	50°	$\operatorname{Im}C_7$ 2

$B \rightarrow K \ell^+ \ell^-$: impact on NP

$$\frac{1}{\Gamma(B \to K\ell\ell)} \frac{d\Gamma(B \to K\ell\ell)}{d\cos\theta} = \frac{3}{4} (1 - F_H^\ell)(1 - \cos^2\theta) + \frac{1}{2}F_H^\ell + \mathcal{A}_{\rm FB}^\ell\cos\theta$$

$$R_K = \frac{\Gamma(B \to K\mu\mu)}{\Gamma(B \to Kee)}$$

• In the SM: $F_H^\ell \simeq \mathcal{A}_{\mathrm{FB}}^\ell \simeq R_K - 1 \simeq O(m_\ell/m_b)$

 In presence of NP in scalar/pseudoscalar (Scenarios I-3) and in tensor operators (Scenario 4) deviations are possible:

Observable	Sc I	Sc II	Sc III	Sc IV
F_{H}^{e}	< 0.39		< 0.56	< 0.13
F^{μ}_{H}	[0.013, 0.035]	[0.018, 0.032]	[0.013, 0.56]	[0.014, 0.18]
R_K	[0.61, 1.01]	[0.996, 1.01]	[0.44, 2.21]	[0.93, 1.10]
$\mathcal{B}_e\left[10^{-7}\right]$	[1.91, 3.14]	—	[1.91, 4.36]	[1.91, 2.00]
$\mathcal{B}_{\mu}\left[10^{-7}\right]$	[1.90, 1.94]	[1.90, 1.93]	[1.90, 4.26]	[1.87, 2.10]
$A^e_{ m FB}\left[\% ight]$	[-0.02, 0.02]	—	[-0.02, 0.02]	[-0.02, 0.02]
$A^{\mu}_{ m FB}\left[\% ight]$	[-0.6, 0.6]	[-0.5, 0.3]	[-4.46, 4.46]	[-3.1, 3.1]

[Bobeth, Hiller, Piranishvili]

• The strongest constrain on the WCs comes from $B_s \rightarrow \mu\mu$

Outlook

- Inclusive modes:
 - $B \rightarrow X_s \gamma$ spectrum needs better understanding for both the SM prediction and for the extraction of m_b
 - Experimental treatment of collinear QED logs is still not completely implemented in theory predictions
 - Separate b \rightarrow sll low-q² observables in two bins (1-3.5 and 3.5-6 GeV²)
- Exclusive modes:
 - Theory is sound in the low-q² region
 - Isospin asymmetry in $B \rightarrow K^* \gamma$ has a very strong sensitivity to NP
 - Plethora of CP and angular distributions in $B \rightarrow K^*II$ and $B \rightarrow KII$ offer sensitivity to MFV and non-MFV extensions of the SM