
Radiative and Semileptonic 
rare B decays

Enrico Lunghi
Indiana University

FPCP 2009 - Lake Placid



Outline
• Introduction
• Inclusive:                  and 
• Exclusive:                         and 
• Outlook

B → Xd,sγ B → Xs!
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B → (K∗, ρ,ω)γ B → (K, K∗)!+!−



What can we learn?
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Effective Lagrangian

Q3 = (q̄LγµbL)
∑

(q̄γµq)

Q4 = (q̄LγµT abL)
∑

(q̄γµT aq)

Q5 = (q̄Lγµ1γµ2γµ3bL)
∑

(q̄γµ1γµ2γµ3q)

Q6 = (q̄Lγµ1γµ2γµ3T
abL)

∑
(q̄γµ1γµ2γµ3T aq)

Q1 = (q̄LγµT acL)(c̄LγµT abL)
Q2 = (q̄LγµcL)(c̄LγµbL)

Qu
1 = (q̄LγµT auL)(c̄LγµT abL)

Qu
2 = (q̄LγµuL)(c̄LγµbL)

Q7 =
e

16π2
mb(q̄LσµνbR)Fµν

Q8 =
g

16π2
mb(q̄LσµνT abR)Ga

µν

Q9 = (q̄LγµbL)
∑

("̄γµ")

Q10 = (q̄LγµbL)
∑

("̄γµγ5")
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4GF√

2
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CiQQiQ + CbQb
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for QED corrections
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Inclusive channels



General considerations

Phase space cuts introduce sensitivity to new scales, the rate 
becomes less inclusive and new non-perturbative effects appear

local OPE, optical theorem
quark-hadron duality

  
HQET

Γ
[
B̄ → Xs(γ, "+"−)

]
= Γ

[
b̄→ Xs(γ, "+"−)

]
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(I)                                      to suppress backgrounds:             
simple OPE, SCET, DGE

(II)                          cuts to remove     resonances. OPE breaks 
down at             . In the high q2 region expansion parameter is               
_

(III)                           to remove                                background:   
Fermi motion, SCET

cc̄

q2 ∼ m2
b

ΛQCD/(mb −
√

q2)

b→ c!−ν̄ → s!−!+ν̄ν

Eγ > E0 = [1.7, 2.0]GeV

q2 = (p!+ + p!−)2

MXs < [1.8, 2]GeV



Status of 
• Present status:

B → Xsγ
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• For                              the OPE is trustedEγ > E0 = 1GeV

•  T =
Γ(Eγ > 1.6 GeV)
Γ(Eγ > 1 GeV)

=






0.96± 0.01
0.93+0.03

−0.05 ± 0.02± 0.02
0.0984± 0.003

[Misiak et al.]

[Becher, Neubert]

[Andersen, Gardi]

OPE
SCET
DGE

DGE: Sudakov and Renormalon resummation

Standard Sudakov resummation: Perturbation theory vs. DGE

Left: Fixed-logarithmic accuracy Sudakov resummation – LL, NLL,

NNLL ... – does not converge well owing to large subleading

logarithms (running coupling).

Right: Fixed order perturbation theory does not converge well; each

order diverges at Eγ = mb/2, alternating between ±∞.

DGE shows stability: all large corrections have been resummed.
– p. 18

SCET

DGE

Misiak: why MSOPE fails below Eγ = 1.6 GeV

φ(n)(δ) = φ(n)
L (δ) + φ(n)

N (δ)

The results are known for n = 1, 2:
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logarithmically enhanced terms dominate only for E0 >∼ 2 GeV.

large cancellation between φ(n)
L (δ) and φ(n)

N (δ) all the way from

E0 = 0 to E0 " 1.6 GeV

Γ(E0) " E4
0 for small E0 =⇒ the cancellation occurs at all

orders! =⇒ keeping only φ(n)
L (δ) is BAD below 1.6 GeV.

– p. 21

δ = 2− 2E0/mb

ln(δ) enahanced

non ln(δ) enahanced



                 : SM predictions
• b→s

B → Xd,sγ

BR(B → Xsγ)Eγ>1.6 GeV
SM =

{
(3.15± 0.23)× 10−4

(2.98± 0.26)× 10−4
[Misiak et al.]

[Becher, Neubert]

BR(B → Xdγ)Eγ>1.6 GeV
SM = (1.36± 0.25)× 10−6

ACP(B → Xsγ)SM = (0.4± 0.2) %

• b→d

• b→d/s (untagged)

ACP(B → Xdγ)SM = −(10.2± 4.6) %

ACP(B → Xd,sγ)SM =
Ab→sγ

CP + Γd
Γs

Ab→dγ
CP

1 + Γd/Γs
∼ 0

[Hurth,EL,Porod]

BR(B → Xsγ)Eγ>1.6 GeV
exp = (3.52± 0.25)× 10−4

ACP(B → Xsγ)exp = (12± 30± 18) %

BR(B → Xdγ)Eγ>1.6 GeV
exp = (0.033± 0.016)× BR(B → Xsγ)

= (11.6± 5.7)× 10−6

[Hurth,EL,Porod]

[Hurth,EL,Porod]

[CLEO, BaBar, Belle]

[ BaBar]

[ BaBar]



               : impact on NP
• Two Higgs Doublet ModelFlavor Physics and CP Violation Conference, Taipei, 2008 5

effective theory and might also induce new opera-
tors besides those already present in the SM. Com-
plete NLO matching calculations are available only in
the case of the two-Higgs-doublet models (THDMs)
[38, 39], the minimal supersymmetric SM (MSSM)
with minimal flavor-violation (MFV) for small and
large tanβ [39–44], and left-right (LR) symmetric
models [39]. In the general MSSM [46], universal ex-
tra dimensional models with one (UED5) [48, 49] and
two (UED6) [50] additional flat dimensions, Randall-
Sundrum (RS) scenarios [51], and littlest Higgs (LH)
models without [52] and with T -parity (LHT) [53],
the accuracy is in general strictly LO and hence far
from the one achieved in the SM. The main features
and results of recent analyses of beyond SM physics
in B̄ → Xsγ are listed in Tab. I. In the following we
will briefly review the most important findings.

Even though the effect of charged Higgs boson con-
tributions in the THDM type II model is necessarily
constructive [38, 39], the lower bound on MH± follow-
ing from B̄ → Xsγ remains in general stronger than
all other direct and indirect constraints. In partic-
ular, B̄ → Xsγ still prevails over B → τν [54–56],
B → Dτν [55, 56], and K → µν [57] for values of
tanβ ! 40. This is illustrated in the upper panel of
Fig. 2. The derived 95% confidence level (CL) limit
amounts to MH± > 295 GeV independently of tanβ
[16]. In the THDM type I model, the strongest con-
straint on MH± stems from the ratio of the widths of
the Z-boson decay into bottom quarks and hadrons,
Rb, and not from B̄ → Xsγ.

In the MFV MSSM the complete NLO corrections
to B̄ → Xsγ are also known. The needed two-loop di-
agrams containing gluons and gluinos were evaluated
in [39, 40] and [41, 42], respectively. Since EW in-
teractions affect the quark and squark mass matrices
in a different way, their alignment is not RG invari-
ant and MFV can only be imposed at a certain scale
µMFV that is related to the mechanism of supersym-
metry (SUSY) breaking [42]. For µMFV much larger
than the SUSY masses MSUSY, the ensuing large log-
arithms can lead to sizable effects in B̄ → Xsγ, and
need to be resummed by solving the RG equation of
the flavor-changing gluino-quark-squark couplings.

In the limit of MSUSY " MW , SUSY effects can be
absorbed into the coupling constants of local opera-
tors in an effective theory [43, 44]. The Higgs sector
of the MSSM is modified by these non-decoupling cor-
rections and can differ notably from the native THDM
type II model. Some of the corrections to B̄ → Xsγ
in the effective theory are enhanced by tanβ. As a
result, they can be sizable, of order αs tanβ ∼ 1 for
values of tanβ " 1, and need to be resummed if ap-
plicable. In the large tanβ regime the relative sign
of the chargino contribution is given by −sign(Atµ).
For sign(Atµ) > 0, the chargino and charged Higgs
contributions interfere hence constructively with the
SM result and this tends to rule out large positive val-
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Figure 2: Top: Direct and indirect bounds on MH± in the
THDM type II model as a function of tanβ. The colored
areas are excluded by the constraints at 95% CL. Bottom:
95% CL limits on the compactification scale 1/R in the
UED6 model as a function of the SM central value and
total error. The present SM result is indicated by the
black square. See text for details.

ues of the product of the trilinear soft SUSY breaking
coupling At and the Higgsino parameter µ.

In the MSSM with generic sources of flavor viola-
tion a complete NLO analysis is still missing up to
date. Experimental constraints on generic b → s fla-
vor violation have been studied extensively [46], and
radiative inclusive B̄-meson decays play a central role
in these analyses. In particular, for small and mod-
erate values of tanβ all four mass insertions (δd

23)AB

with A, B = L, R except for (δd
23)RR are determined

entirely by B̄ → Xsγ. The bounds on the mass inser-

fpcp08 xxx

• MH+ > 300 GeV
• largely independent of tan(β)
• positive interference between SM and H± contributions

B → Xsγ

3

mc(mc) and the semileptonic phase-space factor

C =

∣

∣

∣

∣

Vub

Vcb

∣

∣

∣

∣

2 Γ[B̄ → Xceν̄]

Γ[B̄ → Xueν̄]
. (3)

The factor C has been determined in Ref. [16] together
with mc(mc) from a global fit to the semileptonic data.
If the normalization to B(B̄ → Xceν̄) was not applied in
the B̄ → Xsγ calculation, the error due to mc(mc) would
amount to ±2.8%. At the same time, one would need to
take into account uncertainties in m5

b and the Cabibbo-
Kobayashi-Maskawa factor |V !

tsVtb|2, each of which ex-
ceeds ±3%.

The nonperturbative uncertainty in Eq. (2) is due to
matrix elements of the four-quark operators in the pres-
ence of one gluon that is not soft (Q2 ∼ m2

b , mbΛ, where
Λ ∼ ΛQCD). Unknown nonperturbative corrections to
them scale like αsΛ/mb in the limit mc # mb/2 and like
αsΛ2/m2

c in the limit mc $ mb/2. Because mc < mb/2
in reality, αsΛ/mb should be considered as the quan-
tity that sets the size of such effects. Consequently, a
±5% nonperturbative uncertainty has been assigned to
the result in Eq. (2). This is the dominant uncertainty at
present. Thus, a detailed analysis of such effects would
be more than welcome. So far, no published results on
this issue exist. Even lacking a trustworthy method for
calculating such effects, it might be possible to put rough
upper bounds on them that could supersede the current
guess-estimate of ±5%. Nonperturbative corrections to
inclusive B̄ → Xd,sγ decays that scale like Λ/mb may
arise when the b-quark annihilation vertex does not co-
incide with the hard photon emission vertex; see, e.g.,
Ref. [6] or comments on B̄ → Xdγ in Sec. 2 of Ref. [5].

The NNLO central value in Eq. (2) differs from some
of the previous NLO predictions by between 1 and 2 error
bars of the NLO results. Because those error bars were
obtained by adding various theoretical uncertainties in
quadrature, such a shift is not improbable, similarly to
shifts by less than 2σ in experimental results. The shift
from the NLO to the NNLO level diminishes with low-
ering the value of µc, which has motivated us to use the
relatively low µc = 1.5 GeV as a reference value here.

The NNLO results turn out to be only marginally de-
pendent on whether one follows (or not) the approach
of Ref. [17] where the top-quark contribution to the de-
cay amplitude was calculated separately and rescaled by
quark mass ratios to improve convergence of the pertur-
bation series. Although the top contribution alone in-
deed behaves better also at the NNLO level when such
an approach is used, the charm quark contribution (to
which no rescaling has been applied in Ref. [17]) does
not turn out to be particularly stable beyond the NLO.
Consequently, in the derivation of Eq. (2) and Fig. 2, we
have used the simpler method of treating charm and top
sectors together.

Our result in Eq. (2) has been obtained under the as-
sumption that the photonic dipole operator contribution
to the integrated Eγ spectrum below 1.6 GeV is well ap-
proximated by a fixed-order perturbative calculation (see
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FIG. 3: B(B̄ → Xsγ) as a function of the charged Higgs boson
mass in the THDM II for tan β = 2 (solid lines). The dashed and
dotted lines show the SM and experimental results, respectively
(see the text).

Note added). For lower values of the photon energy cut,
the following numerical fit can be used:

(

B(Eγ > E0)

B(Eγ > 1.6 GeV)

)

fixed
order

% 1 + 0.15x − 0.14x2, (4)

where x = 1−E0/(1.6 GeV). This formula coincides with
our NNLO results up to ±0.1% for E0 ∈ [1.0, 1.6] GeV.
The error is practically E0-independent in this range.

In the remainder of this Letter, we shall update the
B̄ → Xsγ constraints on the charged Higgs boson mass
in the two-Higgs-doublet-model II (THDM II) [18]. The
solid lines in Fig. 3 show the dependence of B(B̄ → Xsγ)
on this mass when the ratio of the two vacuum expecta-
tion values, tanβ, is equal to 2. The dashed and dotted
lines show the SM (NNLO) and the experimental results,
respectively. In each case, the middle line is the cen-
tral value, while the other two lines indicate uncertainties
that one obtains by adding all the errors in quadrature.

In our THDM calculation, matching of the Wilson co-
efficients at the electroweak scale is complete up to the
NLO [19], but the NNLO terms contain only the SM con-
tributions (the THDM ones remain unknown). In conse-
quence, the higher-order uncertainty becomes somewhat
larger. This effect is estimated by varying the matching
scale µ0 from half to twice its central value. It does not
exceed ±1% for the MH+ range in Fig. 3.

Even though the experimental result is above the SM
one, the lower bound on MH+ for a generic value of
tanβ remains stronger than what one can derive from
any other currently available measurement. If all the
uncertainties are treated as Gaussian and combined in
quadrature, the 95% (99%) CL bound amounts to around
295 (230)GeV. It is found for tanβ → ∞ but stays prac-
tically constant down to tanβ % 2. For smaller tanβ,
the branching ratio and the bound on MH+ increase.

The contour plot in Fig. 4 shows the dependence of
the MH+ bound on the experimental central value and
error. The current experimental result (1) is indicated by
the black square. Consequences of the future upgrades in
the measurements will easily be read out from the plot,
so long as no progress on the theoretical side is made. Of

[Haisch]

[Misiak et al.]



• Two Universal Extra Dimension

               : impact on NPB → Xsγ

• BR is always suppressed with respect to the SM
• Bound on compactification scale: R-1 > 650 GeV
• Dark matter constrain favors R-1 < 600 GeV

[Haisch, Freitas][Haisch, Freitas]
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FIG. 4: The upper/lower panel displays the 95% CL limits on
1/R as a function of the experimental/SM central value (hori-
zontal axis) and total error (vertical axis). The experimental/SM
result from Eq. (1)/Eq. (2) is indicated by the black square. The
contour lines represent values that lead to the same bound in
TeV. See text for details.

the NLO matching corrections in the UED6 model which
remain unknown.

V. CONCLUSIONS

We have calculate the leading order corrections to the
inclusive radiative B̄ → Xsγ decay in the standard model
with two universal extra dimensions. While the one-
loop matching corrections associated to the exchange of
Kaluza-Klein modes of the would-be Goldstone, G±

(kl),

the W -boson, W±
µ(kl), and the physical scalar W±

H(kl) are
insensitive to the ultraviolet physics, we find that contri-
butions involving a±

(kl) scalars depend logarithmically on
the cut-off scale Λ. We have emphasized that in the con-
sidered model all flavor-changing neutral current transi-
tions suffer from this problem already at leading order.
Moreover, we have included formally next-to-leading, but
sizeable mass corrections to the Kaluza-Klein scalars that
depend quadratically on the scale Λ. Although the ultra-
violet sensitivity weakens the lower bound on the inverse
compactification radius 1/R that can be derived from the
measurements of the B̄ → Xsγ branching ratio, a strong
constraint of 1/R > 650 GeV at 95% confidence level is
found if errors are added in quadrature. Our bound ex-
ceeds by far the limits that can be derived from any other
direct measurement, and is at variance with the parame-
ter region preferred by the dark matter abundance. This
once again underscores the outstanding role of the inclu-
sive radiative B̄-meson decay in searches for new physics
close to the electroweak scale.
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APPENDIX A: EVALUATION OF KK SUMS

Here we show how to approximate the double sum over KK levels (kl) appearing in Eq. (15). Following Ref. [25],
we first introduce the integrals

In(a) = (−1)nan+1

∫ 1

0
dy

yn

ay + xkl
, (A1)



               : impact on NPB → Xsγ
• Flavor blind MSSM

• Relative sign of       and       contributions is 
• Strength of constrain varies over the parameter space

H±χ± −sign(µ)
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[Ellis et al.][Straub; Olive, Velasco-Sevilla]



               : impact on NPB → Xsγ
• Most general MSSM
• Parametrize non-minimal sources of flavor violation in terms of mass 

insertions in the squark mass matrices
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3

• Constraints on LR insertions at the 10-3 level because of chiral 
enhancement (                  )mg̃,χ±/mb

(
δu,d
23

)

AB
=

(
mu,d

23

)2

AB

M2
sq

24

FIG. 3: Allowed region in the Re
(

δd
23

)

LL
-Im

(

δd
23

)

LL
plane. In the plots on the left (right), negative

(positive) µ is considered. Plots in the upper (lower) row correspond to tan β = 3 (tan β = 10).

See the text for details.

• For tanβ = 3, we see from the upper row of Fig. 3 that the bound on (δd
23)LL from

Bs− B̄s mixing is competitive with the one from rare decays, while for tanβ = 10 rare

decays give the strongest constraints (lower row of Fig. 3). The bounds on all other

δ’s do not depend on the sign of µ and on the value of tanβ for this choice of SUSY

parameters.

• For LL and LR cases, B → Xsγ and B → Xsl+l− produce bounds with different
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µ > 0, tanβ = 10



               : impact on NPB → Xsγ
• Untagged CP asymmetry

MFV Model Independent Analysis

• Very clean test for new CP violating phases
• Experimental sensitivity at super-B factoriescan reach the 0.3% 
level

[EL, Hurth, Porod] [EL, Hurth, Porod]



Status of
• NNLO QCD and NLO EW corrections are known

B → Xs!
+!−

• Issue with QED collinear logs: theory prediction depends on 
experimental treatment of energetic collinear photons

• q2 cut • MX cut

q2

M2
X

q 2
< (m

B −m
X

s ) 2

high-q2

low-q2

cc

Three regions:
0.04 GeV2 < q2 < 1 GeV2

1 GeV2 < q2 < 6 GeV2

q2 > 14.4 GeV2

Calculated using Fermi motion or 
SCET. Non-perturbative effects 
strongly reduced in:
Γcut(B → Xs!

+!−)/Γcut(B → Xu!ν̄)



                    : SM predictionsB → Xs!
+!−

• Branching ratio
BR(B → Xs!

+!−)SM
low−q2 = (1.59± 0.11)× 10−6

BR(B → Xs!
+!−)exp

low−q2 = (1.60± 0.51)× 10−6

BR(B → Xs!
+!−)SM

high−q2 = (2.40+0.69
−0.62)× 10−7

BR(B → Xs!
+!−)exp

high−q2 = (4.4± 1.2)× 10−7

largest source of 
uncertainty are         
power corrections

m−3
b

• Forward-backward asymmetry

0 1 2 3 4 5 6

!0.15

!0.10

!0.05

0.00

0.05

0.10

0.15

q2 !GeV2"

d! #d"2
d# #d"2

NNLO " QED

dA/dq2

dB/dq2

q2 (GeV2)

- location of the zero:
q2
0 = (3.50± 0.12) GeV2

- Integrated observables:
bin 1

bin 2

(
Ā!!

)
bin2

= [7.8± 0.8]%

(
Ā!!

)
bin1

= [−9.1± 0.9]%

(
Ā!!

)
low

= [1.5± 0.9]%

[Huber, EL, Misik, Wyler]

[Huber, Hurth, EL]

[Huber, Hurth, EL]

[ BaBar, Belle]

[ BaBar, Belle]



                    : new observablesB → Xs!
+!−

d2Γ
dq2dz

=
3
8

[
(1 + z2)HT (q2) + 2zHA(q2) + 2(1− z2)HL(q2)

]

dΓ
dq2

= HT (q2) + HL(q2)
dAFB

dq2
=

3
4
HA(q2) z = cos θ!

• Wilson coefficient determination is improved by (a) splitting the 
FB asymmetry in two bins and (b) extracting separately HT and HL:

(a) (b)

[Lee, Ligeti, Stewart, Tackmann]



                    : reducing the errorsB → Xs!
+!−

• Sensitivity to OPE breakdown in the high-q2 region can be 
attenuated by considering:

• Size of power corrections strongly reduced
• In the SM we find:
• Error is reduced from ~30% to ~13%
• Largest source of uncertainty is Vub

• Procedure already possible using present experimental data
• Separation of neutral and charged semileptonic b→u decays 

important to control WA contributions.

R(q2
0) =

∫ 1

q̂2
0

dq̂2 dΓ(B̄ → Xs!+!−)
dq̂2

∫ 1

q̂2
dq̂2 dΓ(B̄0 → Xu!ν)

dq̂2

R(14.4 GeV2) = (2.29± 0.30)× 10−3

[Ligeti, Tackmann]

[Huber, Hurth, EL]



                    : impact on NPB → Xs!
+!−

20
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• The C7 > 0 scenario is viable
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• The C7 > 0 scenario is viable

• Scenarios with                   are disfavored at the 2.7σ level:C7 ∼ −CSM
7

• In presence of non-MFV new physics (e.g. most general MSSM) 
they become viable:

BR(B̄ → Xs!
+!−)NP

low−q2 = (3.11± 0.22)× 10−6

BR(B → Xs!
+!−)exp

low−q2 = (1.60± 0.51)× 10−6

[EL][EL]

[Gambino, Haisch, Misiak]
[Huber, Hurth, EL]



Exclusive channels



Theory

• Lorentz decomposition of form factors in terms of pK*, pB and εK*

• Form factors are functions of 
• Several approaches to the calculation of the form factors:

- QCD-factorization
- QCD-factorization + resummation (SCET)
- Light-cone QCD sum rules
- pQCD

• We will focus on QCDF/SCET approaches:
- only work if q2 is small (for radiative decays q2=0)
- for large q2 the final state meson is soft and no expansion is possible

q2 = (pB − pK∗)2

A(B → K∗!+!−) = Ci 〈K∗!+!−|Oi|B〉
= Ci !̄Γi

1! 〈K∗(pK∗ , εK∗)|s̄Γi
2b|B(pB)〉︸ ︷︷ ︸

form factors

+· · ·
hard spectator

interactions

qq

[Ali, Parkhomenko; Bosch, Buchalla; Beneke, Feldmann, Seidel]
[Chay, Kim; Grinstein, Grossman, Ligeti; 
Becher, Hill, Neubert]

[Ball, Jones, Zwicky]

[Keum, Matsumori, Sanda, Yang]



QCD factorization

hard scattering (mb2)

soft form factors (Λ2)

light-cone wave functions (Λ2)

hard scattering (mb2)
jet function (Λmb)

〈K∗
a!+!−|Heff |B〉 = T I

a (q2)ζa(q2) +
∑

±

∫ ∞

0

dω

ω
φB
±(ω)

∫ 1

0
du φa

K∗(u)T II
a,±(ω, u, q2)

• Includes effects of all operators (not only O7, O9, O10)
• Systematic expansion in αs

• Expansion in Λ/mb ~ 10%
• The 10 FFs in full QCD are reduced to 3 in QCDF at leading power
• Two options:

1. Use lattice/LCSR calculations to extract the soft form factors 
2. Use lattice/LCSR results directly (to automatically include some sets of power 

corrections)



Annihilation
• Appear at the subleading power
• Relevant for B→ρ: proportional to
• Also impact CP and Isospin asymmetries in B→K*

• Some annihilation diagrams are factorizable (e.g. O1,2):

VubV
∗
ud/(VcbV

∗
cd) ∼ O(1)

• Other are not (O8):

All divergences can be absorbed in the LCDA
Convolutions are convergent

Some convolutions are divergent and imply a  
breakdown of factorization:
• cut-off?
• zero-bin subtraction?
• subleading form factors?

[Ali, Parkhomenko, Pecjak]

[Kagan, Neubert]

[Ligeti, Manohar]



               : SM predictionsB → K∗γ
• Branching ratio

• Isospin asymmetry

BR(B → K∗γ)SM = (4.6± 1.2ξK∗ ± 0.4mc ± 0.2λB ± 0.1µ)× 10−5

BR(B → K∗γ)exp = (4.18± 0.17)× 10−5

- vertex and hard-spectator corrections involving O7,8 are known at NNLO
- vertex corrections involving O1,2 are known at NNLO in the BLM limit
- hard-spectator corrections involving O1,2 are known at NLO

AI(B → K∗γ)SM = (5.4± 1.4) %
AI(B → K∗γ)exp = (3± 4) %

- Sensitive to NP contributions to O6

- Requires understanding of annihilation topologies

[Ali, Parkhomenko, Pecjak]

[Ball, Jones, Zwicky]

[ BaBar, Belle]

[ BaBar, Belle]



               : SM predictionsB → K∗γ
• Time dependent CPA: SK∗γ = − 2|r|

1 + |r|2 sin
(
2β − arg(C(0)

7 C ′
7

)

SSM
K∗γ =

(
−2.8+0.4

−0.5

)
%

Sexp
K∗γ = (−3± 29) %

• Sensitive to opposite 
chirality operator O7’:

Figure 2: Allowed regions of Wilson coefficients in specific NP scenarios after applying the ex-
perimental constraints from radiative and semileptonic b → s processes as indicated. The black
areas are allowed by all constraints. In the left panel we show C′

7 versus CNP
7 assuming real Wilson

coefficients. We give the magnitude of CNP
10 versus its CP phase φ10 in the right panel. In both

plots all other NP Wilson coefficients have been set to zero. For details see text.

Corrections start to enter atO (αsΛ/Q). The framework holds at low recoil, (MB−MK∗)2−
2MBΛ ! q2 < (MB − MK∗)2, which covers the large dilepton mass region above the Ψ′

resonance, q2 " 14 GeV2.

To leading order in the 1/Q-expansion we obtain AFB at low recoil as

AFB(q2) ∝ Re
[

(Ceff
9 (q2) +

2m2
b

q2
Ceff

7 )C∗
10 − (C ′

9 +
2m2

b

q2
C ′

7)C
′∗
10

]

. (6.2)

The effective coefficients read as Ceff
9 (q2) = C9+(4/3C1+C2)g(q2)+. . . and Ceff

7 = C7+. . .,

where 4/3C1 + C2 $ 0.61 are the dominant SM coefficients. The full expressions including

the higher order αs-corrections and the QCD penguin contributions are given in [39] and

are included in our numerical analysis. The lowest order charm loop function is given as

g(q2) =
8

27
+

4

9

(

ln
µ2

q2
+ iπ

)

, (6.3)

which agrees with the perturbative quark loop function for massless quarks. Interestingly,

the dependence on form factors can be factored out in AFB (6.2) at this order. We require

then the sign of 〈AFB〉 integrated over q2 > 14 GeV2 to be negative.

We show the impact of the FCNC constraints on the NP Wilson coefficients for two

NP scenarios in Figure 2. The areas allowed by all constraints are given in black. We learn

that the observables (each shown in a different color) yield complementary information,

and that the SM is allowed, as well as many significantly different NP solutions.

In the left plot, we entertain NP only in C7 and C ′
7, and assume further no NP CP

phases. The regions allowed by B(B̄ → Xsγ), SK∗γ and B(B̄ → Xs l̄l)|[1,6] are shown

as the green ring, the red cross and the blue half circle, respectively. The impact of

– 13 –

[Bobeth, Hiller, Piranishvili]

r = C ′
7/C(0)

7

• Predictions:



                      : impact on NPAI(B → K∗γ)

[Mahmoudi]

3 Isospin asymmetry and the MSSM

In this section, a comparison between the theoretical evaluations and the experimental bounds
of the last section has been performed. We investigate the constraints from the isospin asym-
metry for several scenarios of supersymmetry breaking.

3.1 mSUGRA

A more detailed investigation of the minimal supergravity model (mSUGRA) parameter space
has been presented in [3, 12]. Here we emphasize the major results and provide some compar-
isons with other B Physics observables.

Figure 3: Constraints on the mSUGRA parameter plane (m1/2, m0) for A0 = 0 (left) and
A0 = −m0 (right). The conventions for the colors and the meaning of the different regions are
described in the text.

The SUSY mass spectra, as well as the couplings and the mixing matrices were generated using
SOFTSUSY 2.0.14 [8].

We scan the mSUGRA parameter space {m0, m1/2, A0, tanβ, sign(µ)}, and for every point we
calculate the isospin asymmetry and confront it to the limits of Eq. (6). We also calculate

6

• The B→K*γ isospin asymmetry provides stronger constraints than the 
B→Xsγ BR ones in some parts of the MSSM parameter space:

Figure 6: Constraints on the NUHM parameter plane (m1/2, m0). The conventions for the
different colored regions are the same as in Fig. 3. In the white region tachyonic particles are
encountered.

m1/2 ∈ [0, 2000], A0 ∈ [−2000, 2000] and tanβ ∈ [0, 50], for µ > 0. The horizontal black line in
these plots corresponds to the limit of Eq. (6). One can notice here a larger number of excluded
points for higher values of tanβ, small values of m1/2 and negative values of A0. Approximately
10% of the analyzed points are in the excluded region.

To evaluate how restrictive the isospin symmetry breaking is compared to the other B Physics
observables, we show in Fig. 5 an example of the regions excluded by the branching ratio of
Bs → µ+µ− (in blue), by the inclusive branching ratio of B → Xsγ (in green) and by the
isospin asymmetry of B → K∗γ (in red), for tanβ = 50 and A0 = 0.
We can remark that isospin asymmetry is more constraining than both the branching ratio
observables.
For this plot, we used the following constraint for the branching ratio of Bs → µ+µ− [18]:

B(Bs → µ+µ−) < 0.97 × 10−7 , (8)

and the masses and couplings were generated using ISAJET 7.75 [9].

In this section, we showed that in the studied mSUGRA regions, the isospin asymmetry greatly
enlarges the exclusion contours compared to the previously used B physics observables.

9

Figure 8: Constraints on the AMSB parameter planes (tanβ, m3/2) to the left, and (tanβ, m0)
to the right. The conventions for the different regions are the same as in the precedent figures.

from WMAP. For instance, comparing the (µ, mA) plane (Fig. 7) with a similar plot presented in
[20], one can notice that the WMAP favored region was between two strips at roughly constant
positive and negative values of µ, extending approximately to µ = 350 GeV. It is remarkable
that the isospin asymmetry constraint reduces a substantial part of this region. This example
illustrates the usefulness of exploring isospin asymmetry and the complementary information
that can be obtained.

3.3 AMSB

We can now focus on other supersymmetry breaking scenarios, and study the influence of the
isospin asymmetry for these models. First we consider the Anomaly Mediated Supersymme-
try Breaking (AMSB) scenario [21]. These mechanisms are well motivated since they preserve
virtues of the gravity mediated models while the FCNC problem is solved.
For this scenario, we generate the masses and couplings with SOFTSUSY 2.0.14 [8], and per-
form scans in the parameter space {m0, m3/2, tanβ, sign(µ)}.

The results are presented in Fig. 8, where the (tanβ, m3/2) and (tanβ, m0) planes are studied.
For the (tanβ, m3/2) plane, the constraints from the branching ratio are in the region already

11

(a) (b)

Figure 9: Evolution of the isospin asymmetry in the GMSB parameter space, (a) in the plane
(tanβ, Λ) for Mmess = 500 TeV, and (b) in the plane (tanβ, Mmess) for Λ = 100 TeV. Note that
in (b), the Mmess scale is logarithmic.

excluded by the collider mass limits. In the (tanβ, m0) plane, we obtain no limit from the
branching ratio. However, for both cases, we obtain remarkable contours from the isospin
asymmetry. This is another example in favor of investigating the isospin symmetry breaking
observable.

3.4 GMSB

As a final example, we consider the Gauge Mediated Supersymmetry Breaking (GMSB) sce-
nario [22]. Several regions in the parameter space {Λ, Mmess, N5, cgrav, tan β, sign(µ)} have
been investigated. Unfortunately, the available experimental data do not allow us to obtain
any constraints from neither the branching ratio nor the isospin symmetry breaking for low
values of the messenger scale. Indeed, in this case the stop mass is relatively large resulting in
low contributions from the chargino and charged Higgs loops. Nevertheless, to show how the
isospin asymmetry evolves in the GMSB parameter space for low messenger scale, we perform
a scan for Mmess = 500 TeV, N5 = 1 and we set cgrav = 1. The masses and couplings were
generated with SOFTSUSY 2.0.14 [8]. Fig. 9a shows the results for the (tan β, Λ) plane.

For high values of the messenger scale the situation is much better since the mixing t̃L − t̃R is
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B → (ρ, ω)γ                   : impact on UT fits
• In QCDF one finds:

BR(B → ργ)
BR(B → K∗γ)

∝
∣∣∣∣
Vtd

Vts

∣∣∣∣
2 1

ξ2
ρ

[1 + ∆R]

• ΔR ~ 0.1 is calculated
• Utilizing form factor ratio from LCSR [Ball Jones Zwicky]:

• Impact on unitarity triangle fit [UTfit]:

!
-1 -0.5 0 0.5 1
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∣∣∣∣
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Vts

∣∣∣∣ = 0.192± 0.016exp ± 0.014th

neutral charged



Isospin asymmetry in 

• Impact on various MSSM models:

B → ργ
CP and isospin asymmetries in b!s(d)"

ACP(b!s")  = #0.012±0.030±0.018

arXiv:0805.4796, PRL 101, 171804

arXiv:0804.4770 PRL 101, 111801

ACP(B!$")  = #0.11±0.32±0.09

AI(B!$")  = #0.48±0.20±0.09

Small in Standard Model

and sensitive to new physics

AI

6

Sum of exclusive modes

AI(B → ργ) =
Γ(B± → ρ±γ)
2 Γ(B0 → ρ0γ)

− 1

[Ali, EL]



                    : SM predictionsB → K∗!+!−
forward-backward asymmetry

using input values as in [Beneke/TF/Seidel 04]
( tensor form factor→ ξ⊥(0) from B → K∗γ , all numbers preliminary )
dashed line: LO approximation (incl. some tree-level 1/mb corrections)

green band: all parametric uncertainties. (form factor dependence decreases around q2
0 )

B0 → K∗0## B± → K∗±##

(dΓF−dΓB )/dq2

(dΓF +dΓB )/dq2 :

1 2 3 4 5 6 7
!0.2

!0.1

0.0

0.1

0.2

1 2 3 4 5 6 7
!0.2

!0.1

0.0

0.1

0.2

FBA zero q2
0 : 4.36+0.33

−0.31 GeV2 4.15+0.27
−0.27 GeV2

ΓF−ΓB

ΓF +ΓB

q2
0R

1 GeV2
dq2 : −0.062+0.018

−0.023

6 GeV2R

q2
0

dq2 : +0.033+0.016
−0.015

q2
0R

1 GeV2
dq2 : −0.058+0.016

−0.021

6 GeV2R

q2
0

dq2 : +0.036+0.016
−0.013

Th. Feldmann (Siegen/TUM) Exclusive b → s!+!− CKM 08, Rome, Sept 2008 8 / 13

isospin asymmetry

using input values as in [Beneke/TF/Seidel 04] except for new life times from HFAG.
( tensor form factor→ ξ⊥(0) from B → K∗γ , all numbers preliminary )

dashed line: LO approximation (incl. some tree-level 1/mb corrections)

green band: all uncertainties.

dΓ[B0 ]/dq2−dΓ[B± ]/dq2

dΓ[B0 ]/dq2+dΓ[B± ]/dq2 partially integrated

0 1 2 3 4 5 6 7
!0.02

0.00

0.02

0.04

0.06

0.08

0.10

6 GeV2R

1 GeV2
dq2 : 0.007+0.003

−0.003

7.02 GeV2R

0.1 GeV2
dq2 : 0.000+0.005

−0.006

[see also TF/Matias 03]

Th. Feldmann (Siegen/TUM) Exclusive b → s!+!− CKM 08, Rome, Sept 2008 7 / 13

rates

using input values as in [Beneke/TF/Seidel 04] except for new life times from HFAG.
( tensor form factor→ ξ⊥(0) from B → K∗γ , all numbers preliminary )

dashed line: LO approximation (incl. some tree-level 1/mb corrections)

yellow band: “all” uncertainties

green band: w/o error on form factors and CKM input.

dBr[B0 → K∗0##]/dq2 partially integrated rate

total:

1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 Major uncertainty from longitudinal FF:
! normalize to A0(4 GeV2) = 0.66

(default in [BFS 04])
! WARNING! recent update:

A0(4 GeV2) = 0.47 [Ball/Zwicky 04]

theoretically prefered: 1 GeV2 ≤ q2 ≤ 6 GeV2

BaBar window:∗ 0.1 GeV2 ≤ q2 ≤ 7.02 GeV2

∗
(just for comparison)

Th. Feldmann (Siegen/TUM) Exclusive b → s!+!− CKM 08, Rome, Sept 2008 6 / 13

107dBR/dq2

q2

q2

q2

dAI/dq2

BR(B → K∗!+!−)lowSM = 3.01+0.36
−0.28 × 10−7 ×

(
A0(4 GeV2)

0.66

)2

dAFB(B0 → K∗0!+!−)/dq2

As for inclusive modes, it is important to split the 
integrated FB asymmetry in 2 bins

(q2
0)SM =

{
4.36+0.33

−0.31 GeV2 neutral
4.15± 0.27 GeV2 charged

(AI)
low
SM = (0.7± 0.3) %

[Feldmann]

BR(B → K∗!+!−)[0.1,7.02]
SM = 4.69+0.71

−0.53 × 10−7 ×
(

A0(4 GeV2)
0.66

)2

BR(B → K∗!+!−)[0.1,7.02]
exp = (4.3+1.1

−1.0 ± 0.3)× 10−7 [BaBar]

[Belle]BR(B → K∗!+!−)lowexp = (1.49+0.45
−0.40 ± 0.12)× 10−7

(AI)
low
exp = (0.33+0.37

−0.43 ± 0.05) %
[BaBar]

[Belle]

(AI)
low
exp = (−0.25+0.20

−0.18 ± 0.03) %



                    : angular analysisB → K∗!+!−

φ

• Differential width is summed over spins of final state particles
• In absence of scalar operators      vanishes
• Only 9 of  the remaining      are independent and are a function of 6 

complex amplitudes: 
• There are three symmetries that act on these amplitudes: not everything 

you can build out of the Ai is observable
• Define 12 symmetries and 12 asymmetries (bar = CP conjugation):

d4Γ
dq2 d cos θl d cos θK∗ dφ

∝

Ia
i

Ic
6

A⊥L/R, A‖L/R, A0L/R

S(a)
i =

I(a)
i + Ī(a)

i
d(Γ+Γ̄)

dq2

A(a)
i =

I(a)
i − Ī(a)

i
d(Γ+Γ̄)

dq2

Is
1 sin2 θK∗ + Ic

1 cos2 θK∗ + (Is
2 sin2 θK∗ + Ic

2 cos2 θK∗) cos 2θ!

+I3 sin2 θK∗ sin2 θ! cos 2φ + I4 sin 2θK∗ sin 2θ! cos φ

+I5 sin 2θK∗ sin θ! cos φ

+(Is
6 sin2 θK∗ + Ic

6 cos2 θK∗) cos θ! + I7 sin 2θK∗ sin θ! sinφ

+I8 sin 2θK∗ sin 2θ! sinφ + I9 sin2 θK∗ sin2 θ! sin 2φ



                    : impact on NPB → K∗!+!−
• Most interesting observables:

[Kruger, Matias; EL, Matias; Egede, Hurth, Matias, Ramon, Reece]

A(4)
T =

|A0LA∗
⊥L −A0RA∗

⊥R|
|A0LA∗

‖L + A0RA∗
‖R|A(3)

T =
|A0LA∗

‖L + A0RA∗
‖R|

|A0| |A⊥|
A(2)

T =
|A⊥|2 − |A‖|2

|A⊥|2 + |A‖|2

6.2 Results

We present our results on the observables A(2)
T , A(3)

T , A(4)
T , AFB and FL in the Figs. 3–7

(for definitions see Sec. 4). For all the observables we plot the theoretical sensitivity on

the left hand side of each Figure.

• The thin dark line is the central NLO result for the SM and the narrow inner dark

(orange) band that surrounds it corresponds to the NLO SM uncertainties due to

both input parameters and perturbative scale dependence. Light grey (green) bands

are the estimated Λ/mb±5% corrections for each spin amplitude (as given in Eq. 3.10)

while darker grey (green) ones are the more conservative Λ/mb ± 10% corrections.

The curves labelled (a)–(d) correspond to the four different benchmark points in the

MSSM introduced above.

• The experimental sensitivity for a dataset corresponding to 10 fb−1 of LHCb data is

given in each figure on the right hand side. Here the solid (red) line shows the median

extracted from the fit to the ensemble of data and the dashed (black) line shows the

theoretical input distribution. The inner and outer bands correspond to 1σ and 2σ

experimental errors.
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d
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T we compare the theoretical errors (left) with the experimental errors (right)

as a function of the squared dimuon mass. For the theory, the narrow inner dark (orange) bands
correspond to the NLO result for the SM including all uncertainties (except for Λ/mb) as explained
in the text. Light grey (green) bands include the estimated Λ/mb uncertainty at a ±5% level and
the external dark grey (green) bands correspond to a ±10% correction for each spin amplitude.
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Let us start with some concrete observations on the new observables A(3)
T and A(4)

T .

They offer sensitivity to the longitudinal spin amplitudeA0L,R in a controlled way compared

to the old observables FL and α∗
K : the dependence on both the parallel and perpendicular

soft form factors ξ‖(0) and ξ⊥(0) cancels at LO. A residual of this dependence may appear

at NLO, but as shown in Figs. 4 and 5, it is basically negligible. It is also remarkable
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Figure 4: For the new observable A(3)
T we compare the theoretical errors (left) with the experi-

mental errors (right). See the caption of Fig. 3 for details.
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Figure 5: For the new observable A(4)
T we compare the theoretical errors (left) with the experi-

mental errors (right). See the caption of Fig. 3 for details.

that for A(3)
T and A(4)

T at low q2 the impact of this uncertainty is less important than the

uncertainties due to input parameters and scale dependence.

The peaking structure in A(4)
T as a function of q2 for the benchmark MSSM points

is due to the different way C
′(eff)
7 enters numerator and denominator; the numerator has

a positive slope in the region of the peak, while the denominator has a minimum at the

same point. If one uses the simplified L0 expressions from Eqs. 3.7–3.9 the denominator is

exactly zero, generating an infinity at the point of the peak; however, once NLO QCDf is

included the zero in the denominator is lifted and the result is a curve with a peak instead.

The new observables A(3)
T and A(4)

T also present a different sensitivity to C
′(eff)
7 via their

dependence on A0L,R compared with A(2)
T . This may allow for a particularly interesting

cross check of the sensitivity to this chirality flipped operator O′

7; for instance, new contri-

butions coming from tensor scalars and pseudo-scalars will behave differently among the

set of observables.

Another remarkable point that comes clear when comparing the set of clean observables
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Figure 9: Left and centre plot: CP asymmetries A7 and A8 in the SM (blue band) and three
FBMSSM scenarios as described in the text. Right plot: correlation between the integrated asym-
metries 〈A7〉 and 〈A8〉 in the FBMSSM. Blue circle: SM, green diamond: FBMSSMI, red square:
FBMSSMII , orange triangle: FBMSSMIII.
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Figure 10: The observables S4, S5 and Ss
6 in the SM (blue band) and the three FBMSSM scenarios

FBMSSMI,II,III.

asymmetry 〈A7〉. One observes that large effects in 〈A7〉 are correlated with large shifts in
the zeros towards lower values.

In order to identify signs in the CP asymmetries which are favoured in this model one
must include additional observables in the analysis. To this end we also investigate the direct
CP asymmetry in the b → sγ decay ACP(b → sγ), the electric dipole moments of the electron
and the neutron de and dn and the mixing induced CP asymmetry SφKS

. We recall that
in [62] striking correlations between these observables have been found. In particular, the
desire to explain the anomaly observed in SφKS

through the presence of flavour conserving
but CP-violating phases implied a positive ACP(b → sγ), by an order of magnitude larger
than its SM tiny value and de, dn at least as large as 10−28 e cm.

The left plot of Fig. 12 shows the correlation between 〈A7〉 and SφKS
. We find that a value

of SφKS
$ 0.44, as indicated by the present data [85], implies a positive value for 〈A7〉 in the

range [0.05, 0.2] and then also a negative value for 〈A8〉 in the range [−0.11,−0.03]. In addition
to the two scenarios discussed above, we have chosen also a third scenario, FBMSSMIII,
indicated as orange triangle in the plots of Figs. 9, 11 and 12, that gives SφKS

close to the
experimental value. This scenario is shown in Figs. 9 and 10 as the orange bands and we find
that while one still can get almost maximal effects in 〈A7〉 and 〈A8〉 the effects in S4, S5 and
Ss

6 are much less pronounced.
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Figure 12: 〈A7〉 vs. SφKS
(left plot), 〈A7〉 vs. Absγ
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orange triangles correspond to the scenarios FBMSSMI, FBMSSMII and FBMSSMIII, respectively.
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Figure 13: Left and centre plot: CP asymmetries A7 and A8 in the SM (blue band) and the LHT
scenarios LHTI,II. Right plot: Correlation between the integrated asymmetries 〈A7〉 and 〈A8〉 in
the LHT. The blue circle represents the SM, the green diamond scenario LHTI and the red square
scenario LHTII.

In particular Ss
6, the forward-backward asymmetry, turns out to be very close to the SM. The

same applies to all other CP-averaged angular coefficients and most CP asymmetries. The
largest effects relative to the SM are found in A7 and A8 as in the SM their absolute values
are at most 6× 10−3 and 5× 10−3, respectively. We consider two scenarios, LHTI and LHTII,
with input parameters as given in Tab. 12. In the left and centre plot of Fig. 13 we show
the corresponding asymmetries A7 and A8 as functions of q2. The blue curves represent the
SM. The green curves labelled LHTI correspond to a LHT parameter point that gives the
largest negative NP contribution to Im(C9) and Im(C10), while the LHTII curves (red) give
the largest positive contribution. Enhancement of both asymmetries by a factor of three is
possible for low values of q2 with visible but smaller effects for larger values of q2.

Still, these significant enhancements are one order of magnitude smaller than those found
in the FBMSSM. The reason why much larger effects in A7 and A8 are possible in the latter
model is that large NP contributions to the imaginary part of C7 are allowed, comparable in
magnitude to the SM contribution. In the LHT model NP contributions to C7 are found to
be very small [68]. As the effects in A7 and A8 are therefore dominantly created by Im(C9)
and Im(C10), the correlation between the integrated asymmetries 〈A7〉 and 〈A8〉 is completely
different than that found in the FBMSSM (see the right-hand side plots in Figs. 9 and 13).

As a side comment, in our numerical analysis we have used the formulae of Ref. [68]
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• The       can be expressed in terms of the        
• Additional interesting effects on  

A(i)
T Sa

i

A7,8

• Flavor Blind MSSM scenarios: Scenario tan β mA mg̃ mQ̃ mŨ At̃ µ Arg(µAt̃)

FBMSSMI 40 400 700 380 700 900 150 −45◦

FBMSSMII 40 400 700 380 700 900 150 50◦

FBMSSMIII 40 400 700 550 700 900 150 −60◦

Table 11: Most relevant parameters of the three FBMSSM scenarios discussed in the text. All
massive parameters are given in GeV.

S5 and Ss
6 and BR(B → Xsγ). Any deviation from the lines in the plots would signal the

presence either of NP contributions to Wilson coefficients other than C7 or of new CP-violating
phases that lead to complex values of C7.

6.3.2 Flavour Blind MSSM

One model with new sources of CP violation is the FBMSSM discussed in Refs. [59, 60, 61, 62].
This is a MSSM where the CKM matrix is the only source of flavour violation, but additional
CP-violating, flavour conserving phases are present in the soft sector. Within this framework,
the majority of non-standard effects arises though complex NP contributions to the Wilson
coefficient C7. We discuss two scenarios in which the effects are maximal: scenario FBMSSMI

is characterized by large negative Im(C7), while scenario FBMSSMII corresponds to a large
positive Im(C7). The corresponding input parameters are collected in Tab. 11, together with
those of a third scenario, FBMSSMIII, to be considered later.

Concerning the CP asymmetries, we observe that significant departures from the SM
predictions can be obtained in As

1,2, A5, As
6, A7 and A8. The most pronounced effects can

be seen in A7 and A8 and these are shown in the left and centre plot of Fig. 9. The effects
here are predominantly due to the large imaginary part of C7 and we note that in this case
positive values for A7 imply negative ones for A8 and vice versa. This is also displayed in
the right plot of Fig. 9, where we show the almost perfect correlation between the integrated
asymmetries 〈A7〉 and 〈A8〉. Any deviation from the line shown in this plot would signal the

presence of additional imaginary parts in either C ′
7 or C(′)

9 and C(′)
10 .

In the CP-averaged angular coefficients we find significant departures from the SM in Ss,c
1,2,

S4, S5, Ss
6 and also in Sc

6, while effects in S3, S7, S8 and S9 can hardly be distinguished from the
SM. Although in the FBMSSM the BR(Bs → µ+µ−) can be close to its experimental upper
bound, the effects in Sc

6 are smaller than the maximal effects found in the model-independent
discussion of Sec. 6.2.3, because the large imaginary part in C7 implies a large phase for the
relevant Wilson coefficient CS. Concerning Ss,c

1,2, we find that while |Ss
1,2| is enhanced, |Sc

1,2| is
suppressed with respect to the SM results. For S4, S5 and the forward–backward asymmetry
Ss

6 we find significant shifts in their zero towards values of q2 lower than the SM prediction
or we even find no zero at all. These effects are shown in Fig. 10 and are much larger than
those possible in the MFV MSSM (see Fig. 7). The reason for these large shifts are the large
values of Im(C7) in the scenarios considered, as discussed in Sec. 6.2.2.

One finds that the strict correlation between the zeros and BR(B → Xsγ) is lost in
the FBMSSM. This is shown in the upper plots of Fig. 11. However, as the additional
contributions to b → sγ from the imaginary part of C7 can only enhance the branching ratio,
one still finds an upper bound on the zeros for a given value of BR(B → Xsγ). In addition, in
the lower plots of Fig. 11 we show the zeros q2

0(S4), q2
0(S5) and q2

0(S
s
6) against the integrated
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ImC7 > 0
ImC7 < 0



                   : impact on NPB → K!+!−

• In the SM: 

Observable Sc I Sc II Sc III Sc IV

F e
H < 0.39 − < 0.56 < 0.13

Fµ
H [0.013, 0.035] [0.018, 0.032] [0.013, 0.56] [0.014, 0.18]

RK [0.61, 1.01] [0.996, 1.01] [0.44, 2.21] [0.93, 1.10]

Be [10−7] [1.91, 3.14] − [1.91, 4.36] [1.91, 2.00]

Bµ [10−7] [1.90, 1.94] [1.90, 1.93] [1.90, 4.26] [1.87, 2.10]

Ae
FB [%] [−0.02, 0.02] − [−0.02, 0.02] [−0.02, 0.02]

Aµ
FB [%] [−0.6, 0.6] [−0.5, 0.3] [−4.46, 4.46] [−3.1, 3.1]

B(B̄s → ēe) [10−5] < 1.17 − < 2.33 −
B(B̄s → µ̄µ) [10−7] < 0.8 < 0.8 < 0.8 −
Bincl

e |[1,6] [10
−6] [1.64, 2.35] − [1.64, 2.35] [1.64, 2.83]

Bincl
µ |[1,6] [10

−6] [1.59, 1.60] [1.59, 1.60] [1.59, 2.17] [1.59, 2.56]

Bincl
e |[>0.04] [10

−6] [4.15, 6.8] − [4.15, 6.8] [4.15, 6.8]

Bincl
µ |[>0.04] [10

−6] [4.15, 4.18] [4.15, 4.17] [4.15, 6.3] [4.15, 6.3]

Table 5: Allowed ranges for b → sl̄l observables in Scenarios I-IV after taking into account the
constraints from B(B̄s → l̄l) and Bincl

l |[>0.04] for l = e and l = µ, see Table 3 and the text for details.
A “−” means that the corresponding observable is SM-like.

tan β), see also Section 6.5. In this model, the (pseudo-) scalar Wilson coefficients are

proportional to the lepton mass C l
S,P ∼ ml, such that Ce

S,P can be neglected and b → sēe

decays are SM-like. Furthermore the relation Cµ
S = −Cµ

P holds and the primed coefficients

Cµ′
S,P are suppressed by ms/mb and can be neglected.

The allowed range of Cµ
S and the effects of NP on the rare decay observables are given

in Table 4 and Table 5, respectively. Since Scenario II is a constrained variant of Scenario

I the deviations from the SM are smaller in the former. The NP contributions to Fµ
H do

not exceed 30% whereas the deviations of Bµ from the SM are of the order of 2%, much

smaller than the theoretical uncertainties. The same holds for Bincl
µ |[1,6], which confirms

earlier studies within the MSSM [36]. Since Be is SM-like in Scenario II, the deviation of

RK from the SM is much reduced with respect to the one in Scenario I. We find NP effects

of 1%, which are larger than the uncertainties of the SM prediction. The forward-backward

asymmetry is smaller then 1% in agreement with previous works in the framework of the

MSSM [37].

6.3 Scenario III: Scalars C l
S, C l

P and C l′
S , C l′

P

In Scenario III we use the full set of (pseudo-) scalar Wilson coefficients including the

chirality flipped ones C l′
S,P for l = e and l = µ. The constraint from the B̄s → l̄l branching

ratios alone can be evaded due to cancellations between C l
S,P and C l′

S,P , see (6.4). To

obtain constraints on C l(′)
S,P we combine B(B̄s → l̄l) with Bincl

l |[>0.04] data. We find the

allowed ranges for the Wilson coefficients given in Table 4. In the electron sector Ce
S,P can
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1
Γ(B → K!!)

dΓ(B → K!!)
d cos θ

=
3
4
(1− F !

H)(1− cos2 θ) +
1
2
F !

H +A!
FB cos θ

RK =
Γ(B → Kµµ)
Γ(B → Kee)

F !
H ! A!

FB ! RK − 1 ! O(m!/mb)
• In presence of NP in scalar/pseudoscalar (Scenarios 1-3) and in 

tensor operators (Scenario 4) deviations are possible:

• The strongest constrain on the WCs comes from Bs→μμ
[Bobeth, Hiller, Piranishvili]



Outlook
• Inclusive modes:

• B→Xsγ spectrum needs better understanding for both the SM 
prediction and for the extraction of mb

• Experimental treatment of collinear QED logs is still not completely 
implemented in theory predictions

• Separate b→sll low-q2 observables in two bins (1-3.5 and 3.5-6 GeV2)

• Exclusive modes:
• Theory is sound in the low-q2 region
• Isospin asymmetry in B→K*γ has a very strong sensitivity to NP
• Plethora of CP and angular distributions in B→K*ll and B→Kll offer 

sensitivity to MFV and non-MFV extensions of the SM


